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abstract: In this paper, an adaptive modified function projective synchroniza-
tion (AMFPS) scheme of different dimensions fractional-order chaotic systems with
fully unknown parameters is presented. On the basis of fractional Lyapunov stabil-
ity theory and adaptive control law, a new fractional-order controller and suitable
update rules for unknown parameters are designed to realize the AMFPS of different
fractional-order chaotic systems with non-identical orders and different dimensions.
Theoretical analysis and numerical simulations are given to verify the validity of
the proposed method. Additionally, synchronization results are applied to secure
communication via modified masking method. Due to the unpredictability of the
scale function matrix and using of fractional-order systems with different dimensions
and unequal orders, the proposed scheme has higher security. The security analysis
demonstrate that the proposed algorithm has a large key space and high sensitivity
to encryption keys and it is resistance to all kind of attacks.
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1. Introduction

Applications of the fractional-order systems in the fields of physics and engi-
neering have attracted lots of attentions in the recent years [1,2]. Also, many efforts
have been devoted to the study of fractional-order chaotic systems. Synchronization
of fractional-order chaotic systems has applications in secure communication, cryp-
tography, control processing and etc [1,3]. So far, many synchronization methods
for fractional-order chaotic systems have been presented, such as projective syn-
chronization [4], generalized synchronization [5], phase synchronization [6], sliding
mode control [7] and etc. Among all of them, projective synchronization (PS)
[8] has been attracted increasing attention because it can get fast communication
using this feature that drive and response systems can synchronize up to a scaling
factor. Then, Li [9] extended the concept of PS and proposed modified projective
synchronization (MPS), where the drive and response states can synchronize up to
constant scaling matrix. Later on, Chen et al. [10] presented the concept of func-
tion projective synchronization (FPS), where the drive and response systems can
synchronize up to a scaling function, but not a constant. Thereafter, Du et al. [11]
reported a new synchronization scheme, modified function projective synchroniza-
tion (MFPS), in which the drive and response systems could be synchronized up
to a desired scaling function matrix. These methods are presented for the integer
order systems and some of them are extended to fractional order systems. On the
other hand, in most of the literature, the synchronization of fractional-order sys-
tems with same dimensions and identical orders is used. Hence, the absence of the
extension of adaptive modified function projective synchronization (AMFPS) for
different dimensions fractional order chaotic systems with non-identical fractional-
orders is sensible.

In recent years, many encryption algorithms based on chaos synchronization
have been proposed but they often lack of security analysis and most of them hold
only for the integer order systems [12]. Also, most secure communication schemes
using chaotic systems are based on synchronization of identical systems. Therefore,
encryption methods based on chaos synchronization of fractional-order systems
with different dimensions and unequal orders have not been presented. However,
AMFPS method of different fractional-order chaotic systems and unpredictability
of uncertain parameters can enhance the security of communication.

Inspired by the above discussions, in this paper, we discuss AMFPS scheme
for two different uncertain fractional order chaotic systems with different dimen-
sions. By the Lyapunov stability theory and adaptive control method, we propose
a new method of designing fractional-order controller and parameter update rules
to ensure the AMFPS is obtained and the parameters are estimated. Numerical
simulations are presented to demonstrate the effectiveness of the proposed method.
Furthermore, we proposed a new modified chaotic masking secure communication
scheme by applying AMFPS of two different fractional-order chaotic systems with
unknown parameters and different dimensions. The unpredictability of the scaling
functions in AMFPS and the utilization of fractional-order systems with different
dimensions and unequal orders can provide additional security in secure communi-
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cation scheme. The performance of the proposed image cryptosystem is analyzed
by using several security test measures, such as key space analysis, key sensitivity
analysis, information entropy, histogram analysis and speed analysis. The results
demonstrate that high security can be guaranteed to resist all kinds of brute-force
and statistical attacks. Therefore, AMFPS of fractional-order systems and its ap-
plication to secure communication is worth studying.

2. Preliminaries and AMFPS Description

In order to investigate control and synchronization of the chaotic fractional-
order dynamic systems, we recall some definitions and lemmas.

