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abstract: Chaos optimization algorithms (COAs) usually utilize different chaotic
maps(logistic, tent, Hénon, Lozi,...) to generate the pseudo-random numbers mapped
as the design variables for global optimization. In this paper we are going to pro-
pose new technique to improve the chaotic optimization algorithm by using some
transformations to modify the density of the map instead of changing it.
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1. Introduction

Chaos theory has achieved great success since its early years through wide appli-
cations in other sciences such as physics, mechanics, electronics, biology, economy,
astronomy, meteorology, optimisation,...ect [1,2,3,4,5].

Generally speaking, chaos has several important dynamical characteristics, na-
mely, the sensitive dependence on initial conditions, ergodicity, pseudo-randomness,
and strange attractor with self-similar fractal pattern. As far as optimization prob-
lems of some usual functions that are continuously differentiable are concerned,
some traditional optimization algorithms, such as the Newton method, the gradi-
ent method and the Hessians methods [6,7,8] can get their global optimal points
with the advantage of speed convergence and high precision.
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However, these traditional optimization algorithms will easily trap into local
optimization when solving optimization problems of some multi-modal functions.
Many authors use the discrete mappings that have chaotic behaviour in the optimi-
sation algorithm in order to get out of this trap [9,10,11]. Recently, researchers have
focused on developing hybrid algorithms by combining heuristic algorithms with
chaos searching technique to solve non linear system of equations and optimization
problems such as chaotic Monte Carlo optimization, chaotic BFGS, chaotic particle
swarm optimization, chaotic genetic algorithms, chaotic harmony search algorithm,
chaotic simulated annealing, gradient-based methods and so on [12,13,14]. Due
to the non-repetition of chaos, the chaotic optimization algorithm can carry out
overall searches at higher speeds than stochastic ergodic searches that depend on
probabilities.

Different types of chaotic systems have been considered in literature for appli-
cations in optimization methods. The logistic equation and other equations, such
as tent map, Gauss map, Lozi map, Hénon map, sinusoidal iterator, Chua’s oscil-
lator, Ikeda map, and others, have been adopted instead of random ones with very
interesting results [15,16,17,18,19,20,21].

The disadvantage of this method is that if the density of chaotic sequences
generated by the map selected is not high in the vicinity of the global optimum
point, it is very likely that we won’t find this point. Motivated by this reason we
are going to suggest our main idea.

2. The Main Idea

As mentioned above the probability density function of chaotic sequences gen-
erated by chaotic maps obviously influences the efficiency of hybrid chaos opti-
mization algorithms. If many sample points lie in the vicinity of global optimum,
then the success ratio to find the global optimum in design space is high. In other
words, if the probability density function of the chaotic sequences is high in the
neighbourhood of global optimum point, then the success ratio to find the global
optimum point is high. This gave birth to the idea we are working on; which states
that instead of switching the map used in optimization algorithm, we choose a map
that has a good chaotic behaviour and then we use some transformations to change
the density of this map. After that, for any test function we use the transformation
that gives the best results.

It is important to note that in this paper we use the Lozi map [22] defined as
follows:
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It is a 2-d invertible iterated map that gives a chaotic attractor called the Lozi
attractor which is obtained for a = 1.4 and b = 0.3 as shown in figure 1.
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Figure 1: Lozi attractor obtained for a = 1.7 and b = 0.3.
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Figure 2: Density of iterated values of x(k) of map (1) over the interval [0, 1]
splitted in 100 boxes for 10, 000, 000 iterated values.

Numerical computation of the density ρ(s) of iterated values x(k) is displayed
in figure 2. In this figure, the iterated values x(k) are normalized in the range [0, 1]

i.e.
∫ 1

0 ρ(x) dx = 1 where we observe that the highest value of ρ(s) is approximately
1.8 when s is in the neighbourhood of 0.6.

For further explanation we suggest the following example:

Example 2.1. Let the transformation S (Figure 3) defined on the interval [0,1]
in itself such as

S(x) =

{

1

3
x if 0 ≤ x ≤ 0.75

3x− 2 if 0.75 ≤ x ≤ 1
(2.2)
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Figure 3: The transformation S.
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Figure 4: Probability density function of S(L1).

then the density of iterated values of S is as shown in Figure 4.

