Extremal Number of Theta Graphs of Order 7

Abstract

M.M.M. Jaradat*, M.S. Bataineh, A.A. Al-Rhayyel, and Zead Mustafa

ABSTRACT: For a set of graphs \mathcal{F}, let $\mathcal{H}(n ; \mathcal{F})$ denote the class of non-bipartite Hamiltonian graphs on n vertices that does not contain any graph of \mathcal{F} as a subgraph and $h(n ; \mathcal{F})=\max \{\mathcal{E}(G): G \in \mathcal{H}(n ; \mathcal{F})\}$ where $\mathcal{E}(G)$ is the number of edges in G. In this paper we determine $h\left(n ;\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$ and $h\left(n ; \theta_{7}\right)$ for sufficiently odd large n. Our result confirms the conjecture made in [1] for $k=3$.

Key Words: Tuŕan number, Theta graph, Extremal graph.

Contents

1 Introduction and preliminaries

2 Main results

1. Introduction and preliminaries

For our purposes a graph G is finite, undirected and has no loops or multiple edges. We denote the vertex set of G by $V(G)$ and the edge set of G by $E(G)$. The cardinalities of these sets are denoted by $v(G)$ and $\mathcal{E}(G)$, respectively. The cycle on n vertices is denoted by C_{n}. A theta graph θ_{n} is defined to be a cycle C_{n} to which we add a new edge that joins two non-adjacent vertices. The neighbor set of a vertex u of G in a subgraph H of G, denoted by $N_{H}(u)$, consists of the vertices of H adjacent to u. The joint $G_{1} \vee G_{2}$ of two vertex disjoint graphs G_{1} and G_{2} is the graph whose vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set consists of $E\left(G_{1}\right) \cup E\left(G_{2}\right)$ together with all the edges joining $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$. For vertex disjoint subgraphs H_{1} and H_{2} of G, we let $E\left(H_{1}, H_{2}\right)=\left\{x y \in E(G): x \in V\left(H_{1}\right), y \in V\left(H_{2}\right)\right\}$ and $\mathcal{E}\left(H_{1}, H_{2}\right)=\left|E\left(H_{1}, H_{2}\right)\right|$.

For a proper subgraph H of G we write $G[V(H)]$ and $G-V(H)$ simply as $G[H]$ and $G-H$, respectively $(G[V(H)]$ is the induced subgraph). In this paper, we consider the Turán-type extremal problem with the θ-graph being the forbidden subgraph. Since a bipartite graph contains no odd θ-graph, we consider nonbipartite graphs. First, we recall some notation and terminology. For a positive integer n and a set of graphs \mathcal{F}, let $\mathcal{G}(n ; \mathcal{F})$ (and $\mathcal{H}(n ; \mathcal{F})$) denote the class of non-bipartite \mathcal{F}-free graphs (class of non-bipartite Hamiltonian \mathcal{F}-free graphs) on n vertices, and

$$
\begin{aligned}
f(n ; \mathcal{F}) & =\max \{\mathcal{E}(G): G \in \mathcal{G}(n ; \mathcal{F})\} \\
h(n ; \mathcal{F}) & =\max \{\mathcal{E}(G): G \in \mathcal{H}(n ; \mathcal{F})\}
\end{aligned}
$$

[^0]An important problem in extremal graph theory is that of determining the values of the functions $f(n ; \mathcal{F})$ and $h(n ; \mathcal{F})$. Further, characterize the extremal graphs of $\mathcal{G}(n ; \mathcal{F})$ and $\mathcal{H}(n ; \mathcal{F})$ where $f(n ; \mathcal{F})$ and $h(n ; \mathcal{F})$ are attained. For a given C_{r}, the edge maximal graphs of $\mathcal{G}\left(n ; C_{r}\right)$ have been studied by a number of authors see [6], [7], [8] and [10]. Bondy [5] proved that a Hamiltonian graph G on n vertices without a cycle of length r has at most $\frac{1}{2} n^{2}$ edges with equality holding if and only if n is even and r is odd.

Höggkvist, Faudree and Schelp [9] proved that $f\left(n ; C_{r}\right) \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1$ for all r. This result is sharp only for $r=3$. Jia [12] proved that for $n \geq 9, f\left(n ; C_{5}\right) \leq$ $\left|\frac{(n-2)^{2}}{4}\right|+3$ and he characterized the extremal graphs as well. In the same work, Jia conjectured that $f\left(n ; C_{2 k+1}\right) \leq\left|\frac{(n-2)^{2}}{4}\right|+3$ for $n \geq 4 k+2$. Bataineh [1] confirmed positively the above conjecture for $n \geq 36 k$. Further, he showed that equality holds if and only if $G \in \mathcal{G}^{*}(n)$ where $\mathcal{G}^{*}(n)$ is the class of graphs obtained by adding a triangle, two vertices of which are new, to the complete bipartite graph $K_{\lfloor(n-2) / 2\rfloor,\lceil(n-2) / 2\rceil}$. Also, he proved the following result:

Theorem 1.1. (Bataineh [1]) For positive integers $k \geq$ and $n>(4 k+2)\left(4 k^{2}+\right.$ $10 k$),

$$
h\left(n ; C_{2 k+1}\right)= \begin{cases}\frac{(n-2 k+1)^{2}}{4}+4 k-3, & \text { if } n \text { is odd } \\ \frac{(n-2 k)^{2}}{4}+4 k+1, & \text { if } n \text { is even } .\end{cases}
$$

For θ_{5}-graph, Bataineh et al [2] proved that for $n \geq 5$

$$
f\left(n ; \theta_{5}\right)=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1
$$

Later on, Bataineh et al [3], [4] and Jaradat et al [11] proved the following results

Theorem 1.2. (Jaradat et al [11]) For positive integers n and k, let G be a graph on $n \geq 6 k+3$ vertices which contains no $\theta_{2 k+1}$ as a subgraph, then

$$
\mathcal{E}(G) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor
$$

Theorem 1.3. (Jaradat et al [11] and Bataineh et al [4]) For sufficiently large integer n and for $k \geq 3$,

$$
f\left(n ; \theta_{2 k+1}\right)=\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3
$$