Definition 2.1. Let q ∈ R
+. The Caputo differential operator [13] of order q is

defined by

C
a D

q
t f(t) :=

1

Γ(m− q)

∫ t

a

fm(τ )

(t− τ )q+1−m
dτ ,

whenever fm ∈ L1[a, b] and m := ⌈q⌉ = min{z ∈ Z : z ≥ q}.

Definition 2.2. A continuous function γ : [0, t) → [0,∞) is said to belong to
class-K if it is strictly increasing and γ(0) = 0 [14].

Lemma 2.3. ( [15]) Let x(t) ∈ R
n be a vector of differentiable functions and

q ∈ (0, 1]. For any time instant t ≥ t0, the following relationship holds

1

2
Dq(xT (t)Px(t)) ≤ xT (t)PDqx(t),

where P ∈ R
n×n is a constant symmetric positive definite matrix.

Lemma 2.4. (Fractional comparison principle [14]). Let Dqx(t) ≥ Dqy(t), q ∈
(0, 1) and x(t0) = y(t0). Then x(t) ≥ y(t).

Lemma 2.5. (Relationship between positive definite functions and class-K func-
tions [16]). A function V (x, t) is locally (or globally) positive definite if and only
if there exists a class-K function γ1 such that V (0, t) = 0 and V (x, t) ≥ γ1(‖x‖),
∀t ≥ t0 and ∀x belonging to the local space (or the whole space).

A function V (x, t) is locally (or globally) decrescent if and only if there exists
a class-K function γ2 such that V (0, t) = 0 and V (x, t) ≤ γ2(‖x‖), ∀t ≥ t0 and ∀x
belonging to the local space (or the whole space).

Lemma 2.6. (Fractional-order extension of Lyapunov direct method [14]). Let
x = 0 be an equilibrium point for the fractional-order system

Dqx(t) = f(t, x). (2.1)

Assume that there exists a Lyapunov function V (t, x(t)) and class-K functions γi,
i = 1, 2, 3, satisfying

γ1(‖x‖) ≤ V (t, x(t)) ≤ γ2(‖x‖),

DqV (t, x(t)) ≤ −γ3(‖x‖),

where q ∈ (0, 1). Then the system (2.1) is asymptotically stable.
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Now, before studying an adaptive modified function projective synchronization
(AMFPS) scheme of fractional-order systems, we present a stability theory of
fractional-order dynamic systems.

Theorem 2.7. Consider the fractional-order system

Dqx = f(x), (2.2)

where x ∈ R
n and q ∈ (0, 1]. Let x = 0 is the equilibrium point of the system (2.2)

and P is a real positive definite matrix. Then for any initial values, the origin of
the system (2.2) is

(a) stable if xTPDqx ≤ 0, ∀x ∈ R
n;

(b) asymptotically stable if xTPDqx < 0, ∀x 6= 0,

where T stands for transpose of a matrix.

Proof: When q = 1, this is the case of stability for integer order dynamic system,
the conclusion is evident.

When 0 < q < 1, choose the positive definite Lyapunov function

V (x(t)) =
1

2
xT (t)Px(t).

Using Lemma 2.3, results

DqV (x(t)) =
1

2
Dq(xT (t)Px(t)) ≤ xT (t)PDqx(t). (2.3)

If xT (t)PDqx(t) ≤ 0, then DqV (x(t)) ≤ 0. Hence, the fractional derivative (2.3)
of the Lyapunov function is negative semidefinite. Using the Lemma 2.4, it follows
that V (x(t)) is decrescent, i.e. V (x(t)) ≤ V (x(0)), ∀x ∈ R

n. Therefore, according
to the Lyapunov stability theorem, the origin of the system (2.2) is stable.

