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ABSTRACT: In this paper, we introduce and investigate a subclass Bgﬁ (1,A) of

analytic and bi-univalent functions which both f(z) and f~1(z) are m-fold sym-
metric in the open unit disk U. Furthermore, we find upper bounds for the initial
coefficients |am+1| and |a2m+1] for functions in this subclass. The results presented
in this paper would generalize and improve some recent works.
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1. Introduction

Let A be a class of functions of the form
fR) =2+ anz", (1.1)
n=2

which are analytic in the open unit disk U = {z € C: |z| < 1}. Also 8 denote the
class of functions f € A which are univalent in U.

The Koebe one-quarter Theorem [4] ensures that the image of U under every
univalent function f € 8 contains a disk of radius %. So every function f € 8 has
an inverse f~!, which is defined by

[Hf(2) =z (z € D),
and

77w =w (lol <rmlino(h) = 7).
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where
fHw) = w — asw® + (263 — az)w® — (5a3 — Sasaz + ag)w* 4 - - -, (1.2)

A function f € A is said to be bi-univalent in U if both f and f~! are univalent
in U. Let ¥ denote the class of bi-univalent functions in U given by (1.1).

Lewin [8] investigated the class ¥ of bi-univalent functions and showed that
laz| < 1.51 for the functions belonging to ¥. Subsequently, Brannan and Clunie [1]
conjectured that |as| < v/2. Kedzierawski [6] proved this conjecture for a special
case when the function f and f~! are starlike functions. Recently there interest
to study the bi-univalent functions class ¥ and obtain non-sharp estimates on the
first two Taylor-Maclaurin coefficients |az| and |as| ([2,3,10,11,12,16,17]). The co-
efficient estimate problem i.e. bound of |a,| (n € N —{2,3}) for each f € ¥ is still
an open problem.

For each function f € 8, the function

h(z)= %/ f(z™) (2 € U,m € N),

is univalent and maps the unit disk U into a region with m-fold symmetry. A
function is said to be m-fold symmetric (see [7,9] ) if it has the following normalized
form:

flz) =2+ Zamk+1zmk+1 (z € U,m € N). (1.3)
k=1

We denote by §,, the class of m-fold symmetric univalent functions in U, which
are normalized by the series expansion (1.3). In fact, the functions in the class 8
are one-fold symmetric.

Analogous to the concept of m-fold symmetric univalent functions, we here
introduced the concept of m-fold symmetric bi-univalent functions. Each function
f € X generates an m-fold symmetric bi-univalent function for each integer m € N.
The normalized form of f is given as in (1.3) and the series expansion for f—!
which was recently proven by Srivastava et al. [13], is given as follows:

g(w) = w = amprw™ " + [(m+1)al, = agmyrJw”™

(1.4)

1
- i(m +1)(Bm +2)ad, ;1 — (3m+ 2)amt1a2m+1 + g | WL

where ¢ = f~'. We denote by %,, the class of m-fold symmetric bi-univalent
functions in U. For m = 1, the formula (1.4) coincides with the formula (1.2) of
the class . Some examples of m-fold symmetric bi-univalent functions are given
as follows:

( =" )% and [~ log(1 — 2™

1—2zm
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with the corresponding inverse functions given by

1 m
m m w1
1 —wm e
respectively.

Recently, Srivastava et al. [14] investigated the following two subclasses
By, (7,A, @) and By, (7, A, B) of ¥, consisting of m-fold symmetric bi-univalent
functions in the open unit disk U and obtain coefficient bounds for |a,,+1| and
|a2m+1]| for functions in each of these new subclasses.

Definition 1.1. (see [1/]) Let 0 < a <1, 7 € C\ {0} and A > 1. A function f(z)
given by (1.3) is said to be in the class By, (1, «) if the following conditions are
satisfied:

3k

feX, and

arg <1+% [(1»“2) +/\f’(z)1}>‘ < (ze),

z 2

and

1

arg (1+— [(1 —)\)M + Mg’ (w) — 1])‘ <2 (w e U),
T w 2

where the function g is given by (1.4).