As shown in Figure 4 the majority of the values S(L1) are in the neighbourhood
of 0.2; so if the test function has its optimal point in this region, it is quite possible
to find it. But if the global optimum point is in the vicinity of 1, it is unlikely that
we will find it because the density function of the chaotic sequence is low.

3. Chaotic Optimization Method (COM)

Many unconstrained optimization problems with continuous variables can be
formulated as the following functional optimization problem.
Find x to minimize f(x), x = (x1, x2, ..., xn). Subject to xi ∈ [Li, Ui], i = 1, 2, ..., n,
where f is the objective function, and x is the decision solution vector consisting
of n variables xi ∈ R bounded by lower and upper limits Li and Ui respectively.

In order to test the effectiveness of this idea we will combine it with chaotic
optimization method proposed by Coelho in [23] and improved by Hamaizia and
Lozi in [24] and we use it to find the optimal solution of some test functions.
Therefore the COM becomes as follows:

Firstly, the Lozi map is adopted to have a chaotic behaviour used to generate
several sequences of points by using different initial conditions (the number of
sequences is equal to the dimension of the objective function).
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Secondly, we use a transformation in order to modify the density function of
the Lozi map as in the above example.

Thirdly, every sequence {y(i), i = 1, 2, ...n} is normalized in the range [0, 1] as
follows:

z(i) =
y(i)− α

β − α
, (3.1)

for all i = 1, 2, ...n, where α = min{(y(i), i ≥ 1}, β = max{(y(i), i ≥ 1}.
The rest are

Algorithm 1.

Inputs:
Mg: max number of iterations of chaotic Global search.
Mgl1: max number of iterations of first chaotic Local search in Global search.
Mgl2: max number of iterations of second chaotic Local search in Global search.
Ml: max number of iterations of chaotic Local search.
Mt = Mg(Mgl1 +Mgl2) +Ml: stopping criterion of chaotic optimization method
in iterations.
λgl1: step size in first Global-Local search.
λgl2: step size in second Global-Local search.
λ step size in chaotic local search.

Outputs:
x̄: best solution from current run of chaotic search.
f̄ : best objective function (minimization problem).

Step 1: Initialization of the numbers Mg, Mgl1, Mgl2, Ml of steps of chaotic
search and initialization of parameters λgl1, λgl1, λ and initial conditions. Set
k = 1, y1(1), y2(1), a = 1.1 and b = 0.3. Set the initial best objective function
f̄ = +∞.

Step 2: Algorithm of chaotic global search:
while k ≤ Mg do
xi(k) = Li + zi(k)(Ui − Li), i = 1, 2, ..., n
if f(x(k)) < f̄ , then
x̄ = x(k), f̄ = f(x(k))
end if

Step 2-1: sub algorithm of first chaotic global-local search:
while j ≤ Mgl1 do
for i = 1 to n do
if r ≤ 0.5 then (where r is a uniformly distributed random variable with
range [0, 1])
xi(j) = x̄i + λgl1zi(j)(Ui − x̄i)
else
xi(j) = x̄i − λgl1zi(j)(x̄i − Li)
end if
end for
if f(x(j)) < f̄ , then
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x̄ = x(j), f̄ = f(x(j))
end if
j = j + 1
end while

Step 2-2: sub algorithm of second chaotic global-local search:
while s ≤ Mgl2 do
for i = 1 to n do
if r ≤ 0.5 then
xi(s) = x̄i + λgl2zi(s)(Ui − x̄i)
else
xi(s) = x̄i − λgl2zi(s)(x̄i − Li)
end if
end for
if f(x(s)) < f̄ , then
x̄ = x(s), f̄ = f(x(s))
end if
s = s+ 1
end while
k = k + 1
end while

Step 3: algorithm of chaotic local search:
while k ≤ Ml do
for i = 1 to n do
if r ≤ 0.5 then
xi(k) = x̄i + λzi(k)(Ui − x̄i)
else
xi(k) = x̄i − λzi(k)(x̄i − Li)
end if
end for
if f(x(k)) < f̄ , then
x̄ = x(k), f̄ = f(x(k))
end if
k = k + 1
end while

