

(3s.) **v. 39** 4 (2021): 131–141. ISSN-00378712 IN PRESS doi:10.5269/bspm.37818

A Pair of Generalized Derivations in Prime, Semiprime Rings and in Banach Algebras *

Basudeb Dhara, Venus Rahmani and Shervin Sahebi

ABSTRACT: Let R be a prime ring with extended centroid C, I a non-zero ideal of R and $n \ge 1$ a fixed integer. If R admits the generalized derivations H and G such that $(H(xy) + G(yx))^n = (xy \pm yx)$ for all $x, y \in I$, then one of the following holds:

1. R is commutative;

2. n = 1 and H(x) = x and $G(x) = \pm x$ for all $x \in R$.

Moreover, we examine the case where R is a semiprime ring. Finally, we apply the above result to non-commutative Banach algebras.

Key Words: Prime ring, Semiprime ring, Generalized derivation, Utumi quotient ring, Banach algebra.

Contents

1	Introduction	131
2	Results in Prime Rings	132
3	Results in Semiprime Rings	137

4 Result in non-commutative Banach Algebras 138

1. Introduction

Let R be an associative prime ring with center Z(R), Q its Martindale quotient ring and U its left Utumi quotient ring. The center of U, denoted by C, is called the extended centroid of R (we refer the reader to [3] for these objects).

We denote by [x, y] = xy - yx the simple commutator of the elements $x, y \in R$ and by $x \circ y = xy + yx$ the simple anti-commutator of x, y. A linear mapping $d: R \to R$ is called a derivation, if it satisfies the Leibnitz rule d(xy) = d(x)y + xd(y)for all $x, y \in R$. In particular, d is said to be an inner derivation induced by an element $a \in R$, if d(x) = [a, x] for all $x \in R$. More results about derivation can be found in [1,2,9,18,24,25].

In [4], Bresar introduced the definition of generalized derivation: An additive mapping $F : R \to R$ is called generalized derivation if there exists a derivation

Typeset by $\mathcal{B}^{s}\mathcal{P}_{M}$ style. © Soc. Paran. de Mat.

 $^{^*}$ The first author is supported by a grant from National Board for Higher Mathematics (NBHM), India. Grant No. is NBHM/R.P. 26/ 2012/Fresh/1745 dated 15.11.12

The second and third authors is supported by Islamic Azad Univesity Central Tehran Branch (IAUCTB)

²⁰¹⁰ Mathematics Subject Classification: 16W25, 16N60, 16R50, 16D60.

Submitted June 23, 2017. Published June 06, 2018

 $d: R \to R$ such that F(xy) = F(x)y + xd(y) holds for all $x, y \in R$, and d is called the associated derivation of F. Hence, the concept of generalized derivations covers the concepts of derivation. In [20], Lee extended the definition of generalized derivation as follows: by a generalized derivation we mean an additive mapping $F: I \to U$ such that F(xy) = F(x)y + xd(y) holds for all $x, y \in I$, where I is a dense left ideal of R and d is a derivation from I into U. Moreover, Lee also proved that every generalized derivations of R will be implicitly assumed to be defined on the whole of U. Lee obtained the following: every generalized derivation F on a dense left ideal of R can be uniquely extended to U and assumes the form F(x) = ax + d(x) for some $a \in U$ and a derivation d on U.

In the mean while many authors obtained more information about derivations and generalized derivations satisfying certain suitable conditions in rings.

A well-known result proved by Ashraf and Rehman [1], states that R must be commutative if I is a non-zero ideal of R and d is a derivation of R such that $d(x \circ y) = x \circ y$ for all $x, y \in I$. More recently in [2], Argac and Inceboz generalized the result of [1] as following:

Let R be a prime ring, I a non-zero ideal of R and n a fixed positive integer.

(i) If R admits a derivation d with the property $(d(x \circ y))^n = x \circ y$ for all $x, y \in I$, then R is commutative.

(ii) If $char(R) \neq 2$ and $(d(x \circ y))^n - x \circ y$ is central for all $x, y \in I$, then R is commutative.