If xT (t)PDqx(t) < 0, ∀x 6= 0, then DqV (x(t)) < 0. So the fractional derivative
(2.3) of the Lyapunov function is negative definite. Using the Lemma 2.4, it follows
that V (x(t)) is strictly decreasing, i.e. V (x(t)) < V (x(0)), ∀x ∈ R

n.
Since V (x(t)) is positive definite and strictly decrescent, using the Lemma 2.5

there exists two class-K functions γ1 and γ2 such that γ1(‖x‖) ≤ V (x(t)) ≤
γ2(‖x‖). Using Lemma 2.6 it is concluded that the origin of the system (2.2) is
asymptotically stable. ✷

Corollary 2.8. Consider the following fractional-order dynamic system

Dqx = A(x)x, (2.4)

with x ∈ R
n, A(x) ∈ R

n×n and q ∈ (0, 1]. If there exist two real symmetric positive
definite Matrices P and Q such as PA(x) + A(x)TP = −Q, Then for any initial
values, system (2.4) is asymptotically stable, i.e., limt→+∞ ||x|| = 0.
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Proof: Since for all x ∈ R
n, xTPAx = 1/2xT (PA + ATP )x = −1/2xTQx < 0,

using Theorem 2.7 the origin of the system (2.4) is asymptotically stable. ✷

Now, we will discuss AMFPS scheme of different dimensions fractional-order
chaotic systems with fully unknown parameters.

The fractional order chaotic drive and response systems are defined as

Dqdx = f(x, α), (2.5)

Dqry = g(y, β), (2.6)

where qd and qr are fractional orders satisfying 0 < qd < 1, 0 < qr < 1, and
qr may be different with qd; x = (x1, x2, . . . , xn)

T ∈ R
n, y = (y1, y2, . . . , ym)T ∈

R
m (m may be different with n) are the state vectors of systems (2.5) and (2.6),

respectively; α ∈ R
l and β ∈ R

k are unknown parameter vectors of systems (2.5)
and (2.6) to be estimated and f : Rn → R

n, g : Rm → R
m are two continuous

vector functions.
When parameters α and β in drive and response systems are unknown, a con-

troller u and parameter update laws are added to systems (2.5) and (2.6). Then,
we obtain the drive system (2.7) and the controlled response system (2.8) with
parameter update laws (2.9) and (2.10),

Dqdx = f(x, α̃), (2.7)

Dqry = g(y, β̃) + u(x, y), (2.8)

Dqr α̃ = r(x, y, α̃), (2.9)

Dqr β̃ = s(x, y, β̃), (2.10)

where α̃ and β̃ are the estimated vectors of unknown parameters, vector u :
{Rn,Rm} → R

m is the controller vector to be designed and vector r(x, y, α̃) ∈ R
l

and s(x, y, β̃) ∈ R
k are real vectors to be designed.

The error vector for AMFPS are defined as e = y−K(x)x where e = (e1, e2, . . . ,
em)T and

ei = yi −

n
∑

j=1

kij(x)xj , i = 1, 2, . . . ,m, (2.11)

and scaling function factors kij(x), i = 1, 2, . . . ,m, j = 1, 2, . . . , n, are real contin-
uous differentiable bounded functions, which compose the scaling function matrix
K(x) = (kij(x)) ∈ R

m×n. Also, the error vectors of estimation unknown parame-
ters are

eα = (eα1
, eα2

, . . . , eαl
)T , eαi

= α̃i − αi, i = 1, 2, . . . , l,

eβ = (eβ
1
, eβ

2
, . . . , eβ

k
)T , eβ

i
= β̃i − βi, i = 1, 2, . . . , k.

Note that αi (i = 1, 2, . . . , l) and βi (i = 1, 2, . . . , k) are true values of the unknown
parameters α̃i and β̃i, respectively.
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Definition 2.9. It is said that the drive system (2.7) and the controlled response
system (2.8) are AMFPS if there exists vector functions u(x, y), r(x, y, α̃) and
s(x, y, β̃) such that

lim
t→∞

||e|| = lim
t→∞

||y −K(x)x|| = 0,

lim
t→∞

||eα|| = lim
t→∞

||α̃− α|| = 0,

lim
t→∞

||eβ || = lim
t→∞

||β̃ − β|| = 0.

Remark 2.10. It is easy to show that AMFPS is generalization of many synchro-
nization schemes such as adaptive projective synchronization (APS), adaptive mod-
ified projective synchronization (AMPS), adaptive function projective synchroniza-
tion (AFPS), adaptive generalized function projective synchronization (AGFPS),
adaptive complete synchronization, adaptive anti-phase synchronization, chaos con-
trol problem and etc.

