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abstract: In this paper, we propose a simple method to generate generalized
Gaussian noises using the inverse transform of cumulative distribution. This in-
verse is expressible by means of the inverse incomplete Gamma function. Since the
implementation of Newton’s method is rather simple, for approximating inverse in-
complete Gamma function, we propose a better and new initial value exploiting the
close relationship between the incomplete Gamma function and its piecewise linear
interpolant. The numerical results highlight that the proposed method simulates
well the univariate and bivariate generalized Gaussian noises.
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1. Introduction

The study and application of univariate and multivariate generalized Gaussian
distributions (GGD) is an active field of research in theoretical and applied statis-
tics. This class of processes has merited considerable attention by many scientists
for two fundamental reasons: firstly, because it captures the observed heavy tails;
secondly, because the probability density characterizes this class has fully paramet-
ric form. Recently, GGD have been widely adopted in modeling various physical
phenomena [3,4,19,21]. As known, the generation of multivariate distributions has
not been investigated extensively and we have not enough literature on Monte Carlo
techniques for synthesizing multivariate random processes, except from the work
done by Johnson [14]. Recently, new initiatives designed to target this area of re-
search in order to better understand and control the multivariate random processes
[6,23]. It is obvious that there is no universal method for simulating a random vari-
able or random vector from known distributions with Monte Carlo methods for the
study of the behavior of statistics with unknown sampling distribution. In general,
the generation of multivariate distributions is more complicated to implement, be-
cause the usual method based on the inverse of the cumulative distribution function
used with univariate distributions can not be applied. An option to circumvent the
problem of generation multivariate random is to use multivariate extensions of gen-
eration methods for univariate random variable such as ratio-of-uniforms method,
acceptance-rejection (AR) methods or transformation method. An other way, in
multidimensional approach leads to generating random variates, is to use the con-
ditional distribution method [14]. These current standards methods of simulating
mentioned before suffer from limitations and become hopelessly inefficient when
applied to realizations of stochastic multidimensional processes see. [23]. When the
computation of the conditional distribution is difficult, a transformation of vector
can probably be considered. However, for several multivariate distributions, it is
hard to define transformations of random vectors from which samples can be easily
obtained.

In this contribution, we introduce the multivariate generalized Gaussian dis-
tribution which is a special case of the larger class of elliptical distributions. For
the sake of simplicity we deal with one and two dimensions, but the results can
be easily extended to higher dimensions. We present so computational algorithm
to generate univariate and bivariate generalized Gaussian distribution using trans-
formation approach. Gómez, Gómez-Villegas and Maŕın [13] have proved that the
generation of multivariate generalized gaussian by using polar coordinates is very
easy, if we can simulate sequences from Gamma distribution. We are going to use
classical Monte carlo procedure to simulate sampling from Gamma distribution. In
this case, we should invert incomplete Gamma function. This special function has
no elementary inverse of its argument, hence requiring numerical evaluation to be
performed to obtain an approximation of this function.

The regularized upper and lower incomplete Gamma functions are defined by
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the integrals [20]

Q(a, x) =
1

Γ(a)

∫ ∞

x

ta−1 exp(−t)dt,

P (a, x) = 1−Q(a, x) =
1

Γ(a)

∫ x

0

ta−1 exp(−t)dt,

where we assume that a > 0 and x ≥ 0, and Γ(a) =
∫∞

0 ta−1 exp(−t)dt is the well-
known Gamma function. The problem of inverting functions Q(a, x) and P (a, x)
is one of the central problems in statistical analysis and applied probability, with
various applications [8,2].

However, it is difficult to compute the inverse P−1(a, ·) of the function P (a, ·)
because its shape depend on the parameter a in a significant way. Several ap-
proaches are available in the literature for computing P−1(a, ·). One possibility is
to use the Newton methods to computing x when p = P (a, x) is given, see [7,12].
However, this approach has some practical difficulties. If the initial value is not
good enough, the method might diverge. This leads to the question of how to find
a good starting value, which is tricky in itself. More recently, in [12], the analytical
approach from earlier literature is summarized and new initial estimates are de-
rived for starting the fourth order Newton method. This method is not, however,
as flexible as is desirable because the starting values need: dividing the domain of
computation, Taylor expansion, continued fraction, uniform asymptotic expansion,
asymptotic inversion, inversion of the complementary error function. On the other
hand, it is rare to use fourth and higher-order formulas in solving a single nonlinear
equation in practical computations, see Section 9.4 of [22].