Caccetta and Jia [7] constructed the following class of graphs: The building blocks of this class are the path $P=u_{1} u_{2} \ldots u_{2 k}$ and the complete bipartite graph $B=K_{\left\lceil\frac{1}{2}(n-2 k)\right\rceil,\left\lfloor\frac{1}{2}(n-2 k)\right\rfloor}$. For $1 \leq a \leq\left\lceil\frac{1}{2}(n-2 k)\right\rceil-1$, we let $\mathbb{B}(n, k, a)$ denote
the class of graphs obtained by partitioning the $\left\lceil\frac{1}{2}(n-2 k)\right\rceil$ vertices of the larger bipartitioning set of B into two sets V_{1} and V_{2} with $\left|V_{1}\right|=a$ and then joining each vertex of V_{1} to u_{1} and each vertex of V_{2} to $u_{2 k}$. Observe that for a graph $G \in \mathbb{B}(n, k, a)$

$$
\mathcal{E}(G)=\left\lfloor\frac{1}{4}(n-2 k+1)^{2}\right\rfloor+2 k-1 .
$$

Further, $G \in \mathcal{G}\left(n ; C_{3}, C_{5}, \ldots, C_{2 k+1}\right)$. Caccetta and Jia [7] proved the following results:

Theorem 1.4. (Caccetta and Jia [7]) Let $G \in \mathcal{G}\left(n ; C_{3}, C_{5}, \ldots, C_{2 k+1}\right)$. Then

$$
\mathcal{E}(G) \leq\left\lfloor\frac{1}{4}(n-2 k+1)^{2}\right\rfloor+2 k-1
$$

with equality possible if and only if $G \in \mathbb{B}(n, k, a)$.
Theorem 1.5. (Caccetta and Jia [7]) Let $\mathcal{F}_{k}=\left\{C_{3}, C_{5}, C_{7}, \ldots, C_{2 k+1}\right\}$. For even $n \geq 4 k+4, k \geq 2$, we have

$$
h\left(n ; F_{k}\right)=\frac{(n-4 k-4)^{2}}{4}+8 k-11
$$

Analoguely, In [1], Bataineh proved the following result concerning theta graphs:
Theorem 1.6. (Bataineh [1])) Let $\Theta_{k}=\left\{\theta_{4}\right\} \cup\left\{\theta_{5}, \theta_{7}, \ldots, \theta_{2 k+1}\right\}$, then for $k \geq 5$ and large odd n, we have

$$
h\left(n ; \Theta_{k}\right)=\frac{(n-2 k+3)^{2}}{4}+2 k-3 .
$$

Bataineh [1] made the following conjecture
Conjecture 1. Let $k \geq 3$ be a positive integer. For odd $n \geq 4 k+4, h\left(n ; \theta_{2 k+1}\right) \leq$ $\frac{(n-2 k+3)^{2}}{4}+2 k-3$.

In this work, we prove the above conjecture for $k=3$. In fact, we present exact values of $h(n ; \mathcal{F})$ for sufficiently large odd n for $\mathcal{F}=\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}$ and $\mathcal{F}=\left\{\theta_{7}\right\}$.

2. Main results

We start this section by the following lemmas which will play a crucial role in proving our main results.

Lemma 2.1. Let $H \in H\left(n,\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$ and H contains a cycle C of length 7. If $u \in V(H-C)$, then $\mathcal{E}(u, C) \leq 3$. Moreover, if $B=\{u \in V(H-C): \mathcal{E}(u, C)=3\}$, then $|B| \leq 1$.

Proof: Let $C=x_{1} x_{2} x_{3} \ldots x_{7} x_{1}$ be a cycle of length 7 . Since H contains no θ_{7} as a subgraph, so $H[C]=C$ and so $\mathcal{E}(H[C])=7$. If $u \in V(G-H)$ such that $\mathcal{E}(u, C)=4$, then with out loss of generality one can easily check that $N_{C}(u)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ or $N_{C}(u)=\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$ or $N_{C}(u)=\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\}$ or $N_{C}(u)=\left\{x_{1}, x_{2}, x_{4}, x_{6}\right\}$ and each one of which produces a θ_{7} as a subgraph in H. Thus, we conclude that $\mathcal{E}(u, C) \leq 3$ with equality holds only if $N_{C}(u)=\left\{x_{i}, x_{i+1}, x_{i+4}\right\}$ for some $i=1,2, \ldots, 7\left(x_{j}=x_{j-7}\right.$ for $\left.j>7\right)$. Suppose that $|B| \geq 2$. Let $x, y \in B$ with $x \neq y$. Without loss of generality, we may assume that $N_{C}(x)=\left\{x_{1}, x_{2}, x_{5}\right\}$. If $x y \in E(H)$ and y is adjacent to x_{1}, then the trail $x y x_{1} x_{2} x x_{1}$ would form a θ_{4} as a subgraph in H, a contradiction. Similarly, one can show that y cannot be adjacent to x_{2}, x_{4}, x_{5} or x_{6} as otherwise a θ_{4} or a θ_{7} is produced as a subgraph. Thus, we assume that $x y \notin E(H)$. If $N_{C}(x) \cap N_{C}(y)=\varnothing$, then $N_{C}(y)=\left\{x_{3}, x_{4}, x_{7}\right\}$ or $\left\{x_{3}, x_{6}, x_{7}\right\}$. If $N_{C}(y)=\left\{x_{3}, x_{4}, x_{7}\right\}$, then the trail $x x_{5} x_{4} y x_{7} x_{1} x_{2} x x_{1}$ forms a θ_{7} as a subgraph. Also if $N_{C}(y)=\left\{x_{3}, x_{6}, x_{7}\right\}$, then the trail $x x_{5} x_{6} y x_{7} x_{1} x_{2} x x_{1}$ forms a θ_{7} as a subgraph. Therefore, $N_{C}(x) \cap N_{C}(y) \neq \varnothing$. We now consider the case that $x_{1} \in N_{C}(y) \cap N_{C}(x)$. If y is adjacent to x_{2}, then the trail $x_{1} x x_{2} y x_{1} x_{2}$ forms a θ_{4} as a subgraph, a contradiction. Similarly we can show that y cannot be adjacent to x_{3}, x_{5} or x_{7} as otherwise a θ_{7} is produced as a subgraph. Thus y is adjacent to x_{4} and x_{6}, but the trial $y x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} y x_{4}$ forms a θ_{7} as a subgraph, a contradiction. By using the same argument as a above one can show that if x_{2} or x_{5} belongs to $N_{C}(y) \cap N_{C}(x)$, then we get the same contradiction. Therefore, $|B| \leq 1$. This completes the proof.