Remark 2.11. For a system with unknown parameters in this paper it is only
considered that its parameters cannot be known in advance, but it has a certain
structure.

Now, we will discuss how to choose a controller u and parameter update laws.
We consider the controller structure as follows

u(x, y) = u1(x) + u2(x, y),

where u1(x), u2(x, y) ∈ R
m. Now by choosing

u1(x) = Dqr (K(x)x) − g(K(x)x, β) +K(x)(f(x, α̃)− f(x, α)),

the controlled response system (2.8) can be rewritten as

Dqry =g(y, β̃) +Dqr (K(x)x) − g(K(x)x, β)

+K(x)(f(x, α̃)− f(x, α)) + u2(x, y). (2.12)

It follows from (2.11) and (2.12) that we have the following error system

Dqre = g(y, β̃)− g(K(x)x, β) +K(x)(f(x, α̃)− f(x, α)) + u2(x, y). (2.13)

We have

g(y, β̃)− g(K(x)x, β) +K(x)(f(x, α̃)− f(x, α)) = C1(x, y, α, β)





e
eα
eβ



 , (2.14)

where





e
eα
eβ



 = (e1, . . . , em, eα1
, . . . , eαl

, eβ
1
, . . . , eβ

k
)T ∈ R

(m+l+k) and

C1(x, y, α, β) is an m× (m+ l + k) real matrix.
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Therefore, the AMFPS between drive system (2.7) and controlled response sys-
tem (2.8) is transformed into choose a suitable vector function u2(x, y) such that
system (2.13) is asymptotically converged to zero.

Now, we can selecte vector u2(x, y) as

u2(x, y) = C2(x, y, α, β)





e
eα
eβ



 , (2.15)

where C2(x, y, α, β) is an m× (m+ l + k) real matrix to be designed. Using Eqs.
(2.14) and (2.15), so the error system (2.13) can be rewritten as follows:

Dqre = (C1(x, y, α, β) + C2(x, y, α, β))





e
eα
eβ



 . (2.16)

The parameter adaptation laws can be designed as

Dqr α̃ = r(x, y, α̃) = A





e
eα
eβ



 , (2.17)

Dqr β̃ = s(x, y, β̃) = B





e
eα
eβ



 , (2.18)

where A and B are l× (m+ l+k) and k× (m+ l+k) real matrices to be designed,
respectively. Because the Caputo derivative of a constant is zero, so Eqs. (2.17)
and (2.18) can be rewritten as

Dqreα = Dqr (α̃− α) = Dqr α̃ = A





e
eα
eβ



 , (2.19)

Dqreβ = Dqr (β̃ − β) = Dqr β̃ = B





e
eα
eβ



 . (2.20)

Combining (2.16) with (2.19) and (2.20) we have





Dqre
Dqreα
Dqreβ



 =





C1(x, y, α, β) + C2(x, y, α, β)
A
B









e
eα
eβ



 , (2.21)

where





C1(x, y, α, β) + C2(x, y, α, β)
A
B



 is an (m+ l+k)×(m+ l+k) real matrix.

So our aim is to find suitable matrices C2(x, y, α, β), A and B such that the
error system (2.21) is asymptotically converged to zero.
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Theorem 2.12. If matrices C2 ∈ R
m×(m+l+k), A ∈ R

l×(m+l+k) and
B ∈ R

k×(m+l+k) in system (2.21) are selected such as

P





C1(x, y, α, β) + C2(x, y, α, β)
A
B





+





C1(x, y, α, β) + C2(x, y, α, β)
A
B





T

P = −Q,

where P and Q are real symmetric positive definite matrices, Then for any initial
values, system (2.21) is asymptotically stable and AMFPS between systems (2.7)
and (2.8) can be achieved, i.e., limt→∞ ||e|| = limt→∞ ||eα|| = limt→∞ ||eβ|| = 0.

Proof: According to the Corollary 2.8, the equilibrium point of error dynamical
system (2.21) is asymptotically stable. Therefore, the AMFPS between drive and
response systems is realized. The proof is completed. ✷

3. Numerical simulation

In order to verify the effectiveness of the proposed synchronization scheme, we
illustrate an example. For the numerical solution of fractional differential equation,
the Adams-type predictor-corrector method is used [17].

