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abstract: Let R be a prime ring with extended centroid C, I a non-zero ideal of
R and n ≥ 1 a fixed integer. If R admits the generalized derivations H and G such
that (H(xy) +G(yx))n = (xy± yx) for all x, y ∈ I, then one of the following holds:

1. R is commutative;

2. n = 1 and H(x) = x and G(x) = ±x for all x ∈ R.

Moreover, we examine the case where R is a semiprime ring. Finally, we apply the
above result to non-commutative Banach algebras.
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1. Introduction

Let R be an associative prime ring with center Z(R), Q its Martindale quotient
ring and U its left Utumi quotient ring. The center of U , denoted by C, is called
the extended centroid of R (we refer the reader to [3] for these objects).

We denote by [x, y] = xy − yx the simple commutator of the elements x, y ∈ R
and by x ◦ y = xy + yx the simple anti-commutator of x, y. A linear mapping
d : R → R is called a derivation, if it satisfies the Leibnitz rule d(xy) = d(x)y+xd(y)
for all x, y ∈ R. In particular, d is said to be an inner derivation induced by an
element a ∈ R, if d(x) = [a, x] for all x ∈ R. More results about derivation can be
found in [1,2,9,18,24,25].

In [4], Bresar introduced the definition of generalized derivation: An additive
mapping F : R → R is called generalized derivation if there exists a derivation
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d : R → R such that F (xy) = F (x)y+xd(y) holds for all x, y ∈ R, and d is called the
associated derivation of F . Hence, the concept of generalized derivations covers the
concepts of derivation. In [20], Lee extended the definition of generalized derivation
as follows: by a generalized derivation we mean an additive mapping F : I → U
such that F (xy) = F (x)y+xd(y) holds for all x, y ∈ I, where I is a dense left ideal
of R and d is a derivation from I into U . Moreover, Lee also proved that every
generalized derivation can be uniquely extended to a generalized derivation of U ,
and thus all generalized derivations of R will be implicitly assumed to be defined
on the whole of U . Lee obtained the following: every generalized derivation F
on a dense left ideal of R can be uniquely extended to U and assumes the form
F (x) = ax+ d(x) for some a ∈ U and a derivation d on U .

In the mean while many authors obtained more information about derivations
and generalized derivations satisfying certain suitable conditions in rings.

A well-known result proved by Ashraf and Rehman [1], states that R must be
commutative if I is a non-zero ideal of R and d is a derivation of R such that
d(x◦y) = x◦y for all x, y ∈ I. More recently in [2], Argac and Inceboz generalized
the result of [1] as following:

Let R be a prime ring, I a non-zero ideal of R and n a fixed positive integer.
(i) If R admits a derivation d with the property (d(x ◦ y))n = x ◦ y for all

x, y ∈ I, then R is commutative.
(ii) If char(R) 6= 2 and (d(x ◦ y))n − x ◦ y is central for all x, y ∈ I, then R is

commutative.
On the other hand, in [23], Quadri, Khan and Rehman proved that if R is

a prime ring, I a non-zero ideal of R and F a generalized derivation associated
with a non-zero derivation d such that F ([x, y]) = [x, y] for all x, y ∈ I, then R
is commutative. Further, this result of Quadri et al. is studied in semiprime ring
by Dhara in [8]. Recently in [7], De Filippis and Huang studied the situation
(F ([x, y]))n = [x, y] for all x, y ∈ I, where I is a non-zero ideal in a prime ring R, F
a generalized derivation of R and n ≥ 1 a fixed integer. In this case they conclude
that either R is commutative or n = 1 and F (x) = x for all x ∈ R. Recently,
Huang [26] proved the following:

Let R be a prime ring, I a non-zero ideal of R and n a fixed positive integer. If
R admits a generalized derivation F associated with a non-zero derivation d such
that (F (x ◦ y))n = x ◦ y for all x, y ∈ I, then R is commutative.

In the present paper, we generalize above results by considering the situation,
when the prime ring R satisfies (H(xy) + G(yx))n = (xy ± yx) for all x, y ∈ I,
where I is a non-zero ideal of R, H,G are two generalized derivations of R and
n ≥ 1 a fixed integer.