Lemma 2.2. Let $H \in \mathcal{H}\left(n,\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$ and H contains a cycle C of length 7 . If $|B|=1$ and $u v$ is an edge in the subgraph $H-C-B$, then $\mathcal{E}(\{u, v\}, C) \leq 3$ where B is as defined in Lemma 2.1.

Proof: Let $u v$ be an edge in $H-C-B$. Then by Lemma 2.1., $\mathcal{E}(u, C), \mathcal{E}(v, C) \leq 2$. Now we shall prove by contradiction that the case $\mathcal{E}(u, C)=\mathcal{E}(v, C)=2$ is impossible. Suppose $\mathcal{E}(u, C)=\mathcal{E}(v, C)=2$, then one can see that each of $N_{C}(u)$ and $N_{C}(v)$ is of the form $\left\{x_{i}, x_{i+2}\right\}$ or $\left\{x_{i}, x_{i+3}\right\}$ or $\left\{x_{i}, x_{i+4}\right\}$ as otherwise at least one of θ_{4}, θ_{5}, and θ_{7} is produced as a subgraph. Let $B=\{x\}$ and with out loss of generality assume x is adjacent to x_{1}, x_{2} and x_{5}. Note that if $N_{C}(u)$ or $N_{C}(v)$ is of the form $\left\{x_{i}, x_{i+2}\right\}$, then the only possibilities for that are $\left\{x_{2}, x_{4}\right\},\left\{x_{3}, x_{5}\right\},\left\{x_{5}, x_{7}\right\}$ and $\left\{x_{1}, x_{6}\right\}$ as otherwise at least one of θ_{4}, θ_{5} and θ_{7} is produced as a subgraph. Further, if $N_{C}(u)$ or $N_{C}(v)$ is of the form $\left\{x_{i}, x_{i+3}\right\}$ or $\left\{x_{i}, x_{i+4}\right\}$, then the only possibilities for that are $\left\{x_{1}, x_{4}\right\},\left\{x_{2}, x_{6}\right\}$ and $\left\{x_{3}, x_{7}\right\}$ as otherwise at least one of θ_{4}, θ_{5} and θ_{7} is produced as a subgraph. Note that, $\left|N_{C}(u) \cap N_{C}(v)\right|=0$ or 1 as otherwise a θ_{4} is produced as a subgraph. To this end we consider two cases:
Case 1: $\left|N_{C}(u) \cap N_{C}(v)\right|=0$. Then, without loss of generality, we list all the possibilities as follows:

1) $N_{C}(u)=\left\{x_{2}, x_{4}\right\}$ and $N_{C}(v)=\left\{x_{3}, x_{5}\right\}$. Then the trail $u v x_{3} x_{4} x_{5} x_{2} u x_{4}$ is a θ_{7} subgraph, a contradiction.
2) $N_{C}(u)=\left\{x_{2}, x_{4}\right\}$ and $N_{C}(v)=\left\{x_{5}, x_{7}\right\}$. Then the trail $u x_{4} x_{3} x_{2} x x_{5} v u x_{2}$ is a θ_{7} subgraph, a contradiction.
3) $N_{C}(u)=\left\{x_{2}, x_{4}\right\}$ and $N_{C}(v)=\left\{x_{1}, x_{4}\right\}$ or $\left\{x_{1}, x_{6}\right\}$. Then the trail $x_{2} x x_{1} v u x_{2} x_{1}$ is a θ_{5} subgraph, a contradiction.
4) $N_{C}(u)=\left\{x_{2}, x_{4}\right\}$ and $N_{C}(v)=\left\{x_{2}, x_{6}\right\}$. Then the trail $u x_{4} x_{3} x_{2} v u x_{2}$ is a θ_{5} subgraph, a contradiction.
5) $N_{C}(u)=\left\{x_{2}, x_{4}\right\}$ and $N_{C}(v)=\left\{x_{3}, x_{7}\right\}$. Then the trail $x_{3} v u x_{2} x x_{5} x_{4} x_{3} x_{2}$ is a θ_{7} subgraph, a contradiction.
6) $N_{C}(u)=\left\{x_{3}, x_{5}\right\}$ and $N_{C}(v)=\left\{x_{1}, x_{6}\right\}$ or $\left\{x_{2}, x_{6}\right\}$. Then the trail $x_{5} x_{6} v u x_{3} x_{2} x x_{5} u$ is a θ_{7} subgraph, a contradiction.
7) $N_{C}(u)=\left\{x_{3}, x_{5}\right\}$ and $N_{C}(v)=\left\{x_{1}, x_{4}\right\}$. Then the trail $x_{3} x_{2} x x_{5} u v x_{4} x_{3} u$ is a θ_{7} subgraph, a contradiction.
8) $N_{C}(u)=\left\{x_{5}, x_{7}\right\}$ and $N_{C}(v)=\left\{x_{6}, x_{1}\right\}$. Then by symmetry we get the same contradiction as in (1).
9) $N_{C}(u)=\left\{x_{5}, x_{7}\right\}$ and $N_{C}(v)=\left\{x_{1}, x_{4}\right\}$. Then the trail $u x_{7} x_{1} x x_{5} x_{4} v u x_{5}$ is a θ_{7} subgraph, a contradiction.
10) $N_{C}(u)=\left\{x_{5}, x_{7}\right\}$ and $N_{C}(v)=\left\{x_{2}, x_{6}\right\}$. Then the trail $x_{1} x x_{2} v u x_{1} x_{2}$ is a θ_{5} subgraph, a contradiction.
11) $N_{C}(u)=\left\{x_{1}, x_{6}\right\}$ and $N_{C}(v)=\left\{x_{3}, x_{7}\right\}$. Then the trail $x_{1} x_{7} x_{6} u v x_{3} x_{2} x_{1} u$ is a θ_{7} subgraph, a contradiction.
12) $N_{C}(u)=\left\{x_{1}, x_{4}\right\}$ and $N_{C}(v)=\left\{x_{2}, x_{6}\right\}$. Then the trail $x_{1} x x_{2} u v x_{1} x_{2}$ is a θ_{5} subgraph, a contradiction.
13) $N_{C}(u)=\left\{x_{1}, x_{4}\right\}$ and $N_{C}(v)=\left\{x_{3}, x_{7}\right\}$. Then the trail $u v x_{1} x x_{5} x_{4} x_{3} v x_{3}$ is a θ_{7} subgraph, a contradiction.
14) $N_{C}(u)=\left\{x_{2}, x_{6}\right\}$ and $N_{C}(v)=\left\{x_{3}, x_{7}\right\}$. Then the trail $u v x_{7} x_{1} x x_{5} x_{6} u v$ is a θ_{7} subgraph, a contradiction.
Case 2: $\left|N_{C}(u) \cap N_{C}(v)\right|=1$. Then, without loss of generality, we list all of the possibilities as follows:
15) $N_{C}(u)=\left\{x_{1}, x_{6}\right\}$ and $N_{C}(v)=\left\{x_{1}, x_{4}\right\}$. Then the trail $u v x_{1} x_{7} x_{6} x_{5} x_{4} v x_{1}$ is a θ_{7} subgraph, a contradiction.
16) $N_{C}(u)=\left\{x_{2}, x_{4}\right\}$ and $N_{C}(v)=\left\{x_{2}, x_{6}\right\}$. Then the trail $x_{2} x_{3} x_{4} u v x_{2} u$ is a θ_{5} subgraph, a contradiction.
17) $N_{C}(u)=\left\{x_{3}, x_{5}\right\}$ and $N_{C}(v)=\left\{x_{3}, x_{7}\right\}$. Then the trail $u x_{3} x_{4} x_{5} x_{6} x_{7} v u x_{5}$ is a θ_{7} subgraph, a contradiction.
18) $N_{C}(u)=\left\{x_{1}, x_{4}\right\}$ and $N_{C}(v)=\left\{x_{2}, x_{4}\right\}$. Then the trail $u x_{1} x x_{2} x_{3} x_{4} v u x_{4}$ is a θ_{7} subgraph, a contradiction.
19) $N_{C}(u)=\left\{x_{3}, x_{5}\right\}$ and $N_{C}(v)=\left\{x_{5}, x_{7}\right\}$. Then the trail $x_{5} x_{6} x_{7} v u x_{5} v$ is a θ_{5} subgraph, a contradiction.
20) $N_{C}(u)=\left\{x_{1}, x_{6}\right\}$ and $N_{C}(v)=\left\{x_{2}, x_{6}\right\}$. Then the trail $x_{6} v u x_{1} x_{7} x_{6} u$ is a θ_{5} subgraph, a contradiction.
21) $N_{C}(u)=\left\{x_{3}, x_{7}\right\}$ and $N_{C}(v)=\left\{x_{5}, x_{7}\right\}$. Then the trail $x_{7} u v x_{5} x_{6} x_{7} v$ is a θ_{5} subgraph, a contradiction.