The fractional-order Chen system [18], as the drive system, is given by

Dqdx1 = ã1(x2 − x1),

Dqdx2 = (c̃1 − ã1)x1 − x1x3 + c̃1x2, (3.1)

Dqdx3 = x1x2 − b̃1x3,

where 0 < qd < 1 is the fractional-order; x1, x2, and x3 are state variables; ã1,
b̃1,c̃1 are unknown parameters to be estimated. System (3.1) exhibits a chaotic
attractor for (a1, b1, c1) = (35, 3, 28) and qd = 0.93 [18].

The fractional-order hyperchaotic Chen system [19], as the response system, is
described as follows:









Dqry1
Dqry2
Dqry3
Dqry4









=









y4 + ã2(y2 − y1)

y1(d̃2 − y3) + c̃2y2
y1y2 − b̃2y3
y2y3 + r̃2y4









+ u, (3.2)

where 0 < qr < 1 is the fractional-order;y1, y2, y3 and y4 are state variables;
ã2, b̃2, c̃2, d̃2 and r̃2 are unknown parameters to be estimated. System (3.2) is
hyperchaotic for (a2, b2, c2, d2, r2) = (35, 3, 12, 7, 0.5) and qr = 0.95 [19].
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The AMFPS error between the systems (3.1) and (3.2) is defined by

ei = yi −

3
∑

j=1

kijxj , i = 1, 2, . . . , 4,

ea1
= ã1 − a1, eb1 = b̃1 − b1, ec1 = c̃1 − c1, ea2

= ã2 − a2,

eb2 = b̃2 − b2, ec2 = c̃2 − c2, ed2
= d̃2 − d2, er2 = r̃2 − r2.

According to the AMFPS scheme, we get C1(x, y, α, β) = (M N R) where

M =





























−a2 a2 0 1

d2 −
3

∑

j=1

k3jxj c2 −y1 0

3
∑

j=1

k2jxj y1 −b2 0

0

3
∑

j=1

k3jxj y2 r2





























,

N =









(x2 − x1)k11 − x1k12 −x3k13 (x1 + x2)k12
(x2 − x1)k21 − x1k22 −x3k23 (x1 + x2)k22
(x2 − x1)k31 − x1k32 −x3k33 (x1 + x2)k32
(x2 − x1)k41 − x1k42 −x3k43 (x1 + x2)k42









,

R =









y2 − y1 0 0 0 0
0 0 y2 y1 0
0 −y3 0 0 0
0 0 0 0 y4









.

Now, we can choose real matrix C2(x, y, α, β) = (H O) where

H =





























0 0 0 −1

−d2 +
3

∑

j=1

k3jxj − a2 −2c2 0 0

−
3

∑

j=1

k2jxj 0 0 −y2

0 −

3
∑

j=1

k3jxj 0 −2r2





























,
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and O is a 4× 8 zero matrix and the parameters update laws as

Dqr ã1 =− (x2 − x1)(k11e1 + k21e2 + k31e3 + k41e4)

+ x1(k12e1 + k22e2 + k32e3 + k42e4)− eã1
,

Dqr b̃1 =x3(k13e1 + k23e2 + k33e3 + k43e4)− eb̃1 ,

Dqr c̃1 =− (x1 + x2)(k12e1 + k22e2 + k32e3 + k42e4)− ec̃1 ,

Dqr ã2 =− (y2 − y1)e1 − eã2
, (3.3)

Dqr b̃2 =y3e3 − eb̃2 ,

Dqr c̃2 =− y2e2 − ec̃2 ,

Dqr d̃2 =− y1e2 − ed̃2
,

Dqr r̃2 =− y4e4 − er̃2 .