In order to enrich our study, we are going to use different values of steps’ size λ,
λgl1 and λgl2 and different values of the number of iterations Mg, Mgl1, Mgl2 and
Ml as in table 1. During the chaotic local search, the step size λ (resp λgl1, λgl2) is
an important parameter in convergence behaviour of optimization method which
adjusts small ergodic ranges around x∗. The steps size λ and λgl are employed to
control the impact of the current best solution on generating a new trial solution.
Small λ and λgl tend to perform exploitation to refine results by local search, while
large ones tend to facilitate a global exploration of search space.
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Table 1: The set of parameters values for every run of the COM algorithm

λ λgl1 λgl2 Mg Ml Mgl1 Mgl2 Mt

C1 0.01 0.04 0.01 50 10 5 5 510

C2 0.01 0.4 0.01 50 10 5 5 510

C3 0.01 0.04 0.01 100 50 5 5 1050

C4 0.001 0.04 0.01 200 100 5 5 2100

4. Numerical Examples and Discussion

4.1. Some Transformations

In this section, we are going to suggest some transformations in order to use them
for changing the density functions of the Lozi map.

1.

S1(x) = x2 + 3x. (4.1)

2. Let m be the minimum of the sequence generated by Lozi map and M be its
maximum and let α and β be two real numbers. We define the transformation
S2 as follows:

S2(x) =
−2α

m−M
x+ β − α−

−2α

m−M
m. (4.2)

We note that if we have doubt that the optimal point is x∗ we can choose α

and β so that the majority of the points S2(x) are in the neighbourhood of

x∗. In this paper we set α = 0.001 and β =
1

2
.

3.

S3(x) = tan(x). (4.3)

4.

S4(x) = log(|x|) sin(x). (4.4)

Figure 5 shows the probability density function ρ1 of S1(L1) through which we see
that the function ρ1 is decreasing on the interval [0.5, 1] which contains less points
of S1(L1) than the interval [0, 0.5]. The density ρ2 of S2(L1) is shown in Figure 6
where we notice that the majority of the points are in the neighbourhood of 0.5 so
if the optimal point is near 0.5, it is very likely to find it but if the global minimum
is far from 0.5, then this transformation is not suitable. The density ρ3 of S3(L1)
shown in Figure 7 resembles the normal density. Finally, the density function of
S4(L1) is like that of the logistic map, see Figure 8.
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Figure 5: Probability density function of S1(L1).
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Figure 6: Probability density function of S2(L1).
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Figure 7: Probability density function of S3(L1).
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Figure 8: Probability density function of S4(L1).

4.2. Some Test Functions

In this subsection we are going to give some test functions that are used to examine
the effectiveness of this new method.

1.

f1(x1, x2, ..., xn) =

n
∑

i=1

(x4
i − 16x2

i + 5xi)

2
, (4.5)

where −5 ≤ xi ≤ 5 for 1 ≤ i ≤ n.

2.

f2(x1, x2) = x4
1 − 7x2

1 + x4
2 − 9x2

2 − 5x2 + 11x2
1x

2
2+

+ 99 sin(71x1) + 137 sin(97x1x2) + 131 sin(51x2), (4.6)

where −10 ≤ x1 ≤ 10 and −10 ≤ x2 ≤ 10.

3.

f3(x1, x2) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]×

[30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)], (4.7)

where −2 ≤ x1 ≤ 2 and −2 ≤ x2 ≤ 2.

4.

f4(x1, x2) = 100
√

|x2 − 0.01x2
1|+ 0.01 |x1 + 10| , (4.8)

where −15 ≤ x1 ≤ −5 and −3 ≤ x2 ≤ 3.
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Figure 9: Styblinski-Tang’s functionf1.

Figure 10: Function f2.
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Figure 12: Bukin function f4.

Figures 9 shows the 3D plots of the Styblinski-Tang function. f1 is a d-dimensional
function, and usually evaluated on the hypercube xi ∈ [−5, 5], for all i = 1, ..., d
where d is the dimension of f1, it has a global minimum

−39.16617× d ≤ f4(−2.903534, ...,−2.903534)≤ −39.16616× d.