Furthermore, in the present case, the functions P (a, ·) and whose derivatives
may have singularities near the endpoint 0 for some values of a. As an alterna-
tive, we take care of the first point by starting from a sufficiently precise solution
prepared by the piecewise linear interpolant of P (a, ·) with special graded grids.
Computational experience indicates that at few iterations of Newton method are
sufficient to achieve the double-precision solution in a reasonable time frame.

On the other hand, the numerical inversion techniques require evaluation of the
incomplete Gamma function P (a, x). As explained in Chapter 5 of [11], numerical
quadratures can be an important tool for evaluating special functions. In particular,
when selecting suitable integral representations for these functions. In this paper,
we show that the numerical quadratures for weakly singular integrals by nonlin-
ear spline approximations proposed in [15], is particularly efficient for computing
numerically P (a, x). Theoretical results and numerical experiments indicate that
these methods perform adequately when the Gamma probability density function
is smooth or has weak singularities.

The main advantage of the proposed numerical procedure, to evaluate the in-
complete Gamma function and its inverse, is that is very simple to implement and
does not require any elaborate special mathematical functions software, and can
be straightforwardly coded in any programming language with standard algebra.

The contents of this paper is as follows. Section 2 introduces the definition
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of Generalized Elliptical Distributions, with presentation of the most famous ex-
amples. We also give the procedures for synthesizing univariate and bivariate
generalized Gaussian processes. In Section 3, we apply the Gauss-Legendre-type
quadrature to compute the incomplete Gamma function ratios for positive values of
a and x. The procedure for computing x when a and P (a, x) are given is described
in Section 4. Simulations for univariate and bivariate generalized Gaussian are
provided and results are interpreted in Section 5. Section 6 concludes the paper.

2. Elliptical Distributions

As known multivariate normal distribution has enjoyed a significant role in
many practical applications such as in behavioral and social sciences, biometrics,
econometrics, environmental sciences, and finance. Real data are often not nor-
mally distributed in behavioral sciences, especially when the tails are thicker or
thinner than those of normal distributions. The nonnormal distributions were
chosen because they were thought to be realistic representations of distributions
encountered in the behavioral sciences. Many alternative methods exists when the
normality assumption is not justifiable. One choice is the elliptical family of dis-
tributions which include the normal one and share many of its flexible properties.
This class of distributions has received an increasing attention in the statistical
literature, particularly due to the fact of including important distributions as, for
example, Student-t, Generalized Gaussian, Logistic, Laplace, among others, with
heavier or lighter tails than the normal one. This class of distributions was in-
troduced by Kelker [16] and was widely discussed in Fang, et al. [9]. Elliptical
distributions are very often used, particulary in risk and financial mathematics
[24].

The random vector X = (X1, X2, . . . , Xp)
T is said to have an elliptical dis-

tribution with parameters vector ν(p × 1) and definite positive symmetric matrix
Λ(p× p), if its characteristic function can be expressed as

E[exp(itTX)] = exp(itT ν) Φ(tTΛ t), (2.1)

for some scalar function Φ called characteristic generator of X , and where tT =
(t1, t2, · · · , tn). It should be mentioned that, in general, the elliptical distribution
random vector doesn’t necessarily have a density, but in this work we will consider a
class of elliptical distribution having an analytic expression of density. This density
function is given by ( see. Fang et al. [10, p. 35])

f(x; Λ, ν) =
1√

det(Λ)
g
([

(x− ν)TΛ−1(x− ν)
])

, (2.2)

g(.) called density generator. Where,

• Λ is positive definite;

• g(.) ≥ 0, with
∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
g(yT y)dy1dy2 · · · dyp = 1.
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If X has this distribution and Y = L−1(X − ν), where LLT = Λ, then Y has
probability density function (abbr. pdf) g(yT y), spherically contoured.

A nice property of an elliptical distribution function is the fact that its multi-
variate density function may be expressed via the density generator.

2.1. Simulation of elliptical distributions

Let (yp)
T be an p-dimensional vector, every yi can be written in polar coordi-

nates as

y1 = r sin θ1

y2 = r cos θ1 sin θ2,

y3 = r cos θ1 cos θ2 sin θ3,

...

yp−1 = r cos θ1 cos θ2 · · · cos θp−2 sin θp−1,

yp = r cos θ1 cos θ2 · · · cos θp−2 cos θp−1

where,

• r ≥ 0;

• − 1
2π < θi ≤ 1

2π, 1 ≤ i < p− 1, and −π < θp−1 ≤ π.