Theorem 1.2. (see [14]) Let the function f(z) given by (1.3) be in the class
By, (T, A\, ). Then

2alT]

Vira(m +1)2xm + 1) + (1 — a)(Am + 1)2|’

|am+1| S

and
202|72(m + 1) 207

(Am+1)2 2xm+1°
Definition 1.3. (see [1/]) Let 0 < g <1, 7€ C\ {0} and A > 1. A function f(z)

given by (1.3) is said to be in the class B, (7, A, B) if the following conditions are
satisfied:

laom+1| <

f(2)

Fesm andiﬁe(l—i—% [(1_A)7+Af'(z)—1D > 8 (z ),

and )
Re <1+; [(1/\)@ + A (w) — 1]) > B (weU),
where the function g is given by (1.4).
Theorem 1.4. (see [14]) Let the function f(z) given by (1.3) be in the class

BS,, (1,A,B). Then
4l7)(1 - B)
] < \/(m+ D@+ 1)’
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and
2I7]*(1 - B)*(m+1)  2|7[(1-5)
(Am+1)2 2dm +1 7

laom+1| <

The objective of the present paper is to introduce a formula for computing the
coefficients |a,,+1| and |ag,,41] for functions in each of these new subclasses which
improve the coefficient bounds obtained in Theorem 1.2 and Theorem 1.4. Our

results generalize and improve some recent works as Srivastava [11,13,14], Eker
[15] and Frasin and Aouf [5].

2. The subclass Bg’f: (1, )
In this section, we introduce and investigate the general subclass B;’Z (1, A).
Definition 2.1. Let the functions h,p : U — C be analytic functions and
h(2) =14 hmz™ + homz®™ 4+ hapmz®™ 4 - - -,
p(w) = 1+ prw™ + pomw®™ + panw®™ + -+ -,

such that
min{MRe(h(z)), Re(p(2))} > 0 (z € U).

Let 7 € C\ {0} and A > 1. A function f given by (1.3) is said to be in the class
Bg’i (1, ) if the following conditions are satisfied:

f € Sy and 14 {(1 - A)@ FAf(2) — 1] EnU) (zel),  (2.1)
and
1+ % [(1 - A)@ + Mg (w) — 1] € p(U) (w € U), (2.2)

where the function g is defined by (1.4).

Remark 2.2. There are many choices of h and p which would provide interesting
subclasses of class Bg’f: (t,\). For example,

1. For h(z) =p(z) = (}"_‘i:) =1+ 2a2™ +2a22?™ + .-+ where 0 < a < 1,
it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of

Definition 2.1. Now if f € Bg’i (1,\), then

arg (1+% {(14)@“}“@)—1})‘ <Z (zew)
B P RV B

Therefore in this case, the class Bg’g (1,A) reduce to class By, (T, A, «) in
Definition 1.1.
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2. For h(z) =p(z) = W 14+2(1—B)z™+2(1 — B)2*™ + -+, where
0 < B < 1, the functions h(z) and p(z) satisfy the hypotheses of Definition
2.1. Now if f € Bg’g (1, ), then

Re (1+% {(1_»@“}“(2«)—1]) > 8 (z ),

and .
Re (1+ - {(1—)&@ + Mg’ (w) —1}) > B (w e D).
Therefore in this case, the class B P(r,A) reduce to class By, (1, ) in

Definition 1.5.

3. Coefficient Estimates
Now, we obtain the estimates on the coefficients |a,, 11| and |agy, 1| for subclass

B (1, M.

Theorem 3.1. Let the function f(z) given by (1.3) be in the class BY P(1,A).
Then

ITI*( (0)]2+ [p™ (0)[)
<
|am1] < \/ )2(Am + 1)2 ’

[71(1h2™ (0)] + [p*™(0)])
\/ 2m)2 m +1)(m+1) [’ (3-1)

and
| [7[([R®™(0)] + [p™(0)])
[a2mia] < mm{ 202m)1 (2 m + 1)
n 7|2 (m + D) (|A"(0)[* + [p"(0)[?)
A(m)2(m + 1)2 ’

|7[|h*™)(0)]
2m)l(2xm + 1) } ' (82)

Proof: First of all, we write the argument inequalities in (2.1) and (2.2) in their
equivalent forms as follows:

1+% [(1—A)@+Af’(z)—1} =h(z) A > 1,z €U), (3.3)

and
1+% [(1—)\)¥+)\g’(w)—1} =p(w) (A > 1,w e ), (3.4)
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respectively, where functions i and p satisfy the conditions of Definition 2.1. Also,
the functions h and p have the following Taylor-Maclaurin series expansions:

h(z) =1+ hy,2"+ homz®™ + hgmz2" + -+ - |

and
p(w) =1+ prw™ + pomw®™ + papw®™ + - -

(3.5)

(3.6)