Concerning f2 shown in Figure 10 used by Hamaizia and Lozi in [24] which pos-
sesses hundreds of local minima, its global minima is not yet theoretically known.
Functionf3 shown in Figure 11 is the Goldstein-Price function which is usually
evaluated on the rectangle x1 ∈ [−2, 2] and x2 ∈ [−2, 2], has a lot of local min-
imum and one global minimum f3(0,−1) = 3. Function f4 shown in Figure 12
is the Bukin function, it is usually evaluated on the rectangle x1 ∈ [−15,−5] and
x2 ∈ [−3, 3], has a lot of local minimum and one global minimum f4(−10, 1) = 0.

5. Numerical Results

Each optimization method was implemented in Matlab (MathWorks). All the
programs were run on a 2.53 GHz, i3 processor with 4 GB of random access memory.
On the other hand, since the COM algorithm gives random results, so in each case
study, 50 independent runs are made involving 50 different initial trial conditions.

Table 2 shows the numerical results of the global minima research of Styblinski-
Tang function f1 in which we notice that the most suitable transformation used to
find the optimal solution of f1 is S4. The best results concerning f2 are obtained
through using the transformations S3 and S4 but the first is better since its standard
divergence is less than that of S4 (see table 3). Table 4 represents the numerical
findings of the optimization problem of the Goldstein-Price function f3 where we
see that all the transformations in subsection 4.1 are suitable for finding the global
minima of f3 but the most appropriate of all is S4. Finally, the numerical results
of the optimization problem of function f4 are shown in table 5 from which we see
that the most appropriate transformation used to find the optimal solution of Bukin
function f4 is S1 because the numerical global minima is in the neighbourhood of
the theoretical one and the standard divergence is near to zero.



20 R. Bououden and M. S. Abdelouahab

Table 2: Optimization results of f1 for every transformation

T.F Trans Cases Optimal solu Optimal point Mean value Std.Dev

S1 C1 -117.4985 (-2.9045,-2.9044,-2.9026) -117.4980 0.0003
C2 -117.4969 (-2.9108,-2.9044,-2.8972) -117.4532 0.0294
C3 -117.4985 (-2.9031,-2.9041,-2.9023) -117.4982 0.0001
C4 -117.4985 (-2.9033,-2.9035,-2.9043) -117.4984 0.0001

S2 C1 -117.4970 (-2.9095,-2.9059,-2.9103) -117.4888 0.0061
C2 -117.4584 (-2.9356,-2.9020,-2.9390) -116.5590 0.5693
C3 -117.4980 (-2.9047,-2.9049,-2.9085) -117.4939 0.0025

f1 C4 -117.4984 (-2.9050,-2.9016,-2.9031) -117.4949 0.0029
S3 C1 -117.4947 (-2.9022,-2.8920,-2.8941) -117.4773 0.0105

C2 -116.5576 (-2.7716,-3.0596,-3.0117) -114.5126 1.2206
C3 -117.4979 (-2.9040,-2.8978,-2.9018) -117.4805 0.0103
C4 -117.4958 (-2.9132,-2.9113,-2.9055) -117.4816 0.0082

S4 C1 -117.4985 (-2.9035,-2.9037,-2.9037) -117.4985 0.0000
C2 -117.4985 (-2.9039,-2.9039,-2.9030) -117.4980 0.0002
C3 -117.4985 (-2.9034,-2.9034,-2.9038) -117.4985 0.0000
C4 -117.4985 (-2.9035,-2.9036,-2.9035) -117.4985 0.0000

Table 3: Optimization results of f2 for every transformation

Test
function

Transfor
-mations

Cases Optimal solution Optimal point Mean value Std.Dev

S1 C1 -395.6748 (0.1533,2.4332) -389.4862 7.8471
C2 -395.4022 (0.1535,2.4322) -384.5009 4.5688
C3 -395.8736 (0.2433,2.0636) -389.2662 8.1911
C4 -395.8498 (0.2433,2.0632) -377.1366 7.8063

S2 C1 -395.8338 (0.2433,2.0641) -378.3163 8.2958
C2 -395.7457 (0.2431,2.0644) -378.7449 6.2101
C3 -395.7776 (0.2434,2.0640) -381,5902 9.5200

f2 C4 -395.7475 (0.2435,2.0634) -381.9671 8.9664
S3 C1 -395.8474 (0.2432,2.0636) -393.0928 1.4983