On the other hand, in [23], Quadri, Khan and Rehman proved that if R is a prime ring, I a non-zero ideal of R and F a generalized derivation associated with a non-zero derivation d such that F([x,y]) = [x,y] for all $x, y \in I$, then Ris commutative. Further, this result of Quadri et al. is studied in semiprime ring by Dhara in [8]. Recently in [7], De Filippis and Huang studied the situation $(F([x,y]))^n = [x,y]$ for all $x, y \in I$, where I is a non-zero ideal in a prime ring R, Fa generalized derivation of R and $n \ge 1$ a fixed integer. In this case they conclude that either R is commutative or n = 1 and F(x) = x for all $x \in R$. Recently, Huang [26] proved the following:

Let R be a prime ring, I a non-zero ideal of R and n a fixed positive integer. If R admits a generalized derivation F associated with a non-zero derivation d such that $(F(x \circ y))^n = x \circ y$ for all $x, y \in I$, then R is commutative.

In the present paper, we generalize above results by considering the situation, when the prime ring R satisfies $(H(xy) + G(yx))^n = (xy \pm yx)$ for all $x, y \in I$, where I is a non-zero ideal of R, H, G are two generalized derivations of R and $n \geq 1$ a fixed integer.

2. Results in Prime Rings

To prove our theorem, we need the following Lemmas:

Lemma 2.1. Let $R = M_k(F)$ be the ring of all $k \times k$ matrices over the field F with $k \geq 2$ and $a, b, p, q \in R$. Suppose that

$$(axy + byx + [p, xy] + [q, yx])^n - (xy \pm yx) = 0$$

for all $x, y \in R$, where $n \ge 1$ is a fixed integer. Then $a, b, p, q \in F \cdot I_k$.

Proof: Let $a = (a_{ij})_{k \times k}$, $b = (b_{ij})_{k \times k}$, $p = (p_{ij})_{k \times k}$ and $q = (q_{ij})_{k \times k}$ where $a_{ij}, b_{ij}, p_{ij}, q_{ij} \in F$. Denote e_{ij} the usual matrix unit with 1 in (i, j)-entry and zero elsewhere. By assumption, we have

$$(axy + byx + [p, xy] + [q, yx])^n - (xy \pm yx) = 0$$
(2.1)

for all $x, y \in R$. By choosing $x = e_{ii}, y = e_{ij}$ for any $i \neq j$, we have

$$(ae_{ij} + [p, e_{ij}])^n - e_{ij} = 0 (2.2)$$

Multiplying this equality from right by e_{ij} , we arrive at

$$0 = (ae_{ij} + [p, e_{ij}])^n (e_{ij}) = (-1)^n (p_{ji})^n e_{ij}.$$

This implies $p_{ji} = 0$. Thus for any $i \neq j$, we have $p_{ji} = 0$, which implies that p is diagonal matrix. Let $p = \sum_{i=1}^{k} p_{ii}e_{ii}$. For any *F*-automorphism θ of *R*, we have

$$(a^{\theta}xy + b^{\theta}yx + [p^{\theta}, xy] + [q^{\theta}, yx])^{n} - (xy \pm yx) = 0$$

for every $x, y \in R$. Hence p^{θ} must also be diagonal. We have

$$(1+e_{ij})p(1-e_{ij}) = \sum_{i=1}^{k} p_{ii}e_{ii} + (p_{jj} - p_{ii})e_{ij}$$

diagonal. Therefore, $p_{jj} = p_{ii}$ and so $p \in F \cdot I_k$. Multiplying the equality (2.2) from left by e_{ij} , we have

$$0 = (e_{ij})(ae_{ij} + [p, e_{ij}])^n = ((a+p)_{ji})^n e_{ij}.$$

Since $p_{ji} = 0$, we have from above that $a_{ji} = 0$ for any $i \neq j$, that is, a is diagonal and hence central by same argument as above.

By the same manner by choosing $x = e_{ii}, y = e_{ji}$ we have $b, q \in F \cdot I_k$.

Lemma 2.2. Let R be a prime ring with extended centroid C, I a non-zero ideal of R and a, b, p, $q \in R$. Suppose that $(axy + byx + [p, xy] + [q, yx])^n - (xy \pm yx) = 0$ for all $x, y \in I$, where $n \ge 1$ is a fixed integer. Then $a, b, p, q \in C$.