Now, upon substituting from (3.5) and (3.6) into (3.3) and (3.4), respectively, and

equating the coefficients, we get

A 1
( mt ) Am+4+1 = hma
-
2 m + 1
(7) a2m+1 = ham,
=
()\m + 1)
- Am+1 = Pm;
-
and
2Am + 1
<77_ > [(m+1)a2, .1 — azm+1] = Pam.
From (3.7) and (3.9), we get
hm = —DPm,
and )
Am +1
2( . ) @2y = W2, 4 R

Adding (3.8) and (3.10), we get
22m +1
( - ) (m+ 1>a’72n+1 :p2m+h2m-

Therefore, from (3.12) and (3.13), we have

2= 7 (ha, + Pa,)
ML 9(Am 4+ 1)2
and

2= T(pam + hom)
ML 2Am 4 1) (m + 1)

respectively. Therefore, we find from the equations (3.14) and (3.15), that

T2 (|0 (0)] + [ (0)]?)
om)2(m + 12

|0J7n+1|2 S

(3.7)

(3.8)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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and
[T|(|h®™(0)] + [pP™(0)])
2m)!2Am + 1)(m + 1) ’

|am+1 |2 S

respectively. So we get the desired estimate on the coefficient |a,,+1] as asserted in
(3.1).

Next, in order to find the bound on the coefficient |azpm 41/, by subtracting (3.10)
from (3.8), we get

2Am + 1 22m + 1
2 (7) Qo1 — (7) (m+1)a2, .1 = hom — Pam. (3.16)

T T

Upon substituting the value of a2, from (3.14) into (3.16), it follows that

v TAm A+ V(i +ph) | T(hom = Pam)
amrt 4(Am +1)2 22Am +1)

Therefore, we get

s | |72 (m + (R (0) + [p™ (0)[%)
st = 4(m!)2(Am 4 1)?
1A (0)] + [P (0)])
2(2m)!(2Am + 1)

A

(3.17)
On the other hand, upon substituting the value of a2, ., from (3.15) into (3.16),
it follows that

T(m + 1)(p2m + h2m) T(th - p2m) _ Th2m
22 xm+1)(m+1) 22xm +1) 2dm +1’

A2m+1 =

Therefore, we get

s < TIHETO)
ST

om)(2Am + 1) (3.18)

So we obtain from (3.17) and (3.18) the desired estimate on the coefficient |agm, 11|
as asserted in (3.2). This completes the proof. O

4. Conclusions

If we take

1+2m
1—2zm

h(z)p(z)( > :1+2azm+2a2;;2m+...,

in Theorem 3.1, we conclude the following result which is an improvement of The-
orem 1.2.
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Corollary 4.1. Let the function f(z) given by (1.3) be in the class By, (7, ).

Then
|@m+1] < min 2alr] 2a il
= Am 41 @ m+1)(m+1) [

| 1< 202|7]
o] < ———.
2= 9 m 4+ 1
Remark 4.2. [t is easy to see, for the coefficient |azm+1], that
2027 - 202 |7)2(m + 1) 2aT]
22m+1 7~  (Am+1)? 2 m + 1

Thus, clearly, Corollary 4.1 is an improvement of Theorem 1.2.

and

If we set 7 = 1 in Corollary 4.1, then the class By, (7, A, @) reduces to the class
‘A%,j which introduced and studied by Sumer Eker [15].

Corollary 4.3. Let the function f(z) given by (1.3) be in the class A%:l Then

2a m+1
press g Az 14,/ o
|am+1| S 20 1<\< 14 m+1 (41)
Vxm ) (m+ 1) T m

and

202

< —
lazm 1l < 351
Remark 4.4. It is easy to see that
2c0 2c

< ,
Am + 1 \/()\m+1)2+o¢m(1+2)\m—m)\2)

if
1
)\ Z 1 + &
m
and
2a 2«
<
V(2Am +1)(m +1) \/()\m+1)2+am(1+2)\m—m)\2)
if
1
1<A <14/
m
On the other hand, for the coefficient |agm+1],
202 - 202 (m + 1) 20

2xm+1 7~ (14+xm)2  2xm+1°

Thus, clearly Corollary 4.3 provides an improvement of a result which obtained by
Sumer Eker [15, Theorem 1].



INITIAL COEFFICIENT BOUNDS FOR A SUBCLASS OF ... 161

If we set 7 = A =1 in Corollary 4.1, then the class By, (7, A, «) reduces to the
class H§, ~ which introduced and studied by Srivastava et al. [13].

