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On the Derivative of a Polynomial
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abstract: Let P (z) = cnzn +
∑n

ν=µ cn−νzn−ν , 1 ≤ µ < n, be a polynomial

of degree at most n having no zeros in |z| < k, k ≤ 1, and Q(z) = znP (1/z), it
is proved by Dewan et al. [5] that if |P ′(z)| and |Q′(z)| becomes maximum at the
same point on |z| = 1, then

max
|z|=1

|P ′(z)| ≤
n

1 + kn−µ+1
{max
|z|=1

|P (z)| − min
|z|=k

|P (z)|}.

In this paper, we generalize the above inequality for the polynomials of type P (z) =
a0 +

∑n
ν=µ aνzν , 1 ≤ µ ≤ n.
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1. Introduction and statement of results

Let P (z) be a polynomial of degree n, then according to the well known Bern-
stein’s inequality on the derivative of a polynomial, we have

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|. (1.1)

The result is best possible and equality holds for the polynomials having all its
zeros at the origin.
For polynomials having no zeros in |z| < 1, Erdös conjectured and later Lax [8]
proved that if P (z) 6= 0 in |z| < 1, then (1.1) can be replaced by

max
|z|=1

|P ′(z)| ≤
n

2
max
|z|=1

|P (z)|. (1.2)

With equality for those polynomials, which have all their zeros on |z| = 1.
In the literature, there already exists various refinements and generalizations of
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(1.2), for example (see Aziz [1], Bidkham et.al [2,3,4], Khojastehnezhad and Bid-
kham [7], Zireh [14] etc).
As an extension of (1.2) Malik [12] proved that if P (z) 6= 0 in |z| < k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≤
n

1 + k
max
|z|=1

|P (z)|. (1.3)

Further Govil [9] proved that for the polynomial P (z) =
∑n

j=0 ajz
j which has no

zeros in |z| < k, k ≤ 1, if |P ′(z)| and |Q′(z)| becomes maximum at the same point
on |z| = 1, then

max
|z|=1

|P ′(z)| ≤
n

1 + kn
max
|z|=1

|P (z)|. (1.4)

Whereas the polynomial P (z) =
∑n

j=0 ajz
j having all its zeros on |z| = k, k ≤ 1,

Govil [10] proved

max
|z|=1

|P ′(z)| ≤
n

kn + kn−1
max
|z|=1

|P (z)|. (1.5)

Recently Dewan and Hans [5] obtained a generalization of (1.4) and proved for
P (z) = cnz

n +
∑n

ν=µ cn−νz
n−ν , 1 ≤ µ < n that having no zeros in |z| < k, k ≤ 1,

if |P ′(z)| and |Q′(z)| becomes maximum at the same point on |z| = 1, then

max
|z|=1

|P ′(z)| ≤
n

1 + kn−µ+1
{max
|z|=1

|P (z)| − min
|z|=k

|P (z)|}. (1.6)

For P (z) = cnz
n+

∑n

ν=µ cn−νz
n−ν, 1 ≤ µ < n that having all its zeros on |z| = k,

k ≤ 1, Dewan [5] also proved

max
|z|=1

|P ′(z)| ≤
n

kn−2µ+1 + kn−µ+1
max
|z|=1

|P (z)|. (1.7)

In this paper, first we obtain the following result

Theorem 1.1. Let P (z) = a0 +
∑n

ν=µ aνz
ν , 1 ≤ µ ≤ n is a polynomial of degree

n, having no zeros in |z| < k, k ≤ 1 and Q(z) = znP (1/z). If |P ′(z)| and |Q′(z)|
becomes maximum at the same point on |z| = 1, then

max
|z|=1

|P ′(z)| ≤
n

1 + kn+µ−1
max
|z|=1

|P (z)|. (1.8)

Remark 1.2. If we take µ = 1 in Theorem 1.1, then inequality (1.8) reduces to
inequality (1.4) due to Govil.

Next we prove the following interesting result which is a refinement of inequal-
ity(1.8).

Theorem 1.3. Let P (z) = a0 +
∑n

ν=µ aνz
ν , 1 ≤ µ ≤ n is a polynomial of degree

n, having no zeros in |z| < k, k ≤ 1 and Q(z) = znP (1/z). If |P ′(z)| and |Q′(z)|
becomes maximum at the same point on |z| = 1, then

max
|z|=1

|P ′(z)| ≤
n

1 + kn+µ−1
{max
|z|=1

|P (z)| − min
|z|=k

|P (z)|}. (1.9)
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Remark 1.4. If we take µ = 1 in Theorem 1.3, then inequality (1.9) reduces to
the following result which proved by Aziz and Ahmad [1].

Corollary 1.5. Let P (z) is a polynomial of degree n, having no zeros in |z| < k,
k ≤ 1 and Q(z) = znP (1/z). If |P ′(z)| and |Q′(z)| becomes maximum at the same
point on |z| = 1, then

max
|z|=1

|P ′(z)| ≤
n

1 + kn
{max
|z|=1

|P (z)| − min
|z|=k

|P (z)|}. (1.10)

Finally we prove the following result.

Theorem 1.6. Let P (z) = a0 +
∑n

ν=µ aνz
ν , 1 ≤ µ ≤ n is a polynomial of degree

n, having all its zeros on |z| = k, k ≤ 1, then

max
|z|=1

|P ′(z)| ≤
n

kn+µ−1 + kn+µ−2
max
|z|=1

|P (z)|. (1.11)

Remark 1.7. If we take µ = 1 in Theorem 1.6, then inequality (1.11) reduces to
inequality (1.5) due to Govil.

2. Lemmas

For the proofs of these theorems, we need the following lemmas.

Lemma 2.1. [13] Let P (z) be a polynomial of degree n, then for R ≥ 1

max
|z|=R

|P (z)| ≤ Rn max
|z|=1

|P (z)|. (2.1)

Lemma 2.2. Let P (z) = cnz
n +

∑n

ν=µ cn−νz
n−ν , 1 ≤ µ ≤ n be a polynomial of

degree n, having all its zeros in |z| ≤ k, k ≥ 1, then for |z| = 1

kn−µ−1|Q′(z)| ≤ |P ′(k2z)|, (2.2)

where Q(z) = znP (1/z).

Proof: Let F (z) = P (kz), then F (z) has all its zeros in |z| ≤ 1. If G(z) =
znF (1/z) = znP (k/z) = knQ(z/k), then all the zeros of G(z) lie in |z| ≥ 1. Since
|F (z)| = |G(z)| on |z| = 1, we can say that an application of maximum modulus

principle to the function G(z)
F (z) will yield |G(z)| ≤ |F (z)|, |z| ≥ 1. Therefore the

polynomial G(z) − λF (z), will not vanish in |z| > 1 for every λ with |λ| > 1.
Gauss-Lucas theorem will then imply that polynomial G′(z) − λF ′(z) will not
vanish in |z| > 1 for every λ with |λ| > 1 and therefore |G′(z)| ≤ |F ′(z)|, |z| ≥ 1.
Substituting for F ′(z) and G′(z), we get

kn−1|Q′(z/k)| ≤ k|P ′(kz)|, (2.3)
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where |z| ≥ 1.
Since Q(z) = cn +

∑n

ν=µ cn−νz
ν, then

kn−1|

n∑

ν=µ

νcn−ν(
z

k
)ν−1| ≤ k|P ′(kz)|.

i.e,

kn−µ|
n∑

ν=µ

νcn−ν(
z

k
)ν−µ| ≤ k|P ′(kz)|, (2.4)

where |z| ≥ 1.
If we take kz instead of z in inequality (2.4), then we have

kn−µ|
n∑

ν=µ

νcn−νz
ν−µ| ≤ k|P ′(k2z)|, (2.5)

where |z| ≥ 1/k.
Since 1/k ≤ 1, we have in particular,

kn−µ|

n∑

ν=µ

νcn−νz
ν−µ| ≤ k|P ′(k2z)|, (2.6)

where |z| ≥ 1.
This implies

kn−µ|

n∑

ν=µ

νcn−νz
ν−1| ≤ k|P ′(k2z)|, (2.7)

where |z| = 1.
This completes the proof of Lemma 2.2. ✷

Lemma 2.3. Let P (z) = cnz
n +

∑n

ν=µ cn−νz
n−ν , 1 ≤ µ ≤ n be a polynomial of

degree n, having all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|Q′(z)| ≤ kn+µ−1 max
|z|=1

|P ′(z)|, (2.8)

where Q(z) = znP (1/z).

Proof: On applying Lemma 2.2 we have

kn−µ−1|Q′(z)| ≤ |P ′(k2z)|. (2.9)

Now using Lemma 2.1 for the polynomial P ′(k2z), of degree n− 1. We have

max
|z|=k2

|P ′(z)| ≤ k2n−2 max
|z|=1

|P ′(z)|. (2.10)

Combining (2.9) and (2.10), we have desired result. ✷
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Lemma 2.4. Let P (z) = a0 +
∑n

ν=µ aνz
ν, 1 ≤ µ ≤ n be a polynomial of degree

n, has no zeros in |z| < k, k ≤ 1, then

kn+µ−1 max
|z|=1

|P ′(z)| ≤ max
|z|=1

|Q′(z)|, (2.11)

where Q(z) = znP (1/z).

Proof: Since P (z) has no zeros in |z| < k, then Q(z) = znP (1/z) has all its zeros
in |z| ≤ 1/k, 1/k ≥ 1. On applying Lemma 2.3 to the polynomial Q(z), we have

kn+µ−1 max
|z|=1

|P ′(z)| ≤ max
|z|=1

|Q′(z)|.

✷

The following lemma is due to Malik [6].

Lemma 2.5. Let P (z) be a polynomial of degree n, has no zero in |z| < k, k ≥ 1,
then for |z| = 1

k|P ′(z)| ≤ |Q′(z)| (2.12)

where Q(z) = znP (1/z).

Lemma 2.6. Let P (z) be a polynomial of degree n, having all its zeros on |z| = k,
k ≤ 1, then for |z| = 1

|Q′(z)| ≤ k|P ′(z)| (2.13)

where Q(z) = znP (1/z).

Proof: Since P (z) has all its zeros on |z| = k, then Q(z) = znP (1/z) has all its
zeros in |z| = 1/k, 1/k ≥ 1. On applying Lemma 2.5 to the polynomial Q(z), we
have

1/k|Q′(z)| ≤ |P ′(z)|.

✷

The following lemma is a special case of a result due to Govil and Rahman [11].

Lemma 2.7. Let P (z) be a polynomial of degree n, then for |z| = 1

|P ′(z)|+ |Q′(z)| ≤ nmax
|z|=1

|P (z)| (2.14)

where Q(z) = znP (1/z).
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3. Proofs of the theorems

Proof of Theorem 1.1.

Since |P ′(z)| and |Q′(z)| attained maximum at the same point on |z| = 1. This im-
plies there exist a point z0 such that |P ′(z0)| = max|z|=1 |P

′(z)| = max|z|=1 |Q
′(z)| =

|Q′(z0)|. On the other hand by Lemma 2.7, we have

|P ′(z0)|+ |Q′(z0)| ≤ nmax
|z|=1

|P (z)|.

On applying Lemma 2.4, we have

|P ′(z0)|+ kn+µ−1 max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|.

This implies

max
|z|=1

|P ′(z)|+ kn+µ−1 max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|.

This completes the proof of Theorem 1.1. ✷

Proof of Theorem 1.3. Let m = min|z|=k |P (z)|. For α with |α| < 1, we
have |αm| < m ≤ |P (z)|, where |z| = k.
Therefore by implying Rouche’s theorem, the polynomial G(z) = P (z) − αm has
no zeros in |z| < k. On applying Theorem 1.1 to the polynomial G(z), we have

max
|z|=1

|G′(z)| ≤
n

1 + kn+µ−1
max
|z|=1

|G(z)|,

i.e,

max
|z|=1

|P ′(z)| ≤
n

1 + kn+µ−1
max
|z|=1

|P (z)− αm|.

If we choose a point z0 on |z| = 1 such that max|z|=1 |P (z)| = |P (z0)|, then

max
|z|=1

|P ′(z)| ≤
n

1 + kn+µ−1
|P (z0)− αm|.

Now by suitable choice of argument of α, we get

max
|z|=1

|P ′(z)| ≤
n

1 + kn+µ−1
{|P (z0)| − |α|m}.

By making |α| → 1, the result follows. ✷

Proof of Theorem 1.6. If z0 is a point on |z| = 1 such that |Q′(z0)| =
max|z|=1 |Q

′(z)|. Then by Lemma 2.7, we have

|P ′(z0)|+ |Q′(z0)| ≤ nmax
|z|=1

|P (z)|.

On applying Lemma 2.6, we have

1

k
|Q′(z0)|+ |Q′(z0)| ≤ nmax

|z|=1
|P (z)|.
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i.e,

(
1

k
+ 1)max

|z|=1
|Q′(z)| ≤ nmax

|z|=1
|P (z)|.

Now applying Lemma 2.4, we have

(
1

k
+ 1)kn+µ−1 max

|z|=1
|P ′(z)| ≤ nmax

|z|=1
|P (z)|.

This completes the proof of Theorem 1.6. ✷
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