2. Results in Prime Rings

To prove our theorem, we need the following Lemmas:

Lemma 2.1. Let R = Mk(F ) be the ring of all k × k matrices over the field F
with k ≥ 2 and a, b, p, q ∈ R. Suppose that
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(axy + byx+ [p, xy] + [q, yx])n − (xy ± yx) = 0

for all x, y ∈ R, where n ≥ 1 is a fixed integer. Then a, b, p, q ∈ F · Ik.

Proof: Let a = (aij)k×k, b = (bij)k×k, p = (pij)k×k and q = (qij)k×k where
aij , bij , pij , qij ∈ F . Denote eij the usual matrix unit with 1 in (i, j)-entry and zero
elsewhere. By assumption, we have

(axy + byx+ [p, xy] + [q, yx])n − (xy ± yx) = 0 (2.1)

for all x, y ∈ R.
By choosing x = eii, y = eij for any i 6= j, we have

(aeij + [p, eij])
n − eij = 0 (2.2)

Multiplying this equality from right by eij , we arrive at

0 = (aeij + [p, eij ])
n(eij) = (−1)n(pji)

neij .

This implies pji = 0. Thus for any i 6= j, we have pji = 0, which implies that p is

diagonal matrix. Let p =
∑k

i=1 piieii. For any F -automorphism θ of R, we have

(aθxy + bθyx+ [pθ, xy] + [qθ, yx])n − (xy ± yx) = 0

for every x, y ∈ R. Hence pθ must also be diagonal. We have

(1 + eij)p(1− eij) =
k∑

i=1

piieii + (pjj − pii)eij

diagonal. Therefore, pjj = pii and so p ∈ F · Ik. Multiplying the equality (2.2)
from left by eij , we have

0 = (eij)(aeij + [p, eij ])
n = ((a+ p)ji)

neij .

Since pji = 0, we have from above that aji = 0 for any i 6= j, that is, a is diagonal
and hence central by same argument as above.

By the same manner by choosing x = eii, y = eji we have b, q ∈ F · Ik.
✷

Lemma 2.2. Let R be a prime ring with extended centroid C, I a non-zero ideal
of R and a, b, p, q ∈ R. Suppose that (axy+ byx+ [p, xy]+ [q, yx])n− (xy± yx) = 0
for all x, y ∈ I, where n ≥ 1 is a fixed integer. Then a, b, p, q ∈ C.

Proof: By assumption, I satisfies the generalized polynomial identity

f(x, y) = (axy + byx+ [p, xy] + [q, yx])n − (xy ± yx). (2.3)
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By [6], this generalized polynomial identity (GPI) is also satisfied by U , that is
f(x, y) = 0 for all x, y ∈ U .

We assume first that U does not satisfy any non-trivial (GPI). Then from (2.3),
we have that

((a+ p)xy + (b+ q)yx− xyp− yxq)n − (xy ± yx) = 0 (2.4)

is a trivial (GPI) for U , that is, zero element in T = U ∗C C{x, y}, the free product
of U and C{x, y}, the free C-algebra in non-commuting indeterminates x and y.
Let p /∈ C. Then {1, p} is linearly independent over C. If q /∈ Spanc{1, p}, then
{1, p, q} is linearly independent over C. In this case expansion of (2.4) yields that
(−xyp)n appears non-trivially, a contradiction. If q ∈ Spanc{1, p}, then q = α+βp
for some α, β ∈ C. Then expansion of (2.4) yields that {(−xy − yxβ)p}n appears
non-trivially, a contradiction. Thus we conclude that p ∈ C. Similarly, we can
prove that q, a+ p, b+ q ∈ C and hence a, b, p, q ∈ C.

Next we assume that (2.3) is a non-trivial (GPI) for U . In this case, if C is
infinite, we have f(x, y) = 0 for all x, y ∈ U ⊗C C, where C is the algebraic closure
of C. Moreover, both U and U ⊗C C are prime and centrally closed algebras [10].
Hence, replacing R by U or U ⊗C C according to C finite or infinite, without loss
of generality we may assume that C = Z(R) and R is C-algebra centrally closed.
By Martindale’s theorem [21], R is then a primitive ring having non-zero socle
soc(R) with C as the associated division ring. Hence, by Jacobson’s theorem [14,
p.75], R is isomorphic to a dense ring of linear transformations of a vector space
V over C. Let dimCV = k. Then R ∼= Mk(C) for some k ≥ 1. If k = 1, then R is
commutative and so a, b, p, q ∈ C. If k ≥ 2, then by Lemma 2.1, a, b, p, q ∈ C.