The jacobian determinant form

J(r, θ) = rp−1[cos(θ1)]
p−2[cos(θ2)]

p−3 · · · [cos(θp−3)]
2 cos(θp−2)

If the pdf of Y is g(y′y), then the pdf of R, Θ is

J(r, θ)g(r2) = rp−1g(r2)[cos(θ1)]
p−2[cos(θ2)]

p−3 · · · [cos(θp−3)]
2 cos(θp−2).

R and Θ are independent, and the marginal pdf of R is

2π
p
2

Γ(p2 )
× rp−1g(r2).

Note that 2π
p
2

Γ( p
2 )

corresponds to the uniform density on the unit hypersphere.

2.2. Description of some elliptical distributions

In the next, we discuss two families of elliptical distributions: the normal which
is the most famous member of this family, and Generalized Gaussian distribution
which is a general case of the normal distribution.
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2.2.1. Multivariate Gaussian distribution. The Gaussian distribution, also called
normal, is a special case of the larger class of elliptical distributions with the density
generator g(t) = exp(−t/2). A random vector X = (X1, X2, . . . , Xp)

T follows a
multivariate normal distribution, symbolically denoted by X ∼ Np(µ,Σ), then the
joint density of X is given by [13]

f(x; Σ, µ) =
1√

2πdet(Σ)
exp

(
− 1/2

[
(x− µ)TΣ−1(x− µ)

])
. (2.3)

Synthesizing multivariate Normal data is relatively easy and fast. It has there-
fore been used for many purposes and in vast number of applications. In many
applications, however, the multivariate data that arise in practice are not well ap-
proximated by a multivariate Gaussian distribution, especially when we have a
heavy tail behavior.

2.2.2. Multivariate Generalized Gaussian distribution. An elliptical vector X is
said to have a multivariate Generalized Gaussian distribution if its density gener-
ator can be expressed as g(t) = exp(−αtβ), for α, β > 0.

Let X = (X1, X2, . . . , Xp)
T be an p-dimensional random vector distributed as

a multivariate generalized Gaussian distribution, if its probability density function
has the form [21]

f(x; ΣX , β, α, µ) = ηp exp
(
−
[
α (x− µ)TΣ−1(x− µ)

]β)
, (2.4)

where α and β are two parameters which can represent the spherical shape of the
model and ηp indicates a normalized constant defined by α, β and the dispersion
matrix Σ, symmetric and positive definite.

Note however that the multivariate Gaussian pdf is recuperated by setting β = 1,
we will call the distribution with β = 1/2 the multivariate Laplace distribution.
If β < 1, the distribution (2.4) has heavier tails compared to the multivariate
Gaussian distribution.

If we suppose that the random quantity X has a zero-mean and identity ma-
trix covariance, called in this case standard generalized Gaussian, the probability
density function (2.4) will become

fX(x) := f(x; IX , β, α, 0) = η exp
(
−
[
α xTx

]β)
. (2.5)

We restrict our attention to these conditions knowing that arbitrarymean µ = E[X ]
and covariance matrix ΣX = E[(X−µ)(X−µ)T ] can straightforwardly be restored

by the change of variable X ← LD
1
2X + µ, where L is an orthogonal matrix such

that LTΣL = D, with D is the diagonal matrix of eigenvalues of Σ.
We note that multivariate distributions with circular contours are a class of

distributions that are useful for modelling heavy tailed multivariate data. In [1],
the case of circular contours defined by polar coordinates is analyzed including its
simulation procedure which is based on a rejection method to simulate a Gamma
random variable. However, the rejection method has some important limitations.
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Another way of obtaining draws from some density of interest is to use the inverse
transform method. This method is considered useful and effective, especially for
sampling from univariate distributions. The method also preserves monotonicity
and correlation. Further, with inversion method, small distribution parameter
perturbations cause small changes in the produced variates. This effect is useful
for sensitivity analysis. Contrast this to rejection method, see [17]. Mention must
be made that some researchers avoid using this method for simulation, because for
many distribution functions we do not have an explicit expression for the inverse
of cumulative distribution function. We call numeric computation to resolve this
problem.

For simplicity we will focus on the univariate and bivariate cases, but the results
can be easily generalized to p dimensions.

Univariate case : The probability density function of generalized Gaussian noise
is defined as:

f(x) =
α

2λΓ(1/α)
exp

(
−
∣∣∣
x

λ

∣∣∣
α)

, (2.6)

for x ∈ R, α > 0 (shape parameter), and λ = (Γ(1/α)/Γ(3/α))1/2.

The cumulative distribution function (cdf) corresponding to (2.6) is (see, e.g.,
Monir [18])

Fα(x) =

{
1
2Q

(
1
α ,

(
− x

λ

)α)
for x ≤ 0 ,

1− 1
2Q

(
1
α ,

(
x
λ

)α)
for x ≥ 0 .

(2.7)

It is well known that the inverse F−1
α can be expressed in terms of Q−1 (inverse

of the regularized incomplete Gamma function), i.e.,

F−1
α (u) =

{
−λ

(
Q−1

(
1
α , 2u

)) 1
α , if 0 < u ≤ 1/2

λ
(
Q−1

(
1
α , 2(1− u)

)) 1
α , if 1/2 < u ≤ 1.

(2.8)

Equation (2.8) solves the problem of synthesizing a generalized Gaussian noise
with shape parameter α from a uniform process, provided we are able to handle
the numerical evaluation of the function Q−1.

Bivariate case : We consider a random variable pair (X1, X2) distributed as 2D
generalized Gaussian, we can assume that the variables X1 and X2 are zero mean
and uncorrelated. The joint probability density function is given by:

fX1,X2(x1, x2) =
βΓ( 2β )

2πΓ2( 1β )σ
2
e
−
( Γ( 2

β
)

2Γ( 1
β

)

x2
1+x2

2
σ2

)β

, (2.9)

where β > 0, and σ2 > 0.

Every x = (x1, x2)
T can be written in polar coordinates as:

x1 = r sin(θ), x2 = r cos(θ).
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Let X1 = R cos(Θ) and X2 = R sin(Θ), where R ≥ 0 and 0 ≤ Θ < 2π. Then, the
joint pdf in polar form is given by:

fR,Θ(r, θ) = rfX1,X2

(
r cos(θ), r sin(θ)

)
(2.10)

=
βΓ( 2β )r

2πΓ2( 1β )σ
2
e
−
( Γ( 2

β
)

2Γ( 1
β

)

r2

σ2

)β

= fR × fΘ. (2.11)

By reassigning the parameters, the marginal pdf of R is obtained by fR(r) =
2βr

α2Γ( 1
β
)
e−(

r
α )

2β

and the marginal pdf of Θ is obtained by fΘ(θ) =
1
2π , where α =

σ

√
2Γ( 1

β
)

Γ( 2
β
)
.

It is clear that the variable Θ has a uniform distribution Θ ∼ U[0 2π], the
second variable R follows generalized Gamma distribution R ∼ GG(α, 2, 2β). The
cumulative distribution function of R is

F (r) = P

(
1

β
,
( r

α

)2β
)
, (2.12)

where P (, ) is regularized lower incomplete gamma function.
We want to invert F (r) of (2.12) and show that this inverse can be expressed

in terms of P−1(a, ·). We write for inversion under the equivalent form F =

P
(

1
β ,

(
r
α

)2β)
, which is invertible under the form r = α×

(
P−1

(
1
β , F

)) 1
2β

, yielding

F−1(u) = α×
(
P−1

(
1

β
, u

)) 1
2β

. (2.13)

If we know how to evaluate P−1(a, ·), the equation (2.13) solves the problem of
synthesizing variable R with marginal density fR from a uniform variable.

Once we have solved the equation(2.13), we can easily generate independently
points (X1, X2) from the joint standard generalized Gaussian distribution with
shape parameter β as follows:

Algorithm 1.

1. Generate two independent random numbers U1 and U2 from U[0 1] distribu-
tion.

2. Compute R = α×
(
P−1

(
1
β , U1

)) 1
2β

, and Θ = 2πU2.

3. Then set

X1 = R cos(Θ),

X2 = R sin(Θ).
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This simulation scheme is particularly simple for the case of circular contours
and provides a general method for simulation of the resulting families with different
parameter shape values β.

Mention must be made that in both cases, we have to evaluate the inverse of
incomplete Gamma function. We now address this problem.

3. Numerical evaluation of the incomplete Gamma function

Let m be an integer. Note that the symbol Cm[0, d] denotes the set of all
functions defined on [0, d] with values in R whose firstm derivatives are continuous.
If there are no continuous derivatives we write C[0, d] = C0[0, d].

For α > −1 and nonnegative integer k, define Type(α, k, 0), see [15], as the
set of all functions u ∈ Ck]0, d] such that

∣∣∣u(k)(x)
∣∣∣ ≤ K |x|α−k

, x ∈]0, d].

The parameter α is called the index of singularity. The modulus of continuity
of a function u ∈ C[0, d] is defined to be

ω[0,d] (u, δ) = sup {|u(x)− u(y)| : |x− y| ≤ δ} .

The collection of Hölder continuous real-valued functions with exponent α is
denoted by Hα. We say u ∈ Hα if there is a constant M > 0 so that

ω[0,d] (u, δ) ≤Mδα, ∀ δ > 0.

We first rewrite P (a, x) as

I(fa)(x) :=

∫ x

0

fa(t)dt (3.1)

where the Gamma probability density function fa is given by

fa(x) =
∂

∂x
P (a, x) = xa−1 exp(−x)/Γ(a).

A classical and efficient technique for the numerical evaluation of integrals of
the form (3.1), where fa is a smooth or nonsmooth function, is to approximate

I(fa)(x) by I(f̃a)(x) where f̃a is a spline approximant of fa, for which I(f̃a)(x)

can be easily calculated. In [15], the authors have considered the case where f̃a is
the (k − 1)th degree continuous piecewise Lagrangian interpolant of fa and they
have studied the convergence order when fa is smooth or has weak singularities.
A more detailed discussion of this quadrature can be found in [15].

For given integers n, k let

πa : t0 = 0, tj = jrn−rx, j = 1, . . . , n,
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be a (strict) partition of the finite interval [0, x], where r ≥ 1 is a real number
which depends upon the index of singularity a. Set

S
(−1)
k−1 (πa) = {s : s|[tj,tj+1]

∈ Pk−1, 0 ≤ j ≤ n− 1},

where Pk−1 denotes the set of polynomials of degree not exceeding k − 1. Note

that the elements of S
(−1)
k−1 (πa) may have jump discontinuities at the interior points

of the grid πa.

Let ζl and wl, l = 1, . . . , k, be the Legendre-Gauss nodes and weights on the
interval [−1, 1] with truncation order k, respectively. In every sub-interval [tj , tj+1],
j = 0, . . . , n− 1, we introduce k interpolation points tjl, l = 1, . . . , k:

tjl =






tj if ζ l = −1
(tj + tj+1 + ζ l(tj+1 − tj))/2 if − 1 < ζ l < 1,
tj+1 if ζ l = 1.

Given a function g ∈ C[0, x], we determine its piecewise polynomial interpolation
function Pn,kg by formula

Pn,kg(t) =
n−1∑

j=0

k∑

l=1

g(tjl)Ljl(t), t ∈ [0, x],

where

Ljl(t) =





m=k∏

m=1,m 6=l

t− tjm
tjl − tjm

if t ∈ [tj , tj+1],

0 otherwise.

Now setting α = a − 1. If 0 < a < 1, then for any integer k we have fa ∈
Type(α, 2k, 0), see [15]. Since −1 < α < 0, implies that fa is unbounded at 0.

Define a piecewise polynomial f̃a,n,k over [0, x] with πa by

f̃a,n,k(t) =

{
0, if t ∈ [t0, t1],
Pn,kfa(t), if t ∈ [t1, tn].

Then, we use I(f̃a,n,k)(x) to approximate I(fa)(x), where

I(f̃a,n,k)(x) =

n−1∑

i=1

ti+1 − ti
2

k∑

l=1

wlfa

(
ti+1 − ti

2
ζ l +

ti+1 + ti
2

)
. (3.2)

Let r = 2k1+1
a with k1 ≤ k. By applying Theorem 3.1 of [15], we have the

following result concerning the accuracy of the Gauss-Legendre-type quadrature
scheme

|I(fa)(x)− I(f̃a,n,k)(x)| = O
(
n−2k1

)
.
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If a > 1, for any integer k we have fa ∈ Type(α, 2k, 0), see [15]. Furthermore,
since α > 0 it follows that fa is an α-Hölder continuous function. In this case,
define a piecewise polynomial fa,n,k over [0, x] with knots πa by the following rule:

fa,n,k(t) =

{
fa(t1)

t
t1
, if t ∈ [t0, t1],

Pn,kfa(t), if t ∈ [t1, tn].

Hence, I(fa)(x) is now approximated by

I
(
fa,n,k

)
(x) = ta1 exp(−t1)/(2Γ(a)) +

n−1∑

i=1

ti+1 − ti
2

k∑

l=1

wlfa

(
ti+1 − ti

2
ζ l +

ti+1 + ti
2

)
.

If r = 2k1/α with k1 ≤ k. In this case, we have

|I(fa)(x)− I
(
fa,n,k

)
(x)| = O

(
n−2k1+1

)
.

Finally, if a > 2k+1 or a is a nonnegative integer then fa ∈ C2k[0, x]. Moreover,
we use the classical composite Gauss numerical integration scheme to approximate
P (a, x)

I(fa)(x) ≈ I (Pn,kfa) (x) =

n−1∑

i=0

ti+1 − ti
2

k∑

l=1

wlfa

(
ti+1 − ti

2
ζ l +

ti+1 + ti
2

)
,

with r = 1. In this case we have |I(fa)(x) − I (Pn,kfa) (x)| = O
(
n−2k+1

)
.

Remark 3.1. 1. For large values of a and t, say a ∼ t, fa(t) may be computable
using Stirling’s formula for the Gamma function see [12]. Write fa(t) in the
form (see [12])

fa+1(t) =
e−

1
2aη

2

√
2πaΓ∗(a)

, where Γ∗(a) =
Γ(a)√

2π/aaae−a
,

and 1
2aη

2 = β− 1− ln(β), β = t/a. When a −→ +∞, the function Γ∗(a) has
the well known asymptotic expansion [25, p. 253]

Γ∗(a) ≈ 1 +
1

12
a−1 +

1

288
a−2 − 139

51840
a−3 +

571

2488320
a−4 + · · ·

2. When 0 < a < 1, underflow and overflow are overcomed by using

P (a, x) = P (a+ 1, x) + fa+1(x).

Hence,

I(fa)(x) ≈ I
(
fa+1,n,k

)
(x) + fa+1(x).
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A high-precision evaluation of P (a, x) is available in Matlab using the function
gammainc. In the following tables 1-2, for several values of a and x, the quadra-
ture errors between the values obtained for P (a, x) using the Gauss numerical
integration schemes and the Matlab function gammainc are shown. The primary
region of difficulty for computing P (a, x) has been when a is large and x ∼ a. The
results obtained, see Table 2, confirm the stability and accuracy of Gauss numerical
integration schemes used for computing P (a, x).

Table 1: Errors of the approximation of P (a, 100) using k = 8, k1 = 4.

a = 1/2 a = 3/2 a = 5/2
n Errors Errors Errors

23 8.4376e− 006 8.4375e− 006 6.8647e− 009
24 2.0134e− 009 2.0134e− 009 6.0085e− 013
25 8.8818e− 016 8.8817e− 016 6.6613e− 016

Table 2: Errors of the approximation of P (105, x) using r = 1, k = 10 and n = 212.

x/a Errors

0.3 0
0.7 0
0.8 0
0.9 2.1184e− 247
1 0
1.1 6.6613e− 016
1.2 4.4409e− 016
1.3 2.2204e− 016
2.35 8.8818e− 016

4. Inversion approximations for incomplete Gamma function

For the numerical inversion we solve the equations

P (a, x) = p, Q(a, x) = q, 0 ≤ p ≤ 1, 0 ≤ q ≤ 1.

Note that if x(p, a) denotes the solution of the first equation then the solution of
the second equation satisfies x(q, a) = x(1 − p, a).

The function P−1(a, p) is defined on p ∈ [0, 1]. As p → 1−, P−1(a, p) diverges
logarithmically. Hence, We are going to divide [0, 1] in two sub-intervals [0, 1− ǫ]
and [1− ǫ, 1] where ǫ is a real positive close to zero and ǫ = 10−16 is a good choice
when the computations are performed in double-precision arithmetic.
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4.1. Asymptotic expansions for P−1(a, p) as p→ 1−

When q is sufficiently small we use the asymptotic expansion introduced in
[7,12]. A good initial approximation x0 > 0 of x(q, a) is obtained from the equation

e−x0xa
0 = qΓ(a).

Higher approximations of x are obtained in the form

Q̃−1(a, q) := x(q, a) ≈ x0 − L+ b

∞∑

k=1

ckx
−k
0

b = 1− a, L = ln(x0), with first coefficients

c1 = L− 1,

c2 = (3b− 2bL+ L2 − 2L+ 2)/2,

c3 = (24bL− 11b2 − 24b− 6L2 + 12L− 12− 9bL2 + 6b2L+ 2L3)/6,

c4 = (−12b3L+ 84bL2 − 114b2L+ 72 + 36L2 + 3L4 − 72L+ 162b− 168bL−
12L3 + 25b3 − 22bL3 + 36b2L2 + 120b2)/12.

4.2. Approximation for P−1(a, p) on [0, 1− ǫ].

For ǫ very close to 0, let xǫ := Q̃−1(a, ǫ). Then xǫ is an approximation of
P−1(a, 1− ǫ). Let

φp(x) = P (a, x)− p, p ∈]0, 1− ǫ[. (4.1)

We compute x = P−1(a, p) at a given p ∈]0, 1− ǫ], as the root of φp(x) = 0, using
Newton’s iterates

x̃m+1 = x̃m −
φp(x̃m)

fa(x̃m)
.

Since in the general case, Newton’s method converges only when x̃0 is close enough
to the solution, a good starting point is essential for convergence and efficiency.
We do this by using the zeros of the piecewise linear interpolation of φp(x) as an
initial guess for the zeros of φp(x).

For the approximation of P (a, x), we introduce the special nonuniform grid

Xn := {0 = x0 < x1 < . . . < xn−1 < xn = xǫ},

where

xj :=

(
j

n

)r

xǫ, j = 0, . . . , n. (4.2)

with r ≥ 1. If r = 1 then the grid points are distributed uniformly, for r > 1, the
grid points are more densely clustered near the left endpoint of the interval [0, xǫ].
The parameter r has several very important consequences, some of which we will
explore in more detail below. It is easy to see that

0 < xj+1 − xj <
rxǫ

n
, j = 0, . . . , n− 1.
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Clearly, P (a, x) is an increasing function. Then, the simplest way to obtain a
continuous shape preserving approximation to a set of ordered data points is to
connect neighboring data points with straight lines. Moreover, the piecewise linear
interpolant In, which interpolates P (a, ·) at the points xj , has the nice property
of being a local construction: the interpolant InP (a, ·) on an interval [xj , xj+1] is
completely defined by the value of P (a, ·) at xj and xj+1. This piecewise linear
interpolant preserves the shape of the data extremely well: preservation of concav-
ity, preservation of monotonicity. Basically, if a ∈]0, 2[ the order of this method is
lost at the regions when the derivatives of P (a, ·) have singularities. In order to
remedy this we give the class of piecewise linear interpolant eliminating the effect
of the singularity point for the approximation accuracy.

Define S1(x) to be a composite piecewise linear interpolant

S1(x) =

{
S0(x), if [x0, x1[
InP (a, x), if x ∈ [x1, xn],

where

S0(x) =

{
0, if 0 < a < 1
x
x1
P (a, x1), if a ≥ 1.

We now discuss the approximation accuracy of S1(x).

Proposition 4.1.

We have

‖P (a, ·)− S1(x)‖∞ ≤ C

{
n−ra for 1 ≤ r ≤ 2/a,
n−2 for r > 2/a.

Here, C is a positive constant which is independent of n.

Proof:

We consider errors contributed from each subinterval. In order to do this, let

Ei = ‖P (a, ·)− S1‖∞,[xi,xi+1], i = 0, . . . , n− 1.

Since P (a, ·) ∈ C2[x1, xn], it follows that (see [5], Chapter 7)

‖P (a, ·)− S1‖∞,[x1,xn] ≤
C1

n2
‖P ′′(a, ·)‖∞,[x1,xn]

.

On other hand, if 0 < a < 1 we get

E1 <
1

Γ(a)

∫ x1

0

ta−1dt =
xa
1

Γ(a+ 1)
=

xa
ǫ

Γ(a+ 1)
n−ra.

If 1 < a < 2, we have P ′(a, ·) = fa ∈ Ha−1. From [5], we obtain

E1 ≤ C2x
a
1 .

Hence,
E1 ≤ C3n

−ra.
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This completes the proof. ✷

Let p ∈]0, 1−ǫ[. The first step is to search the table to find the interval [xi, xi+1]
such that p ∈ [P (a, xi), P (a, xi+1]. On the first iteration, the value x̃0 is computed
by linearly interpolating xi and xi+1.

Then, a good initial approximation x̃0 for the iterative procedure (4.1) is ob-
tained from the equation

S1P (a, x̃0)− p = 0. (4.3)

The zero of (4.3) is the zero of the linear segment connecting the two points(
xk, φp(xk)

)
and

(
xk+1, φp(xk+1)

)
, where k is the integer such that

φp(xk)φp(xk+1) ≤ 0 and φp(xk) 6= 0.

The zero is characterized by the equation

(1 − µ)φp(xk) + µφp(xk+1) = 0,

which has the solution

µ = −(P (a, xk)− p)/(P (a, xk+1)− P (a, xk)).

The estimate for the zero is given by the formula

x̃0 = (1− µ)xk + µxk+1. (4.4)

Proposition (4.1) leads to our main result.

Theorem 4.2. The zero sequence x̃0 converges to the zero of φp, as n→ +∞.

As a test, for different choices of a ≥ 1
2 , we have estimated the maximum

absolute errors on a 105 random grid G on [0, 1− ǫ], i.e.,

max
p∈G
|p− P (a, x̃0)| , (4.5)

with ǫ = 10−16 and n = 8. The accuracy of the initial estimates is listed in Table
3. Numerical experiments indicate that at few iterations of Newton method are
sufficient to achieve the double-precision solution in a reasonable time frame.

5. Applications

5.1. Simulating of univariate generalized Gaussian noise

As an application, we used the proposed procedure to computing Q−1 in order
to simulate a generalized Gaussian noise with exponent α = 3/4. For illustration, a
typical evolution of this process, over an interval of time with length 103, is shown
in Figure 1.
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Table 3: The maximum absolute errors for Newton method.

a r Error estimates (4.5) Newton errors Number of iterations

0.5 8 9.2330e− 005 4.4409e− 016 3
1.1 4 7.8619e− 005 3.3307e− 016 3
1.5 3 8.0692e− 005 3.3307e− 016 3
2.1 2 9.5806e− 005 3.3307e− 016 3
5.1 8 4.1202e− 005 1.3323e− 015 3
102 1 2.1109e− 004 6.3616e− 014 3
104 1 5.3853e− 003 9.9920e− 015 4
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Figure 1: Instances of GGD with parameter α = 3/4 and N = 103 synthesized by
using the function (2.8).

We have performed an estimation of its probability density function based on
107 values drawn for the generalized Gaussian and collected into bins of width
△x = 0.1 . The estimated density presented in Figure 2 is compared with the
theoretical model of (2.6) and shows very good agreement.
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Figure 2: Probability density function estimated for the generalized Gaussian noise
with exponent α = 3/4 synthesized by using (2.8), superimposed to the theoretical
model of (2.6) (continuous solid line).
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5.2. Simulation of bivariate generalized Gaussian noise

In this section, some simulations with different parameter shape values β are
presented. Figure 3 shows realizations of bivariate standard generalized Gaussian,
generated with the algorithm 1 described above over an interval of time with length
103. We have also performed an estimation of the joint probability density function
(2.9) based on 106 simulated values. Figures [4,6] show the simulated probabilities
and the theoretical density (2.9). As can be seen in the figures, the probability
density function is well approximated by the empirical density.
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(b) β = 1/2 and N = 103

Figure 3: samples of a bivariate generalized Gaussian noise with parameter shape
synthesized by algorithm 1.
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Figure 4: The pdf generated from samples compared with the true standard bivari-
ate generalized Gaussian pdf.
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Figure 5: The circular contours pdf generated from samples compared with the
true standard circular contours pdf.
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Figure 6: The pdf generated from samples compared with the true standard bivari-
ate generalized Gaussian pdf.
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Figure 7: The circular contours pdf generated from samples compared with the
true standard circular contours pdf.

6. Conclusion and discussion

In this paper, we introduced the multivariate generalized Gaussian distribution
along with a procedure to generate samples from the 1D and 2D standard gen-
eralized Gaussian distribution, the provided procedure is based on the utilization
of the inverse transform of Gamma cumulative distribution expressed in terms of
the inverse of the regularized incomplete Gamma function. We have proposed a
simple method for computing the incomplete Gamma function ratios, based on
numerical quadratures for weakly singular integrals by nonlinear spline approxima-
tions proposed in [15]. To approximate P−1(a, .), we have proposed a very simple
and efficient method for computing a good starting point for iterative procedure.
The main advantage of this method is that it not requires considerable computa-
tional time, and is very simple to implement and does not require any elaborate
special mathematical functions software, and can be straightforwardly coded in
any programming language with standard algebra. Likewise, simulation becomes
especially simple for families of distributions defined by circular contours in polar
coordinates. Therefore, we can say that the obtained results highlight that the pro-
posed procedure allows to generate correctly the univariate and bivariate standard
generalized Gaussian noises with the shape parameter.

Univariate and bivariate generalized Gaussian distribution seems interesting to
investigate their possible applications in modelling noises especially in signal and
image processing. This is left for future research.
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