Corollary 4.5. Let the function f(z) given by (1.3) be in the class Hg, . Then

200
MW““§¢@m+1mn+n

and
202

2m+1°

Remark 4.6. Corollary 4.5 provides a refinement of a result which obtained by
Srivastava et al. [13, Theorem 2].

laom+1| <

Remark 4.7. If we set m =1 in Corollary 4.5, then the class Hs, = reduces to the
class Ho, which introduced and studied by Srivastava et al. [11].

Corollary 4.8. Let the function f(z) given by (1.1) be in the class HS,. Then

2
Mﬂgvgm (4.2)

2 2
las| < % (4.3)

and

Remark 4.9. Corollary 4.8 provides an improvement of a result which obtained
by Srivastava [11, Theorem 1].

For one-fold symmetric bi-univalent functions and for 7 = 1, the class
By, (7, A, @) reduces to the class Byx;(a, A) and we obtain the following result which
is an improvement of a result which were proven by Frasin and Aouf [5, Theorem
2.2).

Corollary 4.10. Let the function f(z) given by (1.1) be in the class Bx(a, N).

Then
[ 2
S~ 1<)A<1 2
jap] < { YV BATD TSAS V2 (4.4)
<, A>1+42
and )
las| < 20 .
“22+1

Remark 4.11. Corollary 4.10 provides a refinement of a result which were obtained
by Frasin and Aouf [5, Theorem 2.2].

By setting
_ 1+ -2p)"

1—2zm

h(z) = p(z) =1+2(1—B)2™ +2(1—B)2™ 4,

in Theorem 3.1, we deduce the following result.
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Corollary 4.12. Let the function f(z) given by (1.3) be in the class By, (7, A, ).
Then

)20 =B 4(1 = p)|7|
|“’”+1|§mm{ xmtl (2)\m+1)(m+1)}’

and
2(1 - B)I7|
22xm +1 -

Remark 4.13. It is easy to see, for the coefficient |agm+1|, that

20 =p)lr| _ 2ArPA =p(m+1) 2|1 =~ B)
2xm+1 — (Am+1)2 2xm+1 7

laom+1| <

Thus, clearly, Corollary 4.12 is an improvement of Theorem 1.4.

If we set 7 = 1 in Corollary 4.12, then the class B§, (7, A, B) reduces to the
class A*(3) which introduced and studied by Sumer Eker [15].

Corollary 4.14. Let the function f(z) given by (1.3) be in the class A*(B). Then

a |<mm{2(lﬂ)\/ 41— ) }
= Am 417\ 2dxm+1)(m+1) [’

2(1—p)
<=2
|azm 1] < 2 m + 1

and

Remark 4.15. It is easy to see that

20-p) _20=ppm+1)  2(1-5)
22m+1 ~ (14 Am)? 22m + 1

Thus, Corollary 4.14 provides an improvement of a result which obtained by Sumer
Eker [15, Theorem 2J.

If we take A = 1 in Corollary 4.14, then the class A3 (5) reduces to the class
j—(gm which introduced and studied by Srivastava et al. [13].

Corollary 4.16. Let the function f(z) given by (1.3) be in the class HP. Then

m = m+1 "\ @m+1)(m+1)

2(1-p)
2m+1

and

laom+1| <

Remark 4.17. Corollary 4.16 provides a refinement of a result which obtained by
Srivastava [13, Theorem 3].
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If we take m = 1 in Corollary 4.16, then the class j—(gm reduces to the class J—(g
introduced and studied by Srivastava et al. [11].

Corollary 4.18. Let the function f(z) given by (1.1) be in the class Hg. Then

2(1-8) 1
|as| < 7 0sfsy (4.5)
and 21 B)
las| < —5

Remark 4.19. Corollary 4.18 provides a refinement of a result which obtained by
Srivastava [11, Theorem 2].

For one-fold symmetric bi-univalent functions and for = = 1, the class
B3, (7, A, B) reduces to the class Bx (3, ) and we obtain the following result which
is an improvement of a result which were proven by Frasin and Aouf [5, Theorem

3.2].

Corollary 4.20. Let the function f(z) given by (1.1) be in the class Bx(5,)\).
Then

2(1—p) [2(1=5)

o
jaz] < min § ===\ 5
an 2(1 - )
<P
lasl < 537

Remark 4.21. Corollary 4.20 provides an improvement of a result which were
obtained by Frasin and Aouf [5, Theorem 3.2].
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