If V is infinite dimensional over C, then for any e2 = e ∈ soc(R), we have
eRe ∼= Mt(C) with t = dimCV e. If a, b, p, q ∈ C, we have our conclusion. So
assume that not all of a, b, p, q are in C. Then at least one of a, b, p, q does not
centralize the non-zero ideal soc(R). Hence, there exist h1, h2, h3, h4 ∈ soc(R)
such that either [a, h1] 6= 0 or [b, h2] 6= 0 or [p, h3] 6= 0 or [q, h4] 6= 0. By
Litoff’s theorem (see [11]), there exists an idempotent e ∈ soc(R) such that
ah1, h1a, bh2, h2b, ph3, h3p, qh4, h4q, h1, h2, h3, h4 ∈ eRe. We have eRe ∼= Mk(C)
with k = dimCV e. Replacing x = e and y = ex(1− e), we have that R satisfies

((a+ p)ex(1− e)− ex(1− e)p)n − ex(1− e) = 0. (2.5)

Left multiplying by (1 − e), we have (1 − e)((a + p)ex(1 − e))n = 0 that is ((1 −
e)(a+ p)ex)n+1 = 0 for all x ∈ R. By Levitzki’s lemma [12, Lemma 1.1], we have
(1 − e)(a + p)eR = 0 implying (1 − e)(a + p)e = 0. Analogously, we can prove
that (1 − e)(b+ q)e = 0. Therefore, (a+ p)e = e(a+ p)e and (b+ q)e = e(b+ q)e.
Moreover, since R satisfies

e{((a+p)exeye+(b+ q)eyexe− exeyep− eyexeq)n− (exeye± eyexe)}e = 0 (2.6)

eRe satisfies

(e(a+ p)exy + e(b+ q)eyx− xyepe− yxeqe)n − (xy ± yx) = 0. (2.7)
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Then by the above finite dimensional case, eae, ebe, epe, eqe are central elements
of eRe. Thus, ah1 = (eae)h1 = h1eae = h1a, bh2 = (ebe)h2 = h2(ebe) = h2b,
ph3 = (epe)h3 = h3epe = h3p and qh4 = (eqe)h4 = h4(eqe) = h4q, a contradiction.

✷

Theorem 2.3. Let R be a prime ring with extended centroid C, I a non-zero ideal
of R and n ≥ 1 a fixed integer. If R admits the generalized derivations H and
G such that (H(xy) + G(yx))n − (xy ± yx) = 0 for all x, y ∈ I, then either R is
commutative or n = 1, H(x) = x and G(x) = ±x for all x ∈ R.

Proof: By hypothesis, we have that R satisfies

(H(xy) +G(yx))n − (xy ± yx) = 0. (2.8)

In view of [20, Theorem 3], we may assume that there exist a, b ∈ U and derivations
d, δ of U such that H(x) = ax+d(x) and G(x) = bx+δ(x). Since I, R and U satisfy
the same generalized polynomial identities (see [6]) as well as the same differential
identities (see [19]), we may assume that

(axy + d(xy) + byx+ δ(yx))n − (xy ± yx) = 0 (2.9)

for all x, y, z ∈ U , where d, δ are two derivations of U , that is

(axy + d(x)y + xd(y) + byx+ δ(y)x+ yδ(x))n − (xy ± yx) = 0 (2.10)

for all x, y ∈ U . Here we divide the proof into two cases:
Case 1. Let d and δ both be inner derivations of U , that is d(x) = [p, x] and

δ(x) = [q, x] for all x ∈ U , for some p, q ∈ U . Then from (2.10) we get that U
satisfies

(axy + [p, xy] + byx+ [q, yx])n − (xy ± yx) = 0. (2.11)

Then by Lemma 2.2, a, b, p, q ∈ C. Then U satisfies

(axy + byx)n − (xy ± yx) = 0. (2.12)

This is a polynomial identity for U . Then by [18, Lemma 2], there exists a field
F such that U ⊆ Mk(F ), the ring of all k × k matrices over F , moreover U and
Mk(F ) satisfy the same polynomial identities. If k = 1, then U and so R is
commutative. If k ≥ 2, then replacing x = eij and y = ejj for i 6= j, we have
(aeij)

n − eij = 0. For n ≥ 2, eij = 0, a contradiction. Hence n = 1 and so
(a − 1)xy + (b ∓ 1)yx = 0 for all x, y ∈ Mk(F ). Replacing x = eii and y = eij
for i 6= j, we have (a − 1)eij = 0, implying a = 1. Again, replacing x = eij and
y = eii for i 6= j, we get (b ∓ 1)eij = 0, implying b = ±1. Therefore, we have
H(x) = ax+ [p, x] = x and G(x) = bx+ [q, x] = ±x for all x ∈ U and so for x ∈ R.