Consequently, we obtain the error dynamical system as

Dqre1 =a2(e2 − e1) + ((x2 − x1)k11 − x1k12)ea1
− x3k13eb1

+ (x1 + x2)k12ec1 + (y2 − y1)ea2
,

Dqre2 =− a2e1 − c2e2 − y1e3 + ((x2 − x1)k21 − x1k22)ea1
− x3k23eb1

+ (x1 + x2)k22ec1 + y2ec2 + y1ed2
,

Dqre3 =y1e2 − b2e3 − y2e4 + ((x2 − x1)k31 − x1k32)ea1
− x3k33eb1 (3.4)

+ (x1 + x2)k32ec1 − y3eb2 ,

Dqre4 =y2e3 − r2e4 + ((x2 − x1)k41 − x1k42)ea1
− x3k43eb1

+ (x1 + x2)k42ec1 + y4er2 .

If we choose matrices P and Q in Theorem 2.12 as I (I is an 12×12 identity matrix)
and diag(a2, c2, b2, r2, 1, 1, 1, 1, 1, 1, 1, 1), respectively, then the AMFPS between
systems (3.1) and (3.2) is obtained, and the unknown parameters are estimated
using the parameter update laws (3.3).

We choose the fractional orders and the initial values as qd = 0.93, qr = 0.95,
(x1(0), x2(0), x3(0)) = (1,−4, 5), (y1(0), y2(0), y3(0), y4(0)) = (1, 0.1, 2,−0.5),
(a1(0), b1(0), c1(0)) = (28, 5, 25), (a2(0), b2(0), c2(0), d2(0), r2(0)) = (32, 1, 15, 10, 2).
Without loss of generality, the scaling function matrix are chosen as

K(x) =









x1 + 0.4 −1 −2
−3 1 0.2x3 − 2

x2 + 3 2 0.6x1

−0.02x1x2 x2 + 2 x1 − 3









.

Figure 1 displays the convergence of the AMFPS errors. Figure 2 shows the esti-
mated values of the unknown parameters converge to chaotic values.
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Figure 1: Time evolutions of the error system (3.4).
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Figure 2: The estimation of the unknown parameters for: (a) chaotic Chen system;
(b) hyperchaotic Chen system for AMFPS.

4. Secure communication

In this section, based on the AMFPS scheme, a modified chaotic masking
(MCM) digital secure communication method is performed.

The transmitter system is the fractional-order system (2.7) with state vari-
ables xi(t), i = 1, . . . , n and parameters (α̃1, . . . , α̃l) and the receiver system is the
fractional-order system (2.8) with different state variables yi(t), i = 1, . . . ,m and
parameters (β̃1, . . . , β̃k).

Assume that M(t) is the original message. At the transmitter, the M(t) is
added into the drive system and chaotic signal

∑n
j=1 kij(x(t))xj(t), i = 1, 2, . . . ,m,

mask the original message. We obtaine the encryption signal T (t) as:

T (t) = M(t) +

n
∑

j=1

k1j(x(t))xj(t) + . . .+

n
∑

j=1

kmj(x(t))xj(t). (4.1)
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The signal T (t) from the transmitter is sent to the receiver. We can decrypt
the encrypted message in receiver by subtracting the synchronized signal from the
transmitted signal. Thus, the received signal R(t) by the receiver is as follows:

R(t) = T (t)−

m
∑

i=1

yi(t). (4.2)

Using the equation (4.1) and the concept of AMFPS, we have:

R(t) = M(t) +
n
∑

j=1

k1j(x(t))xj(t) + . . .+
n
∑

j=1

kmj(x(t))xj(t)−
m
∑

i=1

yi(t) ∼= M(t),

and thus we can realize secure communication.
Now, we present the simulations results for the encryption and decryption of the

color digital image of Peppers to verify the effectiveness of the proposed scheme.
To this end, we use the system (3.1) with state variables xi(t), i = 1, 2, 3 and
parameters (ã1, b̃1, c̃1) as transmitter and the system (3.2) with different state vari-
ables yi(t), i = 1, 2, 3, 4 and parameters (ã2, b̃2, c̃2, d̃2, r̃2) as receiver. We assume
the initial conditions are similar to those in the section 3. Simulation results are
shown in Figure 3 with encryption and decryption rules (4.1) and (4.2) for n = 3
and m = 4.

original image encrypted image recovered image

Figure 3: Secure communication based on AMFPS.

5. Security analysis

In this section, we analyzed the efficiency of the proposed image cryptosystem
by using several security tests, such as: key space analysis, key sensitivity analysis,
information entropy, histogram analysis and speed analysis.