Proof: By assumption, I satisfies the generalized polynomial identity

$$f(x,y) = (axy + byx + [p,xy] + [q,yx])^n - (xy \pm yx).$$
(2.3)

133

By [6], this generalized polynomial identity (GPI) is also satisfied by U, that is f(x, y) = 0 for all $x, y \in U$.

We assume first that U does not satisfy any non-trivial (GPI). Then from (2.3), we have that

$$((a+p)xy + (b+q)yx - xyp - yxq)^n - (xy \pm yx) = 0$$
(2.4)

is a trivial (GPI) for U, that is, zero element in $T = U *_C C\{x, y\}$, the free product of U and $C\{x, y\}$, the free C-algebra in non-commuting indeterminates x and y. Let $p \notin C$. Then $\{1, p\}$ is linearly independent over C. If $q \notin \text{Span}_c\{1, p\}$, then $\{1, p, q\}$ is linearly independent over C. In this case expansion of (2.4) yields that $(-xyp)^n$ appears non-trivially, a contradiction. If $q \in \text{Span}_c\{1, p\}$, then $q = \alpha + \beta p$ for some $\alpha, \beta \in C$. Then expansion of (2.4) yields that $\{(-xy - yx\beta)p\}^n$ appears non-trivially, a contradiction. Thus we conclude that $p \in C$. Similarly, we can prove that $q, a + p, b + q \in C$ and hence $a, b, p, q \in C$.

Next we assume that (2.3) is a non-trivial (GPI) for U. In this case, if C is infinite, we have f(x, y) = 0 for all $x, y \in U \otimes_C \overline{C}$, where \overline{C} is the algebraic closure of C. Moreover, both U and $U \otimes_C \overline{C}$ are prime and centrally closed algebras [10]. Hence, replacing R by U or $U \otimes_C \overline{C}$ according to C finite or infinite, without loss of generality we may assume that C = Z(R) and R is C-algebra centrally closed. By Martindale's theorem [21], R is then a primitive ring having non-zero socle soc(R) with C as the associated division ring. Hence, by Jacobson's theorem [14, p.75], R is isomorphic to a dense ring of linear transformations of a vector space V over C. Let $\dim_C V = k$. Then $R \cong M_k(C)$ for some $k \ge 1$. If k = 1, then R is commutative and so $a, b, p, q \in C$. If $k \ge 2$, then by Lemma 2.1, $a, b, p, q \in C$.

If V is infinite dimensional over C, then for any $e^2 = e \in \operatorname{soc}(R)$, we have $eRe \cong M_t(C)$ with $t = \dim_C Ve$. If $a, b, p, q \in C$, we have our conclusion. So assume that not all of a, b, p, q are in C. Then at least one of a, b, p, q does not centralize the non-zero ideal $\operatorname{soc}(R)$. Hence, there exist $h_1, h_2, h_3, h_4 \in \operatorname{soc}(R)$ such that either $[a, h_1] \neq 0$ or $[b, h_2] \neq 0$ or $[p, h_3] \neq 0$ or $[q, h_4] \neq 0$. By Litoff's theorem (see [11]), there exists an idempotent $e \in \operatorname{soc}(R)$ such that $ah_1, h_1a, bh_2, h_2b, ph_3, h_3p, qh_4, h_4q, h_1, h_2, h_3, h_4 \in eRe$. We have $eRe \cong M_k(C)$ with $k = \dim_C Ve$. Replacing x = e and y = ex(1 - e), we have that R satisfies

$$((a+p)ex(1-e) - ex(1-e)p)^n - ex(1-e) = 0.$$
(2.5)

Left multiplying by (1-e), we have $(1-e)((a+p)ex(1-e))^n = 0$ that is $((1-e)(a+p)ex)^{n+1} = 0$ for all $x \in R$. By Levitzki's lemma [12, Lemma 1.1], we have (1-e)(a+p)eR = 0 implying (1-e)(a+p)e = 0. Analogously, we can prove that (1-e)(b+q)e = 0. Therefore, (a+p)e = e(a+p)e and (b+q)e = e(b+q)e. Moreover, since R satisfies

$$e\{((a+p)exeye+(b+q)eyexe-exeyep-eyexeq)^n-(exeye\pm eyexe)\}e=0 (2.6)$$

eRe satisfies

$$(e(a+p)exy + e(b+q)eyx - xyepe - yxeqe)^{n} - (xy \pm yx) = 0.$$
(2.7)

Then by the above finite dimensional case, *eae*, *ebe*, *epe*, *eqe* are central elements of *eRe*. Thus, $ah_1 = (eae)h_1 = h_1eae = h_1a$, $bh_2 = (ebe)h_2 = h_2(ebe) = h_2b$, $ph_3 = (epe)h_3 = h_3epe = h_3p$ and $qh_4 = (eqe)h_4 = h_4(eqe) = h_4q$, a contradiction.

Theorem 2.3. Let R be a prime ring with extended centroid C, I a non-zero ideal of R and $n \ge 1$ a fixed integer. If R admits the generalized derivations H and G such that $(H(xy) + G(yx))^n - (xy \pm yx) = 0$ for all $x, y \in I$, then either R is commutative or n = 1, H(x) = x and $G(x) = \pm x$ for all $x \in R$.

Proof: By hypothesis, we have that R satisfies

$$(H(xy) + G(yx))^{n} - (xy \pm yx) = 0.$$
(2.8)

In view of [20, Theorem 3], we may assume that there exist $a, b \in U$ and derivations d, δ of U such that H(x) = ax + d(x) and $G(x) = bx + \delta(x)$. Since I, R and U satisfy the same generalized polynomial identities (see [6]) as well as the same differential identities (see [19]), we may assume that

$$(axy + d(xy) + byx + \delta(yx))^n - (xy \pm yx) = 0$$
(2.9)

for all $x, y, z \in U$, where d, δ are two derivations of U, that is

$$(axy + d(x)y + xd(y) + byx + \delta(y)x + y\delta(x))^n - (xy \pm yx) = 0$$
(2.10)

for all $x, y \in U$. Here we divide the proof into two cases:

<u>Case 1.</u> Let d and δ both be inner derivations of U, that is d(x) = [p, x] and $\delta(x) = [q, x]$ for all $x \in U$, for some $p, q \in U$. Then from (2.10) we get that U satisfies

$$(axy + [p, xy] + byx + [q, yx])^n - (xy \pm yx) = 0.$$
(2.11)

Then by Lemma 2.2, $a, b, p, q \in C$. Then U satisfies

$$(axy + byx)^{n} - (xy \pm yx) = 0.$$
(2.12)

This is a polynomial identity for U. Then by [18, Lemma 2], there exists a field F such that $U \subseteq M_k(F)$, the ring of all $k \times k$ matrices over F, moreover U and $M_k(F)$ satisfy the same polynomial identities. If k = 1, then U and so R is commutative. If $k \ge 2$, then replacing $x = e_{ij}$ and $y = e_{jj}$ for $i \ne j$, we have $(ae_{ij})^n - e_{ij} = 0$. For $n \ge 2$, $e_{ij} = 0$, a contradiction. Hence n = 1 and so $(a - 1)xy + (b \mp 1)yx = 0$ for all $x, y \in M_k(F)$. Replacing $x = e_{ii}$ and $y = e_{ij}$ for $i \ne j$, we have $(a - 1)e_{ij} = 0$, implying a = 1. Again, replacing $x = e_{ij}$ and $y = e_{ij}$ for $i \ne j$, we get $(b \mp 1)e_{ij} = 0$, implying $b = \pm 1$. Therefore, we have H(x) = ax + [p, x] = x and $G(x) = bx + [q, x] = \pm x$ for all $x \in U$ and so for $x \in R$.

<u>Case 2.</u> Assume that d and δ are not both inner derivations of U. Suppose that d and δ are linearly C-dependent modulo U_{int} , say $\alpha d + \beta \delta = ad_{q'}$, where $\alpha, \beta \in C$, $q' \in U$ and $ad_{q'}(x) = [q', x]$ for all $x \in U$.

<u>Subcase-i</u>: Let $\alpha \neq 0$.

Then $d(x) = \lambda \delta(x) + [c, x]$ for all $x \in U$, where $\lambda = -\beta \alpha^{-1}$ and $c = \alpha^{-1}q'$. Then δ can not be inner derivation of U. From (2.9), we obtain

$$(axy + \lambda\delta(x)y + \lambda x\delta(y) + [c, xy] + byx + \delta(y)x + y\delta(x))^n - (xy \pm yx) = 0 \quad (2.13)$$

for all $x, y, z \in U$. Then by Kharchenko's theorem [15], U satisfies

$$(axy + \lambda sy + \lambda xt + [c, xy] + byx + tx + ys)^n - (xy \pm yx) = 0.$$
(2.14)

If R is commutative, we have our conclusion (1). So let R be non-commutative. Then there exits $q \in U$ such that $q \notin C$. Thus by replacing s with [q, x] and t with [q, y], we have from (2.14) that U satisfies

$$(axy + \lambda[q, x]y + \lambda x[q, y] + [c, xy] + byx + [q, y]x + y[q, x])^n - (xy \pm yx) = 0 \quad (2.15)$$

that is

$$(axy + [\lambda q + c, xy] + byx + [q, yx])^n - (xy \pm yx) = 0.$$
(2.16)

Then by Lemma 2.2, we conclude that $q \in C$, a contradiction.

<u>Subcase-ii:</u> Let $\alpha = 0$.

Then $\beta \neq 0$ and so $\delta(x) = [c', x]$ for all $x \in U$, where $c' = q'\beta^{-1}$. From (2.9), we obtain

$$(axy + d(x)y + xd(y) + byx + [c', yx])^n - (xy \pm yx) = 0$$
(2.17)

for all $x, y, z \in U$. By Kharchenko's theorem [15], U satisfies

$$(axy + sy + xt + byx + [c', yx])^n - (xy \pm yx) = 0.$$
(2.18)

In particular for y = 0, we have that U satisfies $(xt)^n = 0$. Since this is a polynomial identity, as above, there exists a field F such that $U \subseteq M_k(F)$, the ring of all $k \times k$ matrices over F, and $M_k(F)$ satisfies the identity $(xt)^n = 0$. If $k \ge 2$, then for $x = t = e_{22}$, we have $0 = (xt)^n = e_{22}$, a contradiction. Hence k = 1 which implies R is commutative.

<u>Case 3.</u> Assume that d and δ are *C*-independent modulo U_{int} . Then by Kharchenko's theorem [15], we have from (2.9) that U satisfies

$$(axy + sy + xt + byx + yu + vx)^{n} - (xy \pm yx) = 0$$
(2.19)

for all $x, y, z \in U$. Then in particular for y = v = 0, we have $(xt)^n = 0$ for all $x, t \in U$. Then by same argument as above, this implies the commutativity of R.

In particular, when G = H, we have the following:

Corollary 2.4. Let R be a prime ring with extended centroid C, I a non-zero ideal of R and $n \ge 1$ a fixed integer. If R admits the generalized derivation H such that $(H(x \circ y))^n - (x \circ y) = 0$ for all $x, y \in I$, then either R is commutative or n = 1, H(x) = x for all $x \in R$.

136

In particular, when G = -H, we have the following:

Corollary 2.5. Let R be a prime ring with extended centroid C, I a non-zero ideal of R and $n \ge 1$ a fixed integer. If R admits the generalized derivation H such that $(H([x,y]))^n - [x,y] = 0$ for all $x, y \in I$, then either R is commutative or n = 1, H(x) = x for all $x \in R$.

In particular, when n = 1 and G(x) = -2x and H(x) = F(x) + x, we have the following:

Corollary 2.6. Let R be a prime ring with extended centroid C and I a non-zero ideal of R. If R admits the generalized derivation F such that F(xy) - yx = 0 for all $x, y \in I$, then R is commutative.

3. Results in Semiprime Rings

Now, we prove our theorems in semiprime ring and non-commutative Banach algebras.

Theorem 3.1. Let R be a semiprime ring and $n \ge 1$ a fixed integer. If R admits the generalized derivations H and G associated with derivations d, δ such that $(H(xy) + G(yx))^n = (xy \pm yx)$ for all $x, y \in R$, then (1) for $n \ge 2$, R is commutative and (2) for n = 1, H(x) = ax + d(x) and $G(x) = bx + \delta(x)$ for all $x \in R$, with $a, b \in C$ and $d(R) \subseteq Z(R)$ and $\delta(R) \subseteq Z(R)$.

Proof: We know the fact that any derivation of a semiprime ring R can be uniquely extended to a derivation of its right Utumi quotient ring U and so any derivation of R can be defined on the whole of U [19, Lemma 2]. Moreover R and U satisfy the same GPIs (see [6]) as well as same differential identities (see [19]).

Thus, by Lee [20], H(x) = ax + d(x) and $G(x) = bx + \delta(x)$ for some $a, b \in U$ and derivations d, δ on U and hence

$$(axy + d(xy) + byx + \delta(yx))^n - (xy \pm yx) = 0$$

for all $x, y, z \in U$. Let M(C) be the set of all maximal ideals of C and $P \in M(C)$. Now by the standard theory of orthogonal completions for semiprime rings (see [19, p.31-32]), we have PU is a prime ideal of U invariant under all derivations of U. Moreover, $\cap \{PU | P \in M(C)\} = 0$. Set $\overline{U} = U/PU$. Then derivations d and δ canonically induce the derivations \overline{d} and $\overline{\delta}$ on U defined by $\overline{d}(\overline{x}) = \overline{d}(x)$ for all $x \in U$ respectively. Therefore,

$$((\overline{a}\ \overline{x}\ \overline{y} + \overline{d}(\overline{x}\ \overline{y}) + \overline{b}\overline{y}\ \overline{x} + \overline{\delta}(\overline{y}\ \overline{x}))^n - (\overline{x}\ \overline{y} \pm \overline{y}\ \overline{x}) = 0$$

for all $\overline{x}, \overline{y} \in U$. By Theorem 2.3 for prime ring case, we have one of the following: (1) when $n \geq 2$ for each $P \in M(C)$, $[U,U] \subseteq PU$. Since $\cap_P PU = 0$, we have [U,U] = 0, implying U and so R is commutative. (2) When n = 1, for each $P \in M(C)$, either $[U,U] \subseteq PU$ or $(a-1) \in PU$, $(b \neq 1) \in PU$, $d(U) \subseteq PU$ and $\begin{array}{l} \delta(U)\subseteq PU. \text{ This implies that } (a-1)[U,U]\subseteq PU \text{ for all } P\in M(C), \ (b\mp 1)[U,U]\subseteq PU \text{ for all } P\in M(C), \ d(U)[U,U]\subseteq PU \text{ for all } P\in M(C) \text{ and } \delta(U)[U,U]\subseteq PU \text{ for all } P\in M(C). \text{ Since } \cap_PPU=0, \text{ we obtain } (a-1)[U,U]=0, \ (b\mp 1)[U,U]=0, \ d(U)[U,U]=0 \text{ and } \delta(U)[U,U]=0. \text{ In particular, } (a-1)[R,R]=0, \ (b\mp 1)[R,R]=0, \ d(R)[R,R]=0 \text{ and } \delta(R)[R,R]=0. \text{ These cases imply that } a\in C, \ b\in C, \ d(R)\subseteq Z(R) \text{ and } \delta(R)\subseteq Z(R). \end{array}$

4. Result in non-commutative Banach Algebras

In this section, we prove our last result in non-commutative Banach algebra. Here A will denote a complex non-commutative Banach algebras. By a Banach algebra we shall mean a complex normed algebra A whose underlying vector space is a Banach space. By rad(A) we denote the Jacobson radical of A, which is the intersection of all primitive ideals of A. A is said to be semisimple, if rad(A) = 0.

The classical result of Singer and Werner in [28] says that any continuous derivation on a commutative Banach algebra has the range in the Jacobson radical of the algebra. In this paper they conjectured that the continuity is not necessary. Thomas [29] verified this conjecture. Of course the same result of Singer and Werner dose not hold in non-commutative Banach algebras because of inner derivations. Hence in this context a very interesting question is how to obtain non-commutative version of Singer-Werner theorem. Some partial solutions of this open question have been obtained by a number of authors under certain conditions for non-commutative Banach algebras.

Let A be a non-commutative Banach algebra and D be a continuous derivation on A. Brešar and Vukman [5] proved that if $[D(x), x] \in \operatorname{rad}(A)$ for all $x \in A$, then D maps A into $\operatorname{rad}(A)$. Vukman [30] proved that the same conclusion holds if $[D(x), x]_3 \in \operatorname{rad}(A)$ for all $x \in A$. In [17], Kim proved that if D is a continuous linear Jordan derivation in a Banach algebra A, such that $[D(x), x]D(x)[D(x), x] \in$ $\operatorname{rad}(A)$, for all $x \in A$, then D maps A into $\operatorname{rad}(A)$. In [22], Park proved that if $[[D(x), x], D(x)] \in \operatorname{rad}(A)$, for all $x \in A$, then again D maps A into $\operatorname{rad}(A)$. Recently, Kim [16] proved that if D is a continuous linear Jordan derivation in a Banach algebra A, such that $D(x)^3[D(x), x] \in \operatorname{rad}(A)$, for all $x \in A$, then D maps A into $\operatorname{rad}(A)$.

In this line of investigation, we prove the following:

Theorem 4.1. Let A be a non-commutative Banach algebra, n a fixed positive integer, $H = L_a + d$ and $G = L_b + \delta$ two continuous generalized derivations of A, where L_a and L_b denote the left multiplication by some element $a \in A$ and some $b \in A$, respectively. If $(H(xy) + G(yx))^n - (xy \pm yx) \in rad(A)$ for all $x, y \in A$, then $d(A) \subseteq rad(A)$ and $\delta(A) \subseteq rad(A)$.

Proof: By the hypothesis H and G are continuous and moreover since it is well known that L_a and L_b also are continuous, we get d and δ are continuous, too. By [27], any continuous derivation of Banach algebra leaves the primitive ideals

invariant. Hence for any primitive ideal P of A, we have $H(P) \subseteq ap + d(P) \subseteq P$ and $G(P) \subseteq bp + \delta(P) \subseteq P$. It means that continuous generalized derivations H and G leaves the primitive ideal invariant. Denote $\frac{A}{P} = \overline{A}$ for any primitive ideals P. Hence we may introduce the generalized derivations $H_P: \overline{A} \to \overline{A}$ and $G_P: \overline{A} \to \overline{A}$ defined by $F_P(\overline{x}) = F_p(x+P) = F(x) + P = ax + d(x) + P$ and $G_P(\overline{x}) = G_p(x+P) = G(x) + P = bx + \delta(x) + P$ for all $\overline{x} \in \overline{A}$, where $A/P = \overline{A}$ and $\overline{x} = x + P$, respectively. Since P is a primitive ideal, the factor algebra \overline{A} is primitive and so it is prime. By $(F(xy) + G(yx))^n - (xy \pm yx) \in \operatorname{rad}(A)$ for all $x, y \in A$ we have

$$(F_P(\bar{x}\bar{y}) + G_P(\bar{y}\bar{x})^n - (\bar{x}\bar{y} \pm \bar{y}\bar{x}) = \overline{0}.$$

for all $\overline{x}, \overline{y} \in \overline{A}$. Now, by Theorem 2.3, it is immediate that \overline{A} is commutative or $d = \overline{0}$ and $\delta = \overline{0}$. Now, we assume that P is primitive ideal such that \overline{A} is commutative. In [28], Singer and Werner proved that any continuous linear derivation on a commutative Banach algebra maps the algebra into the radical. Furthermore by [13], any linear derivation on semisimple Banach algebra is continuous. We know that there are no non-zero linear continuous derivations on commutative semisimple Banach algebras. Therefore, $d = \overline{0}$ and $\delta = \overline{0}$ in \overline{A} . Hence we get $d(A) \subseteq P$ and $\delta(A) \subseteq P$ for all primitive ideal P of A. Since $\operatorname{rad}(A)$ is the intersection of all primitive ideals, we get $d(A) \subseteq \operatorname{rad}(A)$ and $\delta(A) \subseteq \operatorname{rad}(A)$, and we get the required conclusion.