Case 2. Assume that d and δ are not both inner derivations of U . Suppose that
d and δ are linearly C-dependent modulo Uint, say αd+βδ = adq′ , where α, β ∈ C,
q′ ∈ U and adq′(x) = [q′, x] for all x ∈ U .
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Subcase-i: Let α 6= 0.
Then d(x) = λδ(x) + [c, x] for all x ∈ U , where λ = −βα−1 and c = α−1q′.
Then δ can not be inner derivation of U . From (2.9), we obtain

(axy + λδ(x)y + λxδ(y) + [c, xy] + byx+ δ(y)x+ yδ(x))n − (xy ± yx) = 0 (2.13)

for all x, y, z ∈ U . Then by Kharchenko’s theorem [15], U satisfies

(axy + λsy + λxt+ [c, xy] + byx+ tx+ ys)n − (xy ± yx) = 0. (2.14)

If R is commutative, we have our conclusion (1). So let R be non-commutative.
Then there exits q ∈ U such that q /∈ C. Thus by replacing s with [q, x] and t with
[q, y], we have from (2.14) that U satisfies

(axy+λ[q, x]y+λx[q, y] + [c, xy] + byx+ [q, y]x+ y[q, x])n − (xy± yx) = 0 (2.15)

that is
(axy + [λq + c, xy] + byx+ [q, yx])n − (xy ± yx) = 0. (2.16)

Then by Lemma 2.2, we conclude that q ∈ C, a contradiction.
Subcase-ii: Let α = 0.
Then β 6= 0 and so δ(x) = [c′, x] for all x ∈ U , where c′ = q′β−1. From (2.9),

we obtain

(axy + d(x)y + xd(y) + byx+ [c′, yx])n − (xy ± yx) = 0 (2.17)

for all x, y, z ∈ U . By Kharchenko’s theorem [15], U satisfies

(axy + sy + xt+ byx+ [c′, yx])n − (xy ± yx) = 0. (2.18)

In particular for y = 0, we have that U satisfies (xt)n = 0. Since this is a polynomial
identity, as above, there exists a field F such that U ⊆ Mk(F ), the ring of all k× k
matrices over F , and Mk(F ) satisfies the identity (xt)n = 0. If k ≥ 2, then for
x = t = e22, we have 0 = (xt)n = e22, a contradiction. Hence k = 1 which implies
R is commutative.

Case 3. Assume that d and δ are C-independent modulo Uint. Then by Khar-
chenko’s theorem [15], we have from (2.9) that U satisfies

(axy + sy + xt+ byx+ yu+ vx)n − (xy ± yx) = 0 (2.19)

for all x, y, z ∈ U . Then in particular for y = v = 0, we have (xt)n = 0 for all
x, t ∈ U . Then by same argument as above, this implies the commutativity of R.

✷

In particular, when G = H , we have the following:

Corollary 2.4. Let R be a prime ring with extended centroid C, I a non-zero ideal
of R and n ≥ 1 a fixed integer. If R admits the generalized derivation H such that
(H(x ◦ y))n − (x ◦ y) = 0 for all x, y ∈ I, then either R is commutative or n = 1,
H(x) = x for all x ∈ R.
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In particular, when G = −H , we have the following:

Corollary 2.5. Let R be a prime ring with extended centroid C, I a non-zero ideal
of R and n ≥ 1 a fixed integer. If R admits the generalized derivation H such that
(H([x, y]))n − [x, y] = 0 for all x, y ∈ I, then either R is commutative or n = 1,
H(x) = x for all x ∈ R.

