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Darboux Curves in Lorentzian Three Dimensional Heisenberg Group

Gülden Altay Suroğlu and Talat Körpinar

abstract: In this paper, a new characterization for darboux curves in Heis3

is completely given. Then, a new classification for translation surface, which is
generated by darboux curve in Heis3 is obtained.
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1. Introduction

Darboux curves firstly were studied by Saban [17] in the Euclidean space,
thereafter generalised by Ergin [2]. For a curve α on a surface in the E

3 the
function

D =< α′′′,u >= κ′
u
− κgτ g

is called Darboux function of α. Here u is normal vector field of surface, κu, κg

and τ g are normal curvature, geodesic curvature and geodesic torsion. If Darboux
function is equal to zero, then these curves called Darboux curves. In Minkowski
3-space timelike Darboux curves on a timelike surface were studied by Ergin [3].

Translation surfaces in E
3, firstly studied by H. F. Scherk. He showed that,

besides the planes, the only minimal translation surfaces are the surfaces given by

z =
1

a
log

∣

∣

∣

∣

cos (ax)

cos (ay)

∣

∣

∣

∣

=
1

a
log |cos (ax)| −

1

a
log |cos (ay)| ,

where a is a non-zero constant, [6]. Then, when the second fundamental form
was considered as a metric on a non-developable surface, translation surfaces in
the Euclidean space were obtained by, [15]. The translation surfaces which are
generated by two space curves in E

3 have been investigated by Çetin. Also they
showed that Scherk surface is not only minimal translation surface, [1] D. W. Yoon
has studied translation surfaces in the 3-dimensional Minkowski space whose Gauss
map G satisfies the condition ∆G = ∆A, where ∆ denotes the Laplacian of the

2010 Mathematics Subject Classification: 53C22, 53C30, 53C50, 22E99.
Submitted September 15, 2017. Published March 11, 2018

175
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.39506
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surface, [19]. Translation surfaces in terms of a pair of two planar curves lying in
orthogonal planes defined by [6] in the Nil3 with left invariant Riemannian metric.
They classified minimal translation surfaces in Nil3. Translation surfaces in Sol3

constructed by [13] and they investigated properties of minimal one. Also some
curves and surfaces studied in [7-12].

The purpose of this paper is to study and classify modifieded translation sur-
faces in Heis3 and investigate conditions of being minimal surface. Also, obtain
characterizations of points on this surface.

2. The Heisenberg Group

The Heisenberg group Heis3 is a Lie group which is diffeomorphic to R
3 and

the group operation is defined as

(x, y, z) ∗ (x1, y1, z1) =

(

x+ x1, y + y1, z + z1 +
1

2
(xy1 − x1y)

)

. (2.1)

The left-invariant Lorentzian metric on Heis3 is

g = ds2 = −dx2 + dy2 + (xdy + dz)
2
. (2.2)

The orthonormal basis for the corresponding Lie algebra:

e1 =
∂

∂z
, e2 =

∂

∂y
− x

∂

∂z
, e3 =

∂

∂x
. (2.3)

Then, we have
[e2, e3] = 2e1, [e1, e2] = [e1, e3] = 0 (2.4)

with
g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1. (2.5)

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection
of the left -invariant metric g is

∇ei
ej =





0 e3 e2
e3 0 e1
e2 −e1 0



 , (2.6)

where the (i, j)−element in the table above equals for ∇ei
ej for our basis

{ek, k = 1, 2, 3} = {e1, e2, e3}.

Let γ : I −→ Heis3 be a unit speed spacelike curve with timelike binormal and
{T,N,B} are Frenet vector fields, then Frenet formulas are as follows

∇TT = κN,

∇TN = − κT+τB (2.7)

∇TB = τN,
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where κ, τ are curvature function and torsion function. With respect to the or-
thonormal basis {e1, e2, e3}, we can write

T = t1e1 + t2e2 + t3e3,

N = n1e1 + n2e2 + n3e3, (2.9)

B = b1e1 + b2e2 + b3e3.

3. Darboux Curves in 3-D Lorentzian Heisenberg Group

Let unit tangent vector field of the curve be

T = t1e1 + t2e2 + t3e3

and the unit normal vector field of the surface be

u =u1e1 + u2e2 + u3e3.

Theorem 3.1. Let α : I −→ M be a unit speed curve in (Heis3, g) . If α is a

darboux curve on surface M, then

δ′u1t1 + λ′u2t1 + γ′u3t1 +
1

2
(u1 (t2γ + t3λ)− u2(t1γ + t3δ) + u3(t1λ− t2δ)) = 0.