The following remark follows from the fact that if $H \in \mathcal{H}\left(n,\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right), C$ is a cycle of length 7 in $H, u \in V(H-C)$ and $\mathcal{E}(u, C)=3$, then $N_{C}(u)=$ $\left\{x_{i}, x_{i+1}, x_{i+4}\right\}$.

Remark 2.3. For $H \in \mathcal{H}\left(n,\left\{C_{3}, \theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$, if H contains a cycle C of length 7 , then $B=\varnothing$ where B is as defined in Lemma 2.1.

We now establish the following result which will be used in the rest of this section. We begin with the following construction. For odd n, let \mathcal{H}_{1} be the class of graphs obtained from $\bar{K}_{\frac{n-3}{2}} \vee \bar{K}_{\frac{n-3}{2}}$ by replacing one edge, say $y_{1} y_{2} \in \bar{K}_{\frac{n-3}{2}} \vee \bar{K}_{\frac{n-3}{2}}$, by the path $y_{1} w_{2} w_{3} w_{4} y_{2}$ with the vertices w_{2}, w_{3}, w_{4}, being all new vertices. Note that \mathcal{H}_{1} is a class of non-bipartite Hamiltonian graphs containing none of θ_{4}, θ_{5} and θ_{7} as a subgraphs. Also $\mathcal{E}(H)=\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor+3$ for any $H \in \mathcal{H}_{1}$. Thus

$$
\begin{equation*}
h\left(n ;\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right) \geq \frac{(n-3)^{2}}{4}+3 \text { for odd } n \tag{2.1}
\end{equation*}
$$

Theorem 2.4. For sufficiently large odd n, we have

$$
h\left(n ;\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right)=\frac{(n-3)^{2}}{4}+3 .
$$

Proof: Let $H \in \mathcal{H}\left(n,\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$. By 2.1 it is enough to show that $\mathcal{E}(H) \leq$ $\frac{(n-3)^{2}}{4}+3$. If H contains no cycle of length 7 , then by Theorem 1.1, we have

$$
\mathcal{E}(H) \leq \frac{(n-5)^{2}}{4}+9 \leq \frac{(n-3)^{2}}{4}+3
$$

for sufficiently large odd n, as required. Suppose H contains a cycle C of length 7 . Define the set $B=\{u \in V(H-C): \mathcal{E}(u, C)=3\}$. Then from Lemma 2.1, $|B| \leq 1$. If $|B|=0$, then again from Lemma $2.1 \mathcal{E}(u, C) \leq 2$ for all $u \in V(H-C)$ and so $\mathcal{E}(H-C, C) \leq 2(n-7)$. Now, suppose $|B|=1$. Since H is Hamiltonian, the graph $H-C-B$ must have an edge $u v$. By Lemma 2.2, we obtain $\mathcal{E}(\{u, v\}, C) \leq 3$, thus

$$
\begin{aligned}
\mathcal{E}(H-C, C) & =\mathcal{E}(H-B-\{u, v\}, C)+\mathcal{E}(B, C)+\mathcal{E}(\{u, v\}, C) \\
& \leq 2(n-10)+3+3=2(n-7)
\end{aligned}
$$

By Theorem 1.2, we have

$$
\mathcal{E}(H-C) \leq \frac{(n-7)^{2}}{4}
$$

Therefore

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}(H-C)+\mathcal{E}(H-C, C)+\mathcal{E}(C) \\
& \leq \frac{(n-7)^{2}}{4}+2(n-7)+7 \\
& =\frac{(n-3)^{2}}{4}+3
\end{aligned}
$$

This completes the proof.