C2 -388.3178 (0.0661,1.6989) -385.7685 0.3642
C3 -395.7612 (0.2431,2.0635) -393.6255 1.0753
C4 -395.7959 (0.2432,2.0642) -387.6166 7.0161

S4 C1 -385.1566 (1.9246,0.0925) -373.0012 3.1790
C2 -395.6758 (0.2432,2.0647) -389.1207 5.6259
C3 -395.8349 (0.2432,2.0641) -392.9497 2.1407
C4 -395.8751 (0.2433,2.0635) -393.5276 1.2457

Table 4: Optimization results of f3 for every transformation

Test
function

Transfor
-mations

Cases Optimal solution Optimal point Mean value Std.Dev

S1 C1 3.0000 (-0.0000,-1.0000) 3.0000 0.0000
C2 3.0003 (-0.0011,-0.9998) 3.0028 0.0021
C3 3.0000 (-0.0000,-1.0000) 3.0000 0.0000
C4 3.0000 (-0.0000,-1.0000) 3.0000 0.0000

S2 C1 3.0000 (-0.0000,-1.0002) 3.0008 0.0012
C2 3.0003 (-0.0002,-0.9992) 3.0639 0.0689
C3 3.0000 (-0.0003,-1.0000) 3.0004 0.0003

f3 C4 3.0000 (-0.0003,-0.9997) 3.0005 0.0003
S3 C1 3.0000 (-0.0002,-0.9999) 3.0042 0.0038

C2 3.0574 (-0.0100,-0.9933) 3.1461 0.0501
C3 3.0002 (-0.0003,-0.9995) 3.0045 0.0041
C4 3.0001 (0.0004,-0.9997) 3.0045 0.0034

S4 C1 3.0000 (-0.0000,-1.0000) 3.0000 0.0000
C2 3.0000 (-0.0000,-1.0000) 3.0000 0.0000
C3 3.0000 (-0.0000,-1.0000) 3.0000 0.0000
C4 3.0000 (-0.0000,-1.0000) 3.0000 0.0000
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Table 5: The optimal solution of f4 for every transformation

Test
function

Transfor
-mations

Cases Optimal solution Optimal point Mean value Std.Dev

S1 C1 0.0173 (-10.7026,1.1455) 0.1600 0.0720
C2 0.0247 (-11.4549,1.3121) 0.4569 0.2221
C3 0.0058 (-9.6433,0.9299) 0.0916 0.0517
C4 0.0054 (-10.3195,1.0649) 0.0764 0.0423

S2 C1 0.0126 (-10.1153,1.0232) 0.2494 0.1133
C2 0.0440 (-9.3116,0.8671) 0.6132 0.3021
C3 0.0138 (-10.2609,1.0529) 0.1403 0.0776

f4 C4 0.0103 (-10.4391,1.0897) 0.1029 0.0532
S3 C1 0.0203 (-10.0553,1.0111) 0.2316 0.01306

C2 0.0821 (-12.3331,1.5211) 0.8963 0.4186
C3 0.0185 (-9.9977,0.9995) 0.1903 0.1097
C4 0.0100 (-10.2287,1.0463) 0.1183 0.0615

S4 C1 0.0291 (-12.6313,1.5955) 0.0911 0.0338
C2 0.0220 (-9.3076,0.8663) 0.2144 0.1155
C3 0.0247 (-12.4120,1.5406) 0.0780 0.0212
C4 0.0299 (-12.9314,1.6722) 0.0665 0.0200

6. Conclusion

In this paper, we have presented a new technique of chaotic optimization al-
gorithm by using some transformations in order to modify the density of the Lozi
map. In order to test the numerical performance of this new technique, the four
non linear multi modal benchmark functions are employed.

As a result of this study, there is no map that gives the best solution of optimiza-
tion problem for all test functions. So, to obtain global minimum of objective test
function you should choose a map that has a good chaotic behaviour and select the
transformation that fits the shape of the test function under study. More detailed
analysis about this new technique by using other maps and other transformations
and testing them on a large number of test functions in higher dimension will be
provided in near future.
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