Proof. If we notice

δ = t′1,

λ = t′2 + 2t1t3, (3.1)

γ = t′3 + 2t1t2,

then we have

∇T (∇TT) = (t′′1 + t2 (t
′
3 + 2t1t2)− t3(t

′
2 + 2t1t3))e1

+(t′′2 + 2(t1t3)
′ + t1 (t

′
3 + 2t1t2)− t3t

′
1)e2 (3.2)

+(t′′3 + 2(t1t2)
′ − t1 (t

′
2 + 2t1t3) + t2t

′
1)e3.

So, the darboux function is

D = g (∇T (∇TT) ,u)

= (t′′1 + t2 (t
′
3 + 2t1t2)− t3(t

′
2 + 2t1t3)u1 (3.3)

+(t′′2 + 2(t1t3)
′ + t1 (t

′
3 + 2t1t2)− t3t

′
1)u2

−(t′′3 + 2(t1t2)
′ − t1 (t

′
2 + 2t1t3) + t2t

′
1)u3.
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If α is a darboux curve on surface M,from the equation (3.3) we have

(t′′1 + t2 (t
′
3 + 2t1t2)− t3(t

′
2 + 2t1t3)u1

+(t′′2 + 2(t1t3)
′ + t1 (t

′
3 + 2t1t2)− t3t

′
1)u2 (3.4)

−(t′′3 + 2(t1t2)
′ − t1 (t

′
2 + 2t1t3) + t2t

′
1)u3 = 0.

Corollary 3.2. Let α be an unit speed spacelike curve and M be a spacelike

ruled surface in (Heis3, g) which is parametrized as

M (x, y) = α (x) + yT (x) . (3.5)

If α is a darboux curve, then

(t′′1 + t2 (t
′
3 + 2t1t2)− t3(t

′
2 + 2t1t3)(t2 (t

′
3 + 2t1t2)− t3(t

′
2 + 2t1t3))

+(t′′2 + 2(t1t3)
′ + t1 (t

′
3 + 2t1t2)− t3t

′
1)(t3t

′
1 − t1 (t

′
3 + 2t1t2)) (3.6)

−(t′′3 + 2(t1t2)
′ − t1 (t

′
2 + 2t1t3) + t2t

′
1)(t2t

′
1 − t1 (t

′
2 + 2t1t3)) = 0.

Proof. From equation (3.5), we have

Mx (x, y) = T (x) + y∇TT (3.7)

My (x, y) = T (x) . (3.8)

From equations (3.6)-(3.7), then the unit normal vector field of the surface M is

u =
1

ω
{(t2 (t

′
3 + 2t1t2)− t3(t

′
2 + 2t1t3))e1

+(t3t
′
1 − t1 (t

′
3 + 2t1t2))e2 (3.9)

+(t2t
′
1 − t1 (t

′
2 + 2t1t3))e3}.

where

ω = (t2 (t
′
3 + 2t1t2)− t3(t

′
2 + 2t1t3)

2 + (t3t
′
1 − t1 (t

′
3 + 2t1t2))

2

−(t2t
′
1 − t1 (t

′
2 + 2t1t3))

2.

If α is a darboux curve, from equations (3.2), (3.3) and (3.9), we have (3.6).

Example 3.3. In (Heis3, g)

α (x) = (c1,
x2

2
+ c2, x

2 −
c1x

2

2
+ c3) (3.10)

is a unit speed curve where ci (i = 1, 2, 3) are constant.The unit spacelike tangent
vector field of the α is

T (x) = (0, x, 2x) (3.11)



Darboux Curves in Lorentzian Three Dimensional Heisenberg Group 179

From equations (3.10), (3.11), the ruled surface which is parametrized (3.5) is

M (x, y) = (c1,
x2

2
+ xy + c2, x

2 −
c1x

2

2
+ 2xy + c3).

The unit normal vector field of the M (x, y) is

u =
1

̟
(0,−2x(c1x+ 2x)2, 2x2(c1x+ 2x)(1− c1x− 2x)).

References
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16. M. Özdemir, A.A. Ergin, Spacelike Darboux curves in Minkowski n-space, Differential Ge-
ometry - Dynamical Systems, 9 (2007), 131-137.

17. G. Saban, , Sopra una carattarizza zino della sfera, Rendiconti Atti Della Accademia
Nazionale Dei Lincei. CCCL VII A., (1960), 345-349.
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Fırat University,

Faculty of Science,

23119, Elazığ, Turkey.
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