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An Efficient Numerical Method Based on Variational Iteration Method

for Solving the Kuramoto-Sivashinsky Equations

Alireza Hosseini

abstract: In this paper we consider variational iteration method to investi-
gate solution of Kuramoto-Sivashinsky equations. Comparison of the results of this
method obtained just in 2-iterations with RBF based mesh -free method and lo-
cal continuous Galerkin methods, shows the efficiency of this method. Moreover,
numerical solution of this equation by spectral collocation method is investigated.
Numerical experiments are included to show the efficiency of these methods.
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1. Introduction

The Kuramoto-Sivashinsky equation is one of the most important nonlinear
evolution equations that has many applications in physical process such as un-
stable drift waves in plasma, reaction diffusion systems, thin hydrodynamics films
[18], long waves on the interface between two viscous fluids [10]. It is a partial
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differential equation which exhibits chaotic behavior and has a solution like trav-
eling waves which moves without change of shape over a finite spatial domain (see
[11] and [15]). Several authors have investigated numerical solutions of Kuramoto-
Sivashinsky (see [13] and [14]). Traveling wave solutions of this equation have been
studied by Hooper, Grimshaw and Yang [9]. Moreover, Akrivis and Smyrlis stud-
ied implicit-explicit BDF methods for Kuramoto-Sivashinsky equation [1]; Uddin,
Haq and Siraj-ul-Islam used RBF based mesh-free method for numerical solution of
Kuramoto-Sivashinsky equation [19]; Lai and Ma used Lattice Boltzmann method
[12]; Xu, Shu present Local discontinuous Galerkin method for solving this equation
[20]. In this work we discuss variational iteration method for solving Kuramoto-
Sivashinsky equation. The variational iteration method was first proposed by He
( [5]- [8]). The main advantage of this method is that it can be applied directly
for all types of equations such as autonomous ordinary differential equations [8],
non-linear wave equations [3], circuit theory [4], non-linear polycrystalline solids
[2]. Moreover Rafei applied this method to approximate the solutions of the epi-
demic and the predator and prey models [17]. Momani, Abuasad and Odibat used
variational iteration method for solving nonlinear boundary value problems [16].
The paper has been organized as follows. In section 2, Kuramoto-Sivashinsky equa-
tions are introduced. In section 3, we explain general variational iteration method.
In section 4, Kuramoto-Sivashinsky equations are analyzed by using variational
iteration method. Section 5 is related to the numerical solution of Kuramoto-
Sivashinsky equations by spectral collocation method. Finally in the last section
numerical examples are presented and comparison with some other methods are
explained.

2. Kuramoto-Sivashinsky equations

There are two standard forms for the kuramoto-Sivashinsky equation. The first
form is

vt +
1

2
(vx)

2 = −vxx − vxxxx. (2.1)

Initial condition for this equation is L-periodic initial condition with L > 0. An-
other kind of Kuramoto-Sivashinsky equation is as follows:

ut + uux − uxx + uxxxx = 0 (2.2)

The initial condition for this equation is:

∫ L

0

u(x, 0)dx = 0.

In some sense, the Kuramoto-Sivashinsky equation is similar to Burgers equation,
however, because of presence of second and fourth order derivatives, this equation
has more complicated behavior. The sign of second derivative term is such that
it operate as an energy source. The nonlinear part of the equation uux transfers
energy between low to high level wave numbers.
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3. Variational iteration method

Basic concept of variational iteration method is as follows. We consider the
following general differential equation

Lu+Nu = g(x), (3.1)

where L is a linear operator, N is a nonlinear operator and g(x) is a known analytic
function. According to variational iteration method ( [5]- [8]), we can construct a
correct functional as follows:

un+1(x) = un(x) +

∫ x

o

λ[Lun(τ ) +Nûn(τ )− g(τ)]dτ , (3.2)

where λ is a general Lagrangian multiplier ( [5]- [8]), which can be identified opti-
mally via the variational theory and integration by parts. The subscript n denotes
the nth-order approximation, ûn is considered as a restricted variation ( [5]- [8]) so
that its variation is zero, δun = 0, i.e., δûn = 0. It is required first to determine
the Lagrangian multiplier optimally. Employing the restricted variation in equa-
tion (2.2) makes it easy to compute this multiplier. By using an initial function
u0, the approximations un+1, n ≥ 0 of the solution u(x, t) can be obtained via the
calculated Lagrange multiplier and the exact solution can be obtained by

u(x, t) = lim
n→∞

un.

4. Application of variational iteration method for

Kuramoto-Sivashinsky equation

Problem 1. Consider the following Kuramoto-Sivashinsky equation

ut + uux − uxx + uxxxx = 0, (4.1)

with initial condition

u(x, 0) = c+
15

19
√
19

[tanh3(k(x− x0))− 3 tanh(k(x − x0))]. (4.2)

The exact solution of the above problem is given by

u(x, t) = c+
15

19
√
19

[tanh3(k(x − ct− x0))− 3 tanh(k(x − ct− x0))]. (4.3)

To solve this equation by variational iteration method, we construct a correction
functional in x-direction as follows:

un+1(x, t) = un(x, t) +

∫ t

0

λ[
∂un

∂τ
+

̂
un

∂un

∂x
− ∂̂2un

∂x2
+

∂̂4un

∂x4
]dτ , (4.4)

δun+1(x, t) = δun(x, t) + δ

∫ t

0

λ[
∂un

∂τ
+

̂
un

∂un

∂x
− ∂̂2un

∂x2
+

∂̂4un

∂x4
]dτ . (4.5)
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Note that δûn = 0. Calculus of variations and integration by parts give

δun+1(x, t) = δun(x, t) + λ(τ )δun(x, τ )|τ=t −
∫ t

0

δun(x, τ )λ
′(τ )dτ = 0. (4.6)

This yields the stationary conditions:

δun : λ′(τ )|τ=t = 0, (4.7)

δun : 1 + λ(τ )|τ=t = 0, (4.8)

which give λ(τ ) = −1.
Thus, by inserting the Lagrange multiplier into (3.4) we obtain the following iter-
ation formula in x-direction:

un+1(x, t) = un(x, t)−
∫ t

0

[
∂un

∂τ
+ un

∂un

∂x
− ∂2un

∂x2
+

∂4un

∂x4
]dτ , (4.9)

with

u0(x, t) = c+
15

19
√
19

[tanh3(k(x− x0))− 3 tanh(k(x− x0))]. (4.10)

From above equalities we can obtain the rest of the components of the iteration
formula.
Problem 2. Consider the following Kuramoto-Sivashinsky equation

ut + uux + uxx + uxxxx = 0, (4.11)

with initial condition

u(x, 0) = c+
15

19

√
11

19
[11 tanh3(k(x− x0))− 9 tanh(k(x− x0))]. (4.12)

The exact solution of the above problem is given by

u(x, t) = c+
15

19

√
11

19
[11 tanh3(k(x− ct− x0))− 9 tanh(k(x− ct− x0))]. (4.13)

To solve this equation by variational iteration method, in the same manner as
above we have the following iteration formula:

un+1(x, t) = un(x, t)−
∫ t

0

[
∂un

∂τ
+ un

∂un

∂x
+

∂2un

∂x2
+

∂4un

∂x4
]dτ, (4.14)

with

u0(x, t) = c+
15

19

√
11

19
[11 tanh3(k(x− x0))− 9 tanh(k(x − x0))]. (4.15)
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5. The spectral collocation approximation for Kuramoto-Sivashinsky

equation

One of the most important methods for numerical solution of partial differential
equations, are spectral methods. They are a class of spatial discretization for dif-
ferential equations. There are three kinds of these methods, Galerkin, collocation
and tau. In this section we are interested in the application of spectral collocation
method for numerical solution of Kuramoto-Sivashinsky equation. For this aim let

ek(x) =
√

2
π
sin(kx), k = 1, 2, ..., for x ∈ [0, π], then by using N − 1 basis functions

ek(x), k = 1, · · · , N − 1 and the following interpolation points in the interval [0, π]
:

xj =
πj

N
(j = 1, ..., N − 1).

we approximate a function f(x) by

FN (x) =

N−1∑

j=1

f(xj)Cj(x). (5.1)

where

Cj(x) =
2

N

N−1∑

m=1

sin(mxj) sin(mx),

which satisfy Cj(xi) = δij , i, j = 1, ..., N − 1. For approximating the derivatives of
f(x) at the collocation points xj , j = 1, ..., N−1, by differentiating (5.1) we obtain

dkFN (x)

dxk
=

N−1∑

j=1

f(xj)
dk

dxk
Cj(x),

so that

dkFN (xi)

dxk
=

N−1∑

j=1

f(xj)(Dk)i,j , i = 1, ..., N − 1,

(Dk)i,j =
dk

dxk
Cj(xi), i, j = 1, ..., N − 1,

where

(D1)ij =

{
−0.5 cot(xj), i = j ,
(−1)i+j+1 sin(xj)
cos(xi)−cos(xj)

, otherwise .

and D2 = D′D1, where

(D′)ij =

{
0.5 cot(xj), i = j
(−1)j+1 sin(xi) cos(Nxi)

[cos(xi)−cos(xj)]
, otherwise.

Now we describe the numerical solution of the Kuramoto-Sivashinsky equation by
using the spectral collocation method for spatial discretization and the implicit
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Euler scheme for time discretization.
Assume T > 0, N ∈ N and M is an integer. Let ∆t = T

M
be a time step, the

numerical method is expressed as

uN
n+1 = uN

n −∆t(D2u
N
n+1 + uN

n ×D1u
N
n +D4u

N
n ), · · · , n = 0, · · · , N (5.2)

where

uN
j = [uN

j (∆x), ..., uN
j ((N − 1)∆x)]T ,

and uN
j (i∆x) means the approximate value of the solution function u at (i∆x, j∆t)

for j = 0, 1, ..., i = 1, ..., N − 1, where u× v is the component-wise product of two
vectors u and v and uN

0 is the initial vector .

6. Numerical solution

We now obtain numerical solution of problems 1,2 by the variational iteration
method. In order to verify the efficiency of the proposed method in comparison
with exact solution, we report the error norm L∞ for N = 121 points x in [−30, 30]
and different values of t, which is defined by

L∞ = ‖uexact − uapp‖∞ = Max|uexact − uapp|. (6.1)

Error norm L∞ of two iterations of variational iteration method (VIM) and mesh-
free collocation method based on RBFs such as multiquadric (MQ), thin plate
spline (TPS), Gaussian (GA), and spline basis (r7) [19], are shown in tables 1,3,
and those of error of LDG method [20] are shown in tables 2,4 .

6.1. Numerical solution of problem 1

Table 1: The error norm L∞ for mesh-free method [19] and variational iteration
method for equation (4.1)

Time 0.1 0.3 0.5 0.7 1.0
MQ 2.24e− 005 3.60− e005 4.52e− 005 5.16e− 005 5.84e− 005
r7 6.23e− 006 6.23e− 006 8.45e− 006 1.86e− 005 1.24e− 005

TPS 2.35e− 003 4.94e− 003 7.36e− 003 9.79e− 003 1.36e− 002
GA 7.06e− 003 1.12e− 002 1.45e− 002 1.68e− 002 1.94e− 002
V IM 7.20e− 009 1.90e− 007 9.10e− 007 2.5e− 006 7.3e− 006

c = 0.2, k = 1
2
√
19
, x0 = −10, in[−30, 30].
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Table 2: The error norm L∞ for LDG method [20] for equation (4.1)

N 40 80 160 320
P 0 7.56e− 002 3.87− e002 1.95e− 002 9.8e− 003
P 1 1.04e− 002 2.59e− 003 6.54e− 004 1.64e− 004
P 2 7.93e− 004 1.06e− 004 1.34e− 005 1.67e− 006

c = 0.2, k = 1
2
√
19
, x0 = −10, in[−30, 30], t= 1.

6.2. Numerical solution of problem 2

Table 3: The error norm L∞ for mesh-free method [19] and variational iteration
method for equation (4.11)

Time 0.1 0.3 0.5 0.7 1.0
MQ 1.02e− 004 1.85− e004 2.89e− 004 3.85e− 004 5.22e− 004
r7 3.17e− 004 3.99e− 004 4.21e− 004 9.90e− 004 1.31e− 002

TPS 1.32e− 002 1.98e− 002 2.21e− 002 2.26e− 002 2.39e− 002
GA 4.00e− 002 8.14e− 002 1.09e− 001 1.37e− 001 1.75e− 001
V IM 7.53e− 006 2.03e− 004 1.02e− 004 2.0e− 004 7.5e− 003

c = 0.1, k = 1
2

√
(1119 ), x0 = −10, in[−30, 30].

Table 4: The error norm L∞ for LDG method [20] for equation (4.11)

N 40 80 160 320
P 0 1.37 8.81e− 001 5.21e− 001 2.91e− 001
P 1 6.64e− 001 1.82e− 001 4.64e− 002 1.19e− 002
P 2 1.49e− 001 1.73e− 002 2.43e− 003 3.05e− 004

c = 0.1, k = 1
2

√
(1119 ), x0 = −10, in[−30, 30], t= 1.

Moreover, numerical solution of the Problem 1 and problem 2, for x ∈ [−30, 30], t ∈
[0, 1] by spectral collocation method are shown in Figure 1 and Figure 2 respec-
tively.
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Figure 1: Numerical solution of the Problem 1, for x ∈ [−30, 30], t ∈ [0, 1] by
spectral collocation method.

Figure 2: Numerical solution of the Problem 2, for x ∈ [−30, 30], t ∈ [0, 1] by
spectral collocation method.
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7. Conclusion

In this paper, we applied the Variational iteration method for solving Kuramoto-
Sivashinsky equations, The results indicate the accuracy of the proposed method,
and show that this method is more efficient than those methods proposed in [19],
[20].

8. Acknowledgments

The paper was in part supported by the FWF-Austrian Science Fund through
the project I 2884.

References

1. G.Akrivis, Y-Sokratis Smyrlis, Implicit-explicit BDF methods for the Kuramoto-Sivashinsky
equation, Appl. Numer. Math 51 (2004) 151- 169.

2. G.h.E. Draganescu, V.Capalnasan, Nonlinear relaxation phenomena in polycrystalline solids,
Int J Nonlinear Sci Numer Simul 4(3) (2003), 219-226.

3. J.H. He, X.H. Wu, Construction of solitary solution and compacton-like solution by varia-
tional iteration method, Chaos, Solitons and Fractals 29 (1) (2006), 108-113.

4. J.H. He, Y.Q. Wan, Q.Guo, An iteration formulation for normalized diode characteristics,
Int. J. Circuit Theory Appl 32(6) (2004), 629-632.

5. J.H. He, Variational iteration method a kind of non-linear analytical technique: Some exam-
ples, International Journal of Non-Linear Mechanics 34 (4) (1999), 699-708.

6. J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous
media, Computer Methods in Applied Mechanics and Engineering 167 (1-2) (1998), 57-68.

7. J.H. He, Approximate solution of nonlinear differential equations with convolution product
nonlinearities, Computer Methods in Applied Mechanics and Engineering 167 (1-2) (1998),
69-73.

8. J.H. He, Variational iteration method for autonomous ordinary differential systems, Applied
Mathematics and Computation 118 (23) (2000), 115-123.

9. A.P. Hooper, R. Grimshaw, Travelling wave solutions of the KuramotoSivashinsky equation,
Wave Motion 10 (1988), 405-420.

10. A.P. Hooper, R. Grimshaw, Nonlinear instability at the interface between two viscous fluids,
Phys. Fluids 28 (1985), 37-45.

11. Y. Kuramoto, T. Tsuzuki, Persistent propagation of concentration waves in dissipative media
far from thermal equilibrium, Stochastics Theor. Phys. 55 (1976) 356.

12. H. Lai, C. Ma, Lattice Boltzmann method for the generalized Kuramoto-Sivashinsky equation,
Physica A 388 (2009), 1405-1412.

13. M.A. Lopez-Marcos, Numerical analysis of pseudospectral method for the Kuramoto-
Sivashinsky equation, IMA J. Numer. Anal. 14 (1994), 223-242.

14. A.V. Manickam, K.M. Moudgalya, A.K. Pani, Second-order splitting combined with orthog-
onal cubic spline collocation method for the Kuramoto Sivashinsky equation, Comput. Math.
Appl. 35 (1998), 5-25.

15. D. Michelson, Steady solutions of the Kuramoto-Sivashinsky equation, Physica D 19 (1986),
89-111.

16. S. Momani, S. Abuasad, Z. Odibat, Variational iteration method for solving nonlinear bound-
ary value problems, Journal of Applied Mathematics and Computation 2006, 183, 1351-1358.

17. M. Rafei, H. Daniali, D.D. Ganji,Variational iteration method for solving the epidemic model
and the prey and predator problem, Journal of Applied Mathematics and Computation 2007,
186, 1701-1709.

18. G.I. Sivashinsky, Instabilities, pattern-formation and turbulance in flames, Rev, Fluid
Mech.15 (1983), 179-199.

19. M. Uddin, S. Haq, Siraj-ul-Islam, A mesh-free numerical method for solution of the family
of Kuramoto-Sivashinsky equations, Applied Mathematics and Computation 212 (2009), 458-
469.



152 A. Hosseini

20. Y. Xu, C.W Shu, Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equa-
tions and the Ito-type coupled KdV equations, Comput. Methods Appl. Mech. Eng. 195
(2006), 3430-3447.

Alireza Hosseini,

School of Mathematics, Statistics and Computer Science, College of Science,

University of Tehran,

Iran.

E-mail address: hosseini.alireza@ut.ac.ir


	Introduction
	Kuramoto-Sivashinsky equations
	Variational iteration method
	Application of variational iteration method for Kuramoto-Sivashinsky equation
	The spectral collocation approximation for Kuramoto-Sivashinsky equation
	Numerical solution
	Numerical solution of problem 1
	Numerical solution of problem 2

	Conclusion
	Acknowledgments