5.1. Key space analysis

From the cryptographical standpoint, the size of the key space should be greater
than 2100 to confirm a high level of security [20]. The proposed encryption scheme
contains twenty nine key parameters. If the precision is 10−14, the key space size
is 10406 ≈ 21348, which is very large to resist all kinds of brute-force attacks.
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5.2. Key sensitivity analysis

In encryption process, we alter the key parameter x1(0) = 1 slightly. For this,
we select x1(0) = 1 + 10−3. The encrypted image with x1(0) = 1, the encrypted
one with x1(0) = 1 + 10−3 and the difference between two encrypted images are
shown in Figures 4(b), 4(c) and 4(d), respectively. The black pixels in Figure 4(d)
are the same parts in two encrypted images. The results show that the difference
ratio is really high. That means proposed encryption algorithm is so sensitive to
key parameters. Also, the test result in decryption process are shown in Figure
4. The decrypted images by using the correct key x1(0) = 1 and the incorrect
key x1(0) = 1 + 10−3 are displayed in Figures 4(e) and 4(f), respectively. The
sensitivity of the other parameters are similar to x1(0).

(a) (b) (c)

(d) (e) (f)

Figure 4: Key sensitivity test. (a) Original image; (b) encrypted image with the
secret key x1(0) = 1; (c) encrypted image with the secret key x1(0) = 1 + 10−3;
(d) difference image; (e) decrypted image (b) with the correct key x1(0) = 1 and
(f) decrypted image (b) with the incorrect key x1(0) = 1 + 10−3.

5.3. Information entropy

The information entropy of an information source s is calculated by

H(s) = −
2N−1
∑

i=0

P (si) log2 P (si),

where N is the number of bits to represent a symbol si ∈ s, P (si) represents the
probability of symbol si and the entropy is expressed in bits [21].
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The entropy for the three color components of the encrypted image (Figure
4(b)) are HR(s) = 7.9259, HG(s) = 7.8422 and HB(s) = 7.9329. The obtained
values are very close to the theoretical maximum value N = 8. This indicate leak
of information in the encryption process is negligible and the encryption system is
secure against the entropy attack.

5.4. Histogram analysis

The histograms of original image (Figure 4(a)) and encrypted image (Figure
4(b)) in each channel are shown in Figure 5. The histograms of the encrypted
image are nearly uniformly distributed. So, no useful information can be extracted
from encrypted images and high security can be guaranteed to resist statistical
attacks.
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Figure 5: Histograms of (a) original image; (b) encrypted image.

5.5. Speed analysis

We implement the proposed technique by using Matlab 8.2. The speed per-
formance is tested in a personal computer with an Intel(R) Core(TM) i5-2410M
CPU 2.30 GHz, 4.00GB Memory and 1TB hard-disk capacity, and the operating
system is Windows 7. The average time used for encryption and decryption on
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color image Peppers (Figure 4(a)) with size 256 × 256 for 10 times is 0.17 s. We
can see that the operation speed of proposed algorithm is very fast compared to
the other encryption methods such as [3,22]. Therefore, encryption scheme can be
used in internet applications.

6. Conclusions

In this paper, an AMFPS scheme of different dimensions fractional-order chaotic
systems with uncertain parameters is discussed. Based on the Lyapunov stability
theory of fractional-order systems and the adaptive control theory, the appropriate
adaptive controllers and the parameter update laws for estimating the unknown
parameters of the systems are gained via novel fractional order controller. The pro-
posed synchronization scheme shows that the AMFPS between drive and response
systems with same and different dimensions can be achieved. The theoretical analy-
sis and numerical simulations are provided to show the effectiveness of the proposed
methods. Due to the unpredictability of the scaling function matrix and the uti-
lization of different fractional-order systems with different dimensions and unequal
orders, this synchronization method can provide additional security in secure com-
munication. Hence, we have proposed a new image encryption algorithm based on
AMFPS of fractional-order chaotic system via modified chaotic masking method.
Security analysis by using several security test measures is analyzed. Results have
demonstrated that the proposed encryption algorithm has a better performance in
terms of the sensitivity, security, speed and robustness.
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