In particular, when n = 1 and G(x) = −2x and H(x) = F (x) + x, we have the
following:

Corollary 2.6. Let R be a prime ring with extended centroid C and I a non-zero
ideal of R. If R admits the generalized derivation F such that F (xy)− yx = 0 for
all x, y ∈ I, then R is commutative.

3. Results in Semiprime Rings

Now, we prove our theorems in semiprime ring and non-commutative Banach
algebras.

Theorem 3.1. Let R be a semiprime ring and n ≥ 1 a fixed integer. If R ad-
mits the generalized derivations H and G associated with derivations d, δ such that
(H(xy) + G(yx))n = (xy ± yx) for all x, y ∈ R, then (1) for n ≥ 2, R is commu-
tative and (2) for n = 1, H(x) = ax + d(x) and G(x) = bx + δ(x) for all x ∈ R,
with a, b ∈ C and d(R) ⊆ Z(R) and δ(R) ⊆ Z(R).

Proof: We know the fact that any derivation of a semiprime ringR can be uniquely
extended to a derivation of its right Utumi quotient ring U and so any derivation
of R can be defined on the whole of U [19, Lemma 2]. Moreover R and U satisfy
the same GPIs (see [6]) as well as same differential identities (see [19]).

Thus, by Lee [20], H(x) = ax + d(x) and G(x) = bx + δ(x) for some a, b ∈ U
and derivations d, δ on U and hence

(axy + d(xy) + byx+ δ(yx))n − (xy ± yx) = 0

for all x, y, z ∈ U . Let M(C) be the set of all maximal ideals of C and P ∈ M(C).
Now by the standard theory of orthogonal completions for semiprime rings (see
[19, p.31-32]), we have PU is a prime ideal of U invariant under all derivations of
U . Moreover, ∩{PU |P ∈ M(C)} = 0. Set U = U/PU . Then derivations d and
δ canonically induce the derivations d and δ on U defined by d(x) = d(x) for all
x ∈ U respectively. Therefore,

((a x y + d(x y) + by x+ δ(y x))n − (x y ± y x) = 0

for all x, y ∈ U . By Theorem 2.3 for prime ring case, we have one of the following:
(1) when n ≥ 2 for each P ∈ M(C), [U,U ] ⊆ PU . Since ∩PPU = 0, we have
[U,U ] = 0, implying U and so R is commutative. (2) When n = 1, for each
P ∈ M(C), either [U,U ] ⊆ PU or (a − 1) ∈ PU , (b ∓ 1) ∈ PU , d(U) ⊆ PU and
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δ(U) ⊆ PU . This implies that (a−1)[U,U ] ⊆ PU for all P ∈ M(C), (b∓1)[U,U ] ⊆
PU for all P ∈ M(C), d(U)[U,U ] ⊆ PU for all P ∈ M(C) and δ(U)[U,U ] ⊆ PU
for all P ∈ M(C). Since ∩PPU = 0, we obtain (a− 1)[U,U ] = 0, (b∓ 1)[U,U ] = 0,
d(U)[U,U ] = 0 and δ(U)[U,U ] = 0. In particular, (a−1)[R,R] = 0, (b∓1)[R,R] =
0, d(R)[R,R] = 0 and δ(R)[R,R] = 0. These cases imply that a ∈ C, b ∈ C,
d(R) ⊆ Z(R) and δ(R) ⊆ Z(R). ✷

4. Result in non-commutative Banach Algebras

In this section, we prove our last result in non-commutative Banach algebra.
Here A will denote a complex non-commutative Banach algebras. By a Banach
algebra we shall mean a complex normed algebra A whose underlying vector space
is a Banach space. By rad(A) we denote the Jacobson radical of A, which is the
intersection of all primitive ideals of A. A is said to be semisimple, if rad(A) = 0.

The classical result of Singer and Werner in [28] says that any continuous
derivation on a commutative Banach algebra has the range in the Jacobson radical
of the algebra. In this paper they conjectured that the continuity is not neces-
sary. Thomas [29] verified this conjecture. Of course the same result of Singer
and Werner dose not hold in non-commutative Banach algebras because of inner
derivations. Hence in this context a very interesting question is how to obtain
non-commutative version of Singer-Werner theorem. Some partial solutions of this
open question have been obtained by a number of authors under certain conditions
for non-commutative Banach algebras.

Let A be a non-commutative Banach algebra and D be a continuous derivation
on A. Brešar and Vukman [5] proