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Symmetric Generalized Biderivations on Prime Rings ∗

Faiza Shujat

abstract: The purpose of the present paper is to prove some results concerning
symmetric generalized biderivations on prime and semiprime rings which partially
extend some results of Vukman [7]. Infact we prove that: let R be a prime ring of
characteristic not two and I be a nonzro ideal of R. If ∆ is a symmetric generalized
biderivation on R with associated biderivation D such that [∆(x, x),∆(y, y)] = 0 for
all x, y ∈ I, then one of the following conditions hold

1. R is commutative.

2. ∆ acts as a left bimultiplier on R.

Key Words:Prime ring, Symmetric biderivation, Generalized Biderivation.

Contents

1 Introduction 65

2 Preliminaries 66

3 Main Theorems 68

1. Introduction

Throughout the paper all ring will be associative. We shall denote by Z(R)
the centre of ring R. A ring R is said to be prime (resp. semiprime) if aRb = (0)
implies that either a = 0 or b = 0 ( resp. aRa = (0) implies that a = 0). We shall
write for any pair of elements x, y ∈ R the commutator xy − yx and anticommu-
tator x ◦ y = xy + yx. We make extensive use of the basic commutator identities
(i) [x, yz] = [x, y]z + y[x, z] and (ii) [xy, z] = [x, z]y + x[y, z]. An additive mapping
d : R −→ R is called a derivation if d(xy) = d(x)y + xd(y), for all x, y ∈ R. A
derivation d is inner if there exists a ∈ R such that da(x) = [a, x], for all x ∈ R.

A mapping D : R × R −→ R is said to be symmetric if D(x, y) = D(y, x), for
all x, y ∈ R. A mapping f : R −→ R defined by f(x) = D(x, x), where D is a
symmetric and biadditive (i.e. additive in both arguments) mapping, is called the
trace of D. The trace f of D satisfies the relation f(x+y) = f(x)+f(y)+2D(x, y),
for all x, y ∈ R. A biadditive mappingD : R×R −→ R is called a biderivation if for
every x ∈ R, the map y 7→ D(x, y) as well as for every y ∈ R, the map x 7→ D(x, y)
is a derivation of R, i.e., D(xy, z) = D(x, z)y + xD(y, z) for all x, y, z ∈ R and

∗ This research supported by project number 40239 dated 22/11/2017 by Deanship of Scientific
Research, Taibah University, Madinah, Saudi Arabia.

2010 Mathematics Subject Classification: 16R50, 16W25, 16N60.
Submitted November 15, 2017. Published May 06, 2018

65
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.40481


66 F. Shujat

D(x, yz) = D(x, y)z + yD(x, z) for all x, y, z ∈ R. Typical examples are mapping
of the form (x, y) 7−→ λ[x, y] where λ ∈ C, the extended centroid of R (see [4] for
details). Such maps are called inner biderivations.

G. Maksa [5] introduced the notion of symmetric biderivations. In the men-
tioned paper it was shown that symmetric biderivations are related to general so-
lution of some functional equations. The notion of additive commuting mappings
is closely connected with the notion of biderivations. Every commuting additive
mapping f : R −→ R gives rise to a biderivation on R. As linearizing [x, f(x)] = 0
for all x, y ∈ R, (x, y) 7−→ [f(x), y] is a biderivation.

The concept of generalized symmetric biderivations was introduced in [3]. More
precisely, a generalized symmetric biderivation is defined as follows: Let D :
R × R −→ R be a biadditive map. A biadditive mapping ∆ : R × R −→ R is
said to be a generalized biderivation if for every x ∈ R, the map y 7−→ ∆(x, y)
is a generalized derivation of R associated with function D as well as if for ev-
ery y ∈ R, the map x 7−→ ∆(x, y) is a generalized derivation of R associated
with D for all x, y ∈ R. It also satisfies that ∆(x, yz) = ∆(x, y)z + yD(x, z) and
∆(xy, z) = ∆(x, z)y + xD(y, z) for all x, y, z ∈ R.

Example 1 Let R be a ring. If D is any biderivation of R and γ : R × R −→ R

is a biadditive map such that γ(x, yz) = γ(x, y)z and γ(xy, z) = γ(x, z)y for all
x, y, z ∈ R, then D+ γ is a generalized biderivation of R with associated bideriva-
tion D.

An additive mapping h : R −→ R is called left (resp. right) multiplier of
R if h(xy) = h(x)y (resp. h(xy) = xh(y)) for all x, y ∈ R. A biadditive map-
ping ζ : R × R −→ R is said to be a left (resp. right) bi-multiplier of R if
ζ(x, yz) = ζ(x, y)z (resp. ζ(xz, y) = xζ(z, y)) for all x, y, z ∈ R. In this paper,
we prove some theorems on symmetric generalized biderivations satisfying certain
condition on an ideal of prime ring.

2. Preliminaries

We begin with the following lemmas:

Lemma 2.1. [1] Let R be a prime ring of characteristic different from two and
I be a nonzero left ideal of R. If ∆ is a symmetric generalized biderivation with
associated a biderivation D such that [∆(x, x), x] = 0 for all x ∈ I, then either R

is commutative or ∆ acts as a left bimultiplier on I.

Lemma 2.2. [7] Let R be a 2-torsion free semiprime ring. Suppose that there
exists a symmetric biderivation D : R × R −→ R such that D(f(x), x) = 0 for all
x ∈ R, where f denotes the trace of D. In this case we have D = 0.
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Lemma 2.3. Let R be a prime ring of characteristic different from two and I

be a nonzero ideal of R. If ∆ is a symmetric generalized biderivation on R with
associated biderivation D such that D(∆(x, y), z) = 0 for all x, y, z ∈ I, then either
R is commutative or D = 0, moreover ∆ acts as a left bimultiplier on R..

Proof Let
D(∆(x, y), z) = 0 for all x, y, z ∈ I. (2.1)

Replace y by yw in (2.1) and using (2.1), we have

∆(x, y)D(w, z) + yD(D(x,w), z) +D(y, z)D(x,w) = 0 for all w, x, y, z ∈ I. (2.2)

Substitute ry for y in (2.2) to get

∆(x, r)yD(w, z) + rD(x, y)D(w, z) + ryD(D(x,w), z) + rD(y, z)D(x,w)
+ D(r, z)yD(x,w) = 0 for all w, x, y, z ∈ I, r ∈ R.

(2.3)
From (2.2) and (2.3), we find

∆(x, r)yD(w, z) + rD(x, y)D(w, z) +D(r, z)yD(x,w)
− r∆(x, y)D(w, z) = 0 for all w, x, y, z ∈ I, r ∈ R.

(2.4)

In Particular Take x = z and r = y to obtain

∆(x, y)yD(w, x) + yD(x, y)D(w, x) +D(y, x)yD(x,w)
− y∆(x, y)D(w, x) = 0 for all w, x, y ∈ I.

(2.5)

Which yields that {∆(x, y)y + yD(x, y) + D(y, x)y − y∆(x, y)}D(w, x) = 0 for
all w, x, y ∈ I. That is, {[∆(x, y), y] + D(x, y2)}RD(w, x) = 0 for all w, x, y ∈ I.

Primeness of R implies that either {[∆(x, y), y] +D(x, y2)} = 0 or D(w, x) = 0 for
all w, x, y ∈ I. Consider for each y ∈ I the sets H = {x ∈ I : [∆(x, y), y]+D(x, y2)}
andK = {x ∈ I : D(w, x) = 0}. It is clear thatH andK are the additive subgroups
of I and (I,+) = (H,+) ∪ (K,+). But a group cannot be the union of two proper
subgroups. Hence we are forced to conclude that for each y ∈ I either I = H or
I = K.

Consider the first case

[∆(x, y), y] +D(x, y2) = 0 for all x, y ∈ I. (2.6)

Again Replace x by xy in above equation to find

[∆(x, y), y]y + [xD(y, y), y] +D(x, y2)y + xD(y, y2) = 0 for all x, y ∈ I. (2.7)

using (2.6) and (2.7), we arrive at

x[D(y, y), y] + [x, y]D(y, y) + xD(y, y2) = 0 for all x, y ∈ I. (2.8)

Substitute rx for r in (2.8) to get [r, y]xD(y, y) = 0 for all x, y ∈ I, r ∈ R. By the
primeness of R and I 6= (0), we arrive at either [r, y] = 0 or D(y, u) = 0 for all
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y, u ∈ I. By using The Group Theory Argument as above we obtain that either R
is commutative, as desired or D(y, u) = 0 for all y, u ∈ I. We can easily obtain by
suitable replacing that D(r, s) = 0 for all r, s ∈ R. The last relation gives us that
∆ acts as a left bimultiplier on R, as desired.

Lemma 2.4. Let R be a prime ring of characteristic different from two and I

be a nonzero ideal of R. If ∆ is a symmetric generalized biderivation on R with
associated biderivation D such that ∆(∆(x, y), z) = 0 for all x, y, z ∈ I, then either
D = 0 or R is commutative.

Proof Consider

∆(∆(x, y), z) = 0 for all x, y, z ∈ I. (2.9)

Replacing z by zw in (2.9), we find

∆(∆(x, y), z)w + zD(∆(x, y), w) = 0 for all w, x, y, z ∈ I. (2.10)

In view of (2.9) and (2.10), we get

zD(∆(x, y), w) = 0 for all w, x, y, z ∈ I. (2.11)

Since R is prime, we have D(∆(x, y), w) = 0 for all x, y, w ∈ I. Application of
Lemma 2.3, we get the desired result.

3. Main Theorems

In [7], author prove that the existence of a nonzero symmetric biderivation
D : R × R −→ R , where R is a prime ring of characteristic not two, with the
property D(x, x)x = xD(x, x), for all x ∈ R, forces R to be commutative. Ali et.al.
[2] and Shujat et. al. [6] extend this result for generalized biderivations of prime
rings. Now we obtained partial generalization of previously mentioned results as
follows:

Theorem 3.1. Let R be a prime ring of characteristic not two and I be a nonzero
ideal of R. If ∆ is a symmetric generalized biderivation on R with associated
biderivation D such that [∆(x, x),∆(y, y)] = 0 for all x, y ∈ I, then one of the
conditions hold

1. R is commutative.

2. ∆ acts as a left bimultiplier on R.
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Proof Let us suppose

[∆(x, x),∆(y, y)] = 0 for all x, y ∈ I. (3.1)

Linearization of (3.1) in x and use Char R 6= 2, we have

[∆(x,w),∆(y, y)] = 0 for all x, y, w ∈ I. (3.2)

Again linearize (3.2) in y to get

[∆(x,w),∆(y, u)] = 0 for all u, x, y, w ∈ I. (3.3)

Substitute xz for x in (3.2) we get

∆(x,w)[z,∆(y, u)] + [∆(x,w),∆(y, u)]z + x[D(z, w),∆(y, u)]
+ [x,∆(y, u)]D(z, w) = 0 for all u, x, y, z, w ∈ I.

(3.4)

In view of (3.2), (3.3) reduces to

∆(x,w)[z,∆(y, u)] + x[D(z, w),∆(y, u)]
+ [x,∆(y, u)]D(z, w) = 0 for all u, x, y, z, w ∈ I.

(3.5)

Replacing x by vx in (3.5) and using (3.5) we have

v(D(x,w) −∆(x,w))[z,∆(y, u)] + ∆(v, w)x[z,∆(y, u)] + [v,∆(y, u)]xD(z, w) = 0,
(3.6)

for all u, v, x, y, z, w ∈ I. Replacing z by z∆(y, u) in (3.6) and using (3.6) we
obtain

[v,∆(y, u)]xzD(∆(y, u), w) = 0 for all u, v, x, y, z, w ∈ I. (3.7)

Last equations give us [v,∆(y, u)]xRzD(∆(y, u), w) = 0 for all u, v, x, y, z, w ∈
I. Primeness of R provide us either [x,∆(y, y)]x = 0 or zD(∆(y, y), w) = 0 for all
x, y, z, w ∈ I. Since the left and right annihilator of prime rings are zero. There-
fore, we can find either [x,∆(y, y)] = 0 or D(∆(y, y), w) = 0 for all x, y, w ∈ I.
Consider the case [x,∆(y, y)] = 0, i.e., in particular we can write [x,∆(x, x)] = 0
for all x ∈ I. Applying Lemma 2.1, we get the result. Now take the later case
D(∆(y, y), w) = 0 for all y, w ∈ I. An application of Lemma 2.3 yields that either
D = 0 or R is commutative. If D(y, u) = 0 for all y, u ∈ I. We can easily obtain
by suitable replacing that D(r, s) = 0 for all r, s ∈ R. For all r, s, t ∈ R, we have
∆(rs, t) = ∆(r, t)s and ∆(s, rt) = ∆(s, r)t. That is ∆ acts as a left bimultiplier on
R. This completes the proof.

Theorem 3.2. Let R be a prime ring of characteristic not two and I be a nonzero
ideal of R. If ∆ is a symmetric generalized biderivation on R with associated
biderivation D such that [∆(x, x), D(y, y)] = 0 for all x, y ∈ I, then one of the
conditions hold
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1. R is commutative.

2. ∆ acts as a left bimultiplier on R.

Proof Assume that

[∆(x, x), D(y, y)] = 0 for all x, y ∈ I. (3.8)

Linearize (3.8) in x to get

[∆(x, x), D(y, y)] + [∆(z, z), D(y, y)] + 2[∆(x, z), D(y, y)] = 0 for all x, y, z ∈ I.

(3.9)
Since R is not of Char 2 and using (3.8), we obtain

[∆(x, z), D(y, y)] = 0 for all x, y, z ∈ I. (3.10)

Substitute xu for x in (3.10) to find

∆(x, z)[u,D(y, y)] + x[D(u, z), D(y, y)] + [x,D(y, y)]D(u, z) = 0 for all x, y, z ∈ I.

(3.11)
Replacing u by uD(y, y) in (3.11), we have

∆(x, z)[u,D(y, y)]D(y, y) + x[D(u, z), D(y, y)]D(y, y)

+[x,D(y, y)]D(u, z)D(y, y) + [x,D(y, y)]uD(D(y, y), z)

+xu[D(D(y, y), z), D(y, y)] + x[u,D(y, y)]D(D(y, y), z) = 0, (3.12)

for all u, x, y, z ∈ I. Using (3.11) and (3.12), we get

[x,D(y, y)]uD(D(y, y), z) + xu[D(D(y, y), z), D(y, y)]

+x[u,D(y, y)]D(D(y, y), z) = 0, (3.13)

for all u, x, y, z ∈ I. Again replace x by rx in(3.13) and using (3.13) we arrive at

[r,D(y, y)]xuD(D(y, y), z) = 0 for all u, x, y, z ∈ I, r ∈ R. (3.14)

Primeness of R yields that [r,D(y, y)] = 0 or D(D(y, y), z) = 0 for all y, z ∈ I, r ∈
R. If D(D(y, y), z) = 0 for all y, z ∈ I, then conclusion follows from Lemma 2.2.
Now consider the case when [r, f(y)] = 0 for all y ∈ I, r ∈ R. Linearization implies
that [r,D(x, y)] = 0 for all x, y ∈ I, r ∈ R. Replacing x by xz, we have[r, x]D(z, y)+
D(x, y)[r, z] = 0 for all x, y, z ∈ I, r ∈ R. In particular, we get [z, x]D(z, y) = 0 for
all x, y, z ∈ I.

By the primeness of R and I 6= (0) we arrive at either [x, z] = 0 or D(z, y) = 0
for all y, z, x ∈ I. Setting H = {y ∈ I | y ∈ Z(R)} and K = {y ∈ I | D(y, z) =
0 for all z ∈ I}. It is clear that H and K are the additive subgroups of I and
(I,+) = (H,+) ∪ (K,+). But a group cannot be the union of proper subgroups,
hence we are forced to conclude that for each y ∈ I either I = H or I = K. The
first case implies that R is commutative, as desired. Let R be not commutative.
So we have D(y, u) = 0 for all y, u ∈ I. We can easily obtain by suitable replacing
that D(r, s) = 0 for all r, s ∈ R. For all r, s, t ∈ R, we can find ∆(rs, t) = ∆(r, t)s
and ∆(s, rt) = ∆(s, r)t. That is, ∆ acts as a left bimultiplier on R.
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Theorem 3.3. Let R be a prime ring of characteristic not two and I be a nonzero
ideal of R. If ∆ is a symmetric generalized biderivation on R with associated
biderivation D such that ∆(x, x) ◦ ∆(y, y) = 0 for all x, y ∈ I, then one of the
conditions hold

1. R is commutative.

2. ∆ acts as a left bimultiplier on R.

Proof Consider the hypothesis

∆(x, x) ◦∆(y, y) = 0 for all x, y ∈ I. (3.15)

Linearization in x and using (3.15) yields that

2∆(z, x)∆(y, y) + 2∆(y, y)∆(z, x) = 0 for all x, y, z ∈ I. (3.16)

As Char R 6= 2, we get

∆(z, x)∆(y, y) + ∆(y, y)∆(z, x) = 0 for all x, y, z ∈ I. (3.17)

Substitute zu for z in (3.17) and use (3.17), we obtain

∆(z, x)[u,∆(y, y)] + zD(u, x)∆(y, y) + ∆(y, y)zD(u, x) = 0 for all u, x, y, z ∈ I.

(3.18)
Replace u by u∆(y, y) in above equation and use it to find

zuD(∆(y, y), x)∆(y, y) + ∆(y, y)zuD(∆(y, y), x) = 0 for all u, x, y, z ∈ I. (3.19)

Again replacing z by rz in (3.19) and using (3.19), we arrive at

[∆(y, y), r]zuD(∆(y, y), x) = 0 for all u, x, y, z ∈ I. (3.20)

Arguing in the same manner as in the proof of Theorem 3.1 and using Lemma
2.3, we complete the proof.

Example 2. Let R =

{(

a 0
b 0

)

: a, b ∈ Z2

}

, Then R is a

noncommutative ring. Consider ∆

((

a1 0
b1 0

)

,

(

a2 0
b2 0

))

=

(

a1a2 0
0 0

)

and

D

((

a1 0
b1 0

)

,

(

a2 0
b2 0

))

=

(

0 0
b1b2 0

)

. Therefore, ∆ : R × R −→ R

is a generalized biderivation associated with a biderivation D : R × R −→ R,
Where ∆ and D both are additive obviously. It can be easily seen that ∆ satisfies
[∆(x, x),∆(y, y)] = 0 for all x, y ∈ R. Hence primeness can not be omitted from
Theorem 3.1.
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