We now determine $h\left(n ; \theta_{7}\right)$ for sufficiently large odd n. Note that the class \mathcal{H}_{1} consists of non-bipartite Hamiltonian graphs containing no θ_{7} as a subgraph. Further, $\mathcal{E}(H)=\frac{(n-3)^{2}}{4}+3$ for any $H \in \mathcal{H}_{1}$. Thus we establish that

$$
\begin{equation*}
h\left(n ; \theta_{7}\right) \geq \frac{(n-3)^{2}}{4}+3 \tag{2.2}
\end{equation*}
$$

for sufficiently large odd n.
Theorem 2.5. For sufficiently large odd n, let $H \in \mathcal{H}\left(n ; \theta_{7}\right)$ with $\delta(H) \geq 20$. Then

$$
\mathcal{E}(H) \leq \frac{(n-3)^{2}}{4}+3
$$

Proof: To prove the theorem, we split the proof into two cases, according to the existence of θ_{5} in H as a subgraph:
Case 1: H contains θ_{5} as a subgraph, namely let $x_{1} x_{2} x_{3} x_{4} x_{5} x_{1} x_{4}$ be a θ_{5}-graph in H. Since $\delta(H) \geq 20$, we can define the sets A_{i} for $i=1,2,3$, that consist of 5 neighbors of x_{i} in $H-\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ so that $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$. Let $T=H\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, A_{1}, A_{2}, A_{3}\right]$ and $B=H-T$. Let $u \in V(B)$, if u is adjacent to a vertex in one of the sets A_{1}, A_{2} or A_{3}, then u cannot be adjacent to a vertex in the other two sets, as otherwise H would have a θ_{7}-graph as a subgraph. Also, if u is adjacent to a vertex in A_{i} for some $i=1,2,3$, then u cannot be adjacent to any of x_{i+1} and x_{i-1}, as otherwise H would have a θ_{7}-graph as a subgraph. Thus,

$$
\mathcal{E}(u, T) \leq 8
$$

which implies that

$$
\mathcal{E}(B, T) \leq 8(n-20)
$$

Also, by Theorem 1.2, we have

$$
\mathcal{E}(B) \leq\left\lfloor\frac{(n-20)^{2}}{4}\right\rfloor \text { and } \mathcal{E}(T) \leq\left\lfloor\frac{(20)^{2}}{4}\right\rfloor .
$$

Consequently

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}(B)+\mathcal{E}(B, T)+\mathcal{E}(T) \\
& \leq \frac{(n-20)^{2}}{4}+8(n-20)+\frac{(20)^{2}}{4} \\
& \leq \frac{n^{2}-8 n+160}{4} \\
& =\frac{(n-4)^{2}}{4}+36 \\
& <\frac{(n-3)^{2}}{4}+3
\end{aligned}
$$

for sufficiently large odd n, as required.

Case 2: H contains no θ_{5}-graph as a subgraph. If H contains no θ_{4} as a subgraph, then the result is immediate from Theorem 2.4. So, assume H contains a θ_{4}-graph, namely let $x_{1} x_{2} x_{3} x_{4} x_{1} x_{3}$ be a θ_{4}-graph in H. Since $\delta(H) \geq 20$, we can define the sets $A_{i}(i=1,2,4)$ that consist of 5 neighbors of x_{i} in $H-\left\{x_{1} x_{2} x_{3} x_{4}\right\}$ selected so that $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$. Let $T=H\left[x_{1}, x_{2}, x_{3}, x_{4}, A_{1}, A_{2}, A_{4}\right]$ and $B=H-T$. Then, the rest of the proof is rather similar to that of Case 1.

Now we are ready to establish our main result. In the following theorem we determine $h\left(n ; \theta_{7}\right)$ for odd large n and $\delta(H) \geq 7$.

Theorem 2.6. For sufficiently large odd n, let $H \in \mathcal{H}\left(n ; \theta_{7}\right)$ with $\delta(H) \geq 7$. Then

$$
\varepsilon(H) \leq \frac{(n-3)^{2}}{4}+3
$$

Proof: Let $H \in \mathcal{H}\left(n ; \theta_{7}\right)$ with $\delta(H) \geq 7$. Let A be the set of vertices in H with degree less than or equal to 19. Let $|A|=m$. Observe that,

$$
\mathcal{E}(H-A, A)+\mathcal{E}(A) \leq 19 m
$$

By Theorem 1.2,

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}(H-A)+\mathcal{E}(H-A, A)+\mathcal{E}(A) \\
& \leq\left\lfloor\frac{(n-m)^{2}}{4}\right\rfloor+19 m .
\end{aligned}
$$

If $m \geq 4$, then by remembering that n is sufficiently large, we have that the right hand side of the last inequality is maximum when $m=4$. Thus,

$$
\begin{aligned}
\mathcal{E}(H) & \leq\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+76 \\
& <\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor+3
\end{aligned}
$$

If $m=0$, then by Theorem 2.5, we have

$$
\mathcal{E}(H) \leq\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor+3
$$

as required. Now, for $m=1,2,3$, we consider two cases according to the graph $H-A$.
Case 1: If $H-A$ is a non-bipartite graph. Then Theorem 1.3 implies that

$$
\mathcal{E}(H-A) \leq\left\lfloor\frac{(n-m-2)^{2}}{4}\right\rfloor+3 .
$$

And so,

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}(H-A)+\mathcal{E}(H-A, A)+\mathcal{E}(A) \\
& \leq\left\lfloor\frac{(n-m-2)^{2}}{4}\right\rfloor+3+19 m
\end{aligned}
$$

For $m=2$ and $m=3$, the above inequality has it is maximum at $m=2$, so

$$
\begin{aligned}
\mathcal{E}(H) & \leq\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+41 \\
& <\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor+3
\end{aligned}
$$

for odd large n, as required. Therefore, we now consider only the case when $m=1$. Assume $A=\left\{x_{0}\right\}$, then according to the existance of θ_{4} and θ_{5} in H, we consider the following three cases:
Subcase 1.1: H contains niether θ_{5}-graph as a subgraph nor θ_{4}-graph as subgraph. Then as a above, the result follows from Theorem 2.4.
Subcase 1.2: H contains θ_{5}-graph as a subgraph. Assume $x_{0} \notin V\left(\theta_{5}\right)$ and let $x_{1} x_{2} x_{3} x_{4} x_{5} x_{1} x_{4}$ be a θ_{5}-graph. Consider the same construction as in Case 1 of Theorem 2.5 and define $R=H-A-T$, then we have

$$
\mathcal{E}(R, T) \leq 8(n-21)
$$

Observe that $\mathcal{E}(R, A)+\mathcal{E}(T, A)+\mathcal{E}(A) \leq 19$. Also, by Theorem 1.2 we have

$$
\mathcal{E}(R) \leq \frac{(n-21)^{2}}{4} \quad \text { and } \quad \mathcal{E}(T) \leq \frac{(20)^{2}}{4}
$$

Consequently

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}(R)+\mathcal{E}(R, T)+\mathcal{E}(T)+\mathcal{E}(R, A)+\mathcal{E}(T, A)+\mathcal{E}(A) \\
& \leq \frac{(n-21)^{2}}{4}+8(n-21)+\frac{(20)^{2}}{4}+19 \\
& \leq \frac{n^{2}-10 n+245}{4} \\
& =\frac{(n-5)^{2}}{4}+55 \\
& <\frac{(n-3)^{2}}{4}+3
\end{aligned}
$$

for odd large n, as required.
Now we consider $x_{0} \in V\left(\theta_{5}\right)$. Assume that $x_{0}=x_{5}$ that is $x_{1} x_{2} x_{3} x_{4} x_{0} x_{1} x_{4}$ be a θ_{5}-graph in H. Let $T=H\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{0}, A_{1}, A_{2}, A_{3}\right]$ and $R=H-T$ where A_{i} is as defined in Theorem2.5, then as in Case 1 of Theorem 2.5, $\mathcal{E}(x, T) \leq 8$ for each $x \in R$, and so

$$
\mathcal{E}(R, T) \leq 8(n-20)
$$

Also, by Theorem 1.2 we get

$$
\mathcal{E}(R) \leq \frac{(n-20)^{2}}{4} \quad \text { and } \quad \mathcal{E}(T) \leq \frac{(20)^{2}}{4}
$$

As a consequence

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}(R)+\mathcal{E}(R, T)+\mathcal{E}(T) \\
& \leq \frac{(n-20)^{2}}{4}+8(n-20)+\frac{(20)^{2}}{4} \\
& \leq \frac{n^{2}-8 n+144}{4} \\
& =\frac{(n-4)^{2}}{4}+36 \\
& <\frac{(n-3)^{2}}{4}+3 .
\end{aligned}
$$

Similarly, if $x_{0}=x_{1}$ or x_{2} or x_{3} or x_{4} in θ_{5}, then we can choose $i^{\prime} s$ so that $A_{i^{\prime} s}$ satisfied the required properties as in above and then word by word we use the above technique.
Subcase 1.3: H contains no θ_{5}-graph as a subgraph but it contains θ_{4}-graph as a subgraph. Assume that $x_{0} \notin V\left(\theta_{4}\right)$. By Consideing the same construction as in Theorem 2.5 and define $R=H-A-T$, we obtain that

$$
\mathcal{E}(R, T) \leq 6(n-17)
$$

Recall that $\mathcal{E}(R, A)+\mathcal{E}(T, A)+\mathcal{E}(A) \leq 19$. Also, by Theorem 1.2 we have

$$
\mathcal{E}(R) \leq \frac{(n-17)^{2}}{4} \quad \text { and } \quad \mathcal{E}(T) \leq \frac{(16)^{2}}{4}
$$

Therefore,

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}(R)+\mathcal{E}(R, T)+\mathcal{E}(T)+\mathcal{E}(R, A)+\mathcal{E}(T, A)+\mathcal{E}(A) \\
& \leq \frac{(n-17)^{2}}{4}+6(n-17)+\frac{(16)^{2}}{4}+19 \\
& \leq \frac{n^{2}-10 n+213}{4} \\
& =\frac{(n-5)^{2}}{4}+47 \\
& <\frac{(n-3)^{2}}{4}+3
\end{aligned}
$$

for odd large n as required.
Now, we consider $x_{0} \in V\left(\theta_{4}\right)$, then assume that $x_{0}=x_{4}$ that is $x_{1} x_{2} x_{3} x_{0} x_{1} x_{3}$ forms θ_{4}-graph is in H. Since $\delta(H) \geq 7$, so for $i=0,1,2$, let A_{i} be the set that
consist of 4 neighbors of x_{i} in H selected so that $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$. Let $T=H\left[x_{0}, x_{1}, x_{2}, x_{3}, A_{0}, A_{1}, A_{2}\right]$ and $R=H-T$. Observe that

$$
\mathcal{E}(R, T) \leq 6(n-16)
$$

Also, by Theorem 1.2, we have

$$
\mathcal{E}(R) \leq\left\lfloor\frac{(n-16)^{2}}{4}\right\rfloor \quad \text { and } \quad \mathcal{E}(T) \leq\left\lfloor\frac{(16)^{2}}{4}\right\rfloor
$$

Consequently

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}(R)+\mathcal{E}(R, T)+\mathcal{E}(T) \\
& \leq\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+28 \\
& <\frac{(n-3)^{2}}{4}+3
\end{aligned}
$$

for odd large n as required. Similarly, we can do the same construction and get the same result if $x_{0}=x_{1}$ or x_{2} or x_{3}.
Case 2: $H-A$ is a bipartite graph with the partitioning sets X and Y. Recall that A is the set of vertices in H with degree less than or equal to 19 and we have proved the theorem for the case when $m \geq 4$ or $m=0$ where $|A|=m$. Sine H is a non-bipartite graph, then it contains an odd cycle, in fact any odd cycle in H must involve vertices of A. If H contains no cycles of length 3 and 5 , then the result follows from Theorem 1.5. So, we have to study two cases according to the length of the odd cycles in H.
Subcase 2.1: H contains an odd cycle of length 5. Let $C=x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$ be a cycle of length 5 with minimum vertices of A and n_{1}, n_{2} be the cardinalities of $X-V(C)-A, Y-V(C)-A$, respectively. According to the possibilities of m we consider the following three cases:
Subsubcase 2.1.1. $m=1$. Let $A=\left\{x_{5}\right\}$ and $x_{1}, x_{2}, x_{3}, x_{4} \in H-A$. Observe that, $N_{H-C}\left(x_{i}\right) \cap N_{H-C}\left(x_{i+1}\right)=\varnothing$ for $i=1,2,3,4$, otherwise $H-A$ would have an odd cycle of length 3. Also, $E\left(N_{H-C}\left(x_{i}\right), N_{H-C}\left(x_{i+1}\right)\right)=\varnothing$ for $i=1$ and 3, otherwise H would have a θ_{7}-graph as subgraph of H. Let $\left|N_{H-C}\left(x_{i}\right)\right|=k_{i}$, for $i=1, \ldots, 4$. Note that $H-C$ is a bipartite graph with the above observations, we have

$$
\mathcal{E}(H-C) \leq n_{1} n_{2}-k_{1} k_{2}-k_{3} k_{4}
$$

where $n_{1}+n_{2}=n-5$. Now

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}(H-C)+\mathcal{E}(H-C, C)+\mathcal{E}(C) \\
& \leq n_{1} n_{2}-k_{1} k_{2}-k_{3} k_{4}+k_{1}+k_{2}+k_{3}+k_{4}+27 .
\end{aligned}
$$

Note that $k_{i} \geq 18$ and the right hand side of the above inequality is maximum when $k_{i}=18$ and $n_{1}=n_{2}=\frac{n-5}{2}$, thus

$$
\mathcal{E}(H) \leq \frac{(n-5)^{2}}{4}-549<\frac{(n-3)^{2}}{4}+3
$$

as required.
Subsubcase 2.1.2. $m=2$. It is easy to see that there is an edge of C non of its end points in A, say $x_{1}, x_{2} \notin A$. Then by the same argument as above we have $N_{H-C}\left(x_{1}\right) \cap N_{H-C}\left(x_{2}\right)=\varnothing$ and $E\left(N_{H-C}\left(x_{1}\right), N_{H-C}\left(x_{2}\right)\right)=\varnothing$. If $A \subseteq V(C)$, then $H-C^{\prime}$ is a bipartite graph with the above observations, we have

$$
\mathcal{E}(H-C) \leq n_{1} n_{2}-k_{1} k_{2},
$$

where $N_{H-C}\left(x_{2}\right) \mid=k_{1}$ and $\left|N_{H-C}\left(x_{4}\right)\right|=k_{2}$. Thus,

$$
\begin{aligned}
\varepsilon(H) & =E(H-C)+E(H-C, C)+E(C) \\
& \leq n_{1} n_{2}-k_{1} k_{2}+k_{1}+k_{2}+\max \left\{n_{1}, n_{2}\right\}+44 .
\end{aligned}
$$

Recall that $n_{1}+n_{2}=n-5$ and the right hand side of the above inequality is maximum when $n_{1}=n_{2}=\frac{n-5}{2}$. Thus

$$
\varepsilon(H) \leq \frac{(n-4)^{2}}{4}-k_{1} k_{2}+k_{1}+k_{2}+43
$$

Note that $k_{i} \geq 18$ and the right hand side of the above is maximum when $k_{i}=18$, thus

$$
\mathcal{E}(H) \leq \frac{(n-4)^{2}}{4}-245<\frac{(n-3)^{2}}{4}+3
$$

as required.
If $A \nsubseteq V(C)$, then C contains only one vertex of A, say x_{5}. As in Subsubcase 2.1.1 we have $N_{H-C}\left(x_{i}\right) \cap N_{H-C}\left(x_{i+1}\right)=\varnothing$ for $i=1,2,3,4$ and

$$
E\left(N_{H-C}\left(x_{i}\right), N_{H-C}\left(x_{i+1}\right)\right)=\varnothing
$$

for $i=1,3$. Note that $H-C-\left\{x_{5}\right\}$ is a bipartite graph with the above observations, we have

$$
\mathcal{E}\left(H-C-x_{5}\right) \leq n_{1} n_{2}-k_{1} k_{2}-k_{3} k_{4} .
$$

where $k_{i}=\left|N_{H-C-x_{5}}\left(x_{i}\right)\right|$. Thus,

$$
\begin{aligned}
\mathcal{E}(H)= & \mathcal{E}\left(H-C-x_{5}\right)+\mathcal{E}\left(H-C-x_{5}, C\right)+\mathcal{E}(C)+\mathcal{E}\left(x_{5}\right) \\
& +\mathcal{E}\left(H-C-x_{5}, x_{5}\right)+\mathcal{E}\left(C, x_{5}\right) \\
\leq & n_{1} n_{2}-k_{1} k_{2}-k_{3} k_{4}+k_{1}+k_{2}+k_{3}+k_{4}+44
\end{aligned}
$$

Recall that $n_{1}+n_{2}=n-6$ and the right hand side of the above is maximum when $n_{1}=n_{2}=\frac{n-6}{2}$. Thus,

$$
\mathcal{E}(H) \leq \frac{(n-6)^{2}}{4}-k_{1} k_{2}-k_{3} k_{4}+k_{1}+k_{2}+k_{3}+k_{4}+46
$$

Note that $k_{i} \geq 18$. The right hand side of the above is maximum when $k_{i}=18$, thus

$$
\mathcal{E}(H) \leq \frac{(n-6)^{2}}{4}-622<\frac{(n-3)^{2}}{4}+3
$$

as required.
Subsubcase 2.1.3. $m=3$. If C has an edge none of its end points belongs to A, then by applying a similar argument as above, we get the result. So, without loss of generality, assume that x_{1}, x_{3}, x_{5} are in A and x_{2}, x_{4} are in $H-A$. Observe that $N_{H-C}\left(x_{2}\right) \cap N_{H-C}\left(x_{4}\right)=\varnothing$ and $E\left(N_{H-C}\left(x_{2}\right), N_{H-C}\left(x_{4}\right)\right)=\varnothing$, otherwise a new cycle of length 5 with minimum vertices of A is produced. If x_{2} and x_{4} are not in the same partition of the bipartite graph $H-A$, then the result holds as above. If x_{2} and x_{4} are in the same partition, then

$$
\begin{aligned}
E(H) & =E(H-C)+E(H-C, C)+E(C) \\
& \leq n_{1} n_{2}+k_{1}+k_{2}+61
\end{aligned}
$$