References

- M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42(1-2), 3–8, (2002).
- N. Argac and H. G. Inceboz, Derivations of prime and semiprime rings, J. Korean Math Soc. 46 (5), 999–1005, (2009).
- K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, *Rings with generalized identities*, Monographs and Textbooks in Pure and Applied Math. 196, New York: Marcel Dekker, Inc. (1996).
- M. Bresar and M. Mathieu, Derivations mapping into the radical III, J. Funct. Anal. 133 (1), 21–29, (1995).
- M. Bresar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110, 7–16, (1990).
- C. L. Chuang, GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103, 723–728, (1988).
- V. De Filippis and S. Huang, Generalized derivations on semi prime rings, Bull. Korean Math. Soc. 48 (6), 1253–1259, (2011).
- B. Dhara, Remarks on generalized derivations in prime and semiprime rings, Internat. J. Math. & Math. Sci., Volume 2010, Article ID 646587, 6 pages.
- B. Dhara, M. R. Mozumder Some Identities Involving Multiplicative Generalized Derivations in Prime and Semiprime Rings, Bol. Soc. Paran. Mat., 36(1), 25-36, (2018).
- T. S. Erickson, W. S. Martindale III and J. M. Osborn, *Prime non-associative algebras*, Pacific J. Math. 60(1), 49–63, (1975).
- C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hungar. 14 (3-4), 369–371, (1963).

- 12. I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, Chicago, (1969).
- B. E. Johnson and A. M. Sinclair, Continuity of derivations and problem of kaplansky, Amer. J. Math., 90(4), 1067–1073, (1968).
- 14. N. Jacobson, *Structure of rings*, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
- V. K. Kharchenko, Differential identity of prime rings, Algebra and Logic, 17, 155–168, (1978).
- B. Kim, Jordan derivations on prime rings and their applications in Banach algebras, Commun. Korean Math. Soc., 28 (3), 535–558, (2013).
- B. Kim, On the derivations of semiprime rings and non-commutative Banach algebras, Acta Math. Sinica., 16 (1), 21–28, (2000).
- C. Lanski, An engle condition with derivation, Proc. Amer. Mathp. Soc., 183 (3), 731–734, (1993).
- T. K. Lee, Semiprime rings with differential identites, Bull. Inst. Math. Acad. Sinica., 20 (1), 27–38, (1992).
- T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (8), 4057–4073, (1999).
- W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra., 12, 576–584, (1972).
- K. H. Park, On derivations in non-commutative semiprime rings and Banach algebras, Bull. Korean Math. Soc., 42 (4), 671–678, (2005).
- M. A. Quadri, M. S. Khan and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. Pure Appl. Math. 34 (9), 1393–1396, (2003).
- Sh. Sahebi and V. Rahmani, A note on power values of derivation in prime and semiprime rings, J. Math. Extension., 6 (4), 79–88, (2012).
- Sh. Sahebi and V. Rahmani, Derivations as a generalization of Jordan homomorphisms on Lie ideals and non-commutative Banach algebras, Bol. Soc. Mat. Mex., 22 (117), 117–124, (2016).
- S. Huang, On generalized derivations of prime and semiprime rings, Taiwanese J. Math. 16 (2), 771–776, (2012).
- A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20, 166–170, (1969).
- I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129, 260–264, (1955).
- M. P. Thomas, The image of a derivation is contained in the radical, Ann. Math., 128 (3), 435–460, (1988).
- J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (4), 877–884, (1992).

Basudeb Dhara, Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B., India. E-mail address: basu_dhara@yahoo.com

and

Venus Rahmani, Department Of Mathematics, Islamic Azad University, Central Tehran Branch, 13185/768, Tehran, Iran. E-mail address: venosrahmani@yahoo.com

and

Shervin Sahebi, Department Of Mathematics, Islamic Azad University, Central Tehran Branch, 13185/768, Tehran, Iran. E-mail address: sahebi@iauctb.ac.ir