where $\left|N_{H-C}\left(x_{2}\right)\right|=k_{1},\left|N_{H-C}\left(x_{4}\right)\right|=k_{2}$ and $n_{1}+n_{2}=n-5$. Note that $k_{1}+k_{2} \leq$ $\max \left\{n_{1}, n_{2}\right\}$. Thus

$$
\mathcal{E}(H) \leq n_{1} n_{2}+\max \left\{n_{1}, n_{2}\right\}+61<\frac{(n-3)^{2}}{4}+3
$$

as required.
Subcase 2.2: H contains no cycle of length 5 but it contains cycles of length 3 . Let $C=x_{1} x_{2} x_{3}$ be a cycle of length 3 with minimum vertices of A. As above we consider three cases according to the value of m.
Subsubcase 2.2.1. $m=1$. Let $x_{1}, x_{2} \in H-A$ and $x_{3} \in A$. Then, $N_{H-C}\left(x_{1}\right) \cap$ $N_{H-C}\left(x_{2}\right)=\varnothing$ as otherwise $H-A$ would have an odd cycle. Also $E\left(N_{H-C}\left(x_{1}\right)\right.$, $\left.N_{H-C}\left(x_{2}\right)\right)=\varnothing$, as otherwise H would have a cycle of length 5 . Using the same arguments as above, we get the result.
Subsubcase 2.2.2. $m=2$. If only one vertex of A belongs to $V(C)$, then we use the same argument as in Subsubcases 1.2 .2 and 2.2.1. So, we assume that $x_{1} \in H-A$ and $x_{2}, x_{3} \in A$. Since H is Hamiltonian, then there is a vertex $z \notin\left\{x_{1}, x_{2}, x_{3}\right\}$ such that $x_{2} z \in E(H)$. Define $C^{*}=H\left[x_{1}, x_{2}, x_{3}, z\right]$, then $N_{H-C^{*}}\left(x_{1}\right) \cap N_{H-C^{*}}(z)=\varnothing$, as otherwise H would have a cycle of length 5 . Also, $E\left(N_{H-C^{*}}\left(x_{1}\right), N_{H-C^{*}}(z)\right)=\varnothing$, as otherwise a cycle of length 5 is produced. Apply the same argument as in above, we get the result.
Subsubcase 2.2.3. $m=3$. If $|A \cap V(C)|=1$ or 2 , then we use the same argument as in Subsubcases 2.2.2 and 1.2.3. Thus, we assume that $x_{1}, x_{2}, x_{3} \in A$. Since H is Hamiltonian, then there are two different vertices w, z with $w, z \notin$ $\left\{x_{1}, x_{2}, x_{3}\right\}, w x_{1} \in E(H)$ and $z x_{2} \in E(H)$. Define $C^{*}=H\left[x_{1}, x_{2}, x_{3}, w, z\right]$, then $N_{H-C^{*}}(w) \cap N_{H-C^{*}}(z)=\varnothing$, as otherwise we have a cycle of length 5 in H. Also, $E\left(N_{H-C^{*}}(w), N_{H-C^{*}}(z)\right)=\varnothing$, as otherwise a θ_{7} is produced. Apply the same argument as in above, we get the result. This completes the proof.

References

1. M. Bataineh, "Some extremal problems in graph theory", Ph.D. thesis, Curtin University of Technology, Australia (2007).
2. M. Bataineh, M.M.M. Jaradat and E. Al-Shboul, Edge-maximal graphs without θ_{5}-graphs. Ars Combinatoria 124 (2016) 193-207.
3. M. Bataineh, M.M.M. Jaradat and E. Al-Shboul, Edge-maximal graphs without θ_{7}-graphs, SUT Journal of Mathematics, 47, 91-103 (2011).
4. M.S.A. Bataineh, M.M.M. Jaradat and I.Y. Al-Shboul, Edge-maximal graphs with-out theta graphs of order seven: Part II, Proceeding of the Annual International Conference on Computational Mathematics, Computational Geometry\& Statistics. DOI\#10.5176/22511911_CMCGS66.
5. J.A. Bondy, Pancyclic Graphs, J. Combinatorial Theory Ser B 11, 80- 84 (1971).
6. J.A. Bondy, Large cycle in graphs, Discrete Mathematics 1, 121-132 (1971).
7. L. Caccetta and R. Jia, Edge maximal non-bipartite graphs without odd cycles of prescribed length, Graphs and Combinatorics, 18, 75-92 (2002).
8. L. Caccetta and K. Vijayan, Maximal cycles in graphs, Discrete Mathematics 98, 1-7 (1991).
9. R. Häggkvist, R.J. Faudree and R.H. Schelp, Pancyclic graphs - connected Ramsey number, Ars Combinatoria 11, 37-49 (1981).
10. G.R.T. Hendry and S. Brandt, An extremal problem for cycles in Hamiltonian graphs, Graphs Comb. 11, 255-262 (1995).
11. M.M.M. Jaradat, M.S. Bataineh and E. Al-Shboul, Edge-maximal graphs without $\theta_{2 k+1}$ graphs. Akce International Journal of Graphs and Combinatorics, 11 (2014) 57-65.
12. R. Jia, "Some extermal problems in graph theory", Ph.D. thesis, Curtin University of Technology, Australia (1998).
13. D. Woodall, Maximal Circuits of graphs I, Acta Math. Acad. Sci. Hungar. 28, 77-80 (1976).
[^1]
[^0]: * Corresponding author.

 2010 Mathematics Subject Classification: Primary 05C35; Secondary 05C38, 05C45.
 Submitted March 04, 2018. Published May 17, 2018

[^1]: M. M. M. Jaradat,

 Department of Mathematics, Statistics and Physics, Qatar University, Doha-Qatar.
 E-mail address: mmjst4@qu.edu.qa
 and
 M. S. Bataineh,

 Department of Mathematics,
 University of Sharjah, Sharjah, United Arab Emirates.
 E-mail address: bataineh71@hotmail.com
 and
 A. A. Al-Rhayyel,

 Department of Mathematics
 Yarmouk University, Irbid, Jordan.
 E-mail address: al-rhayyel@yu.edu.jo
 and
 Zead Mustafa,
 Department of Mathematics, Statistics and Physics, Qatar University, Doha-Qatar. Department of Mathematics, The Hashemite University, Zarqa- Jordan.
 E-mail address: zead@qu.edu.qa, zmagablh@hu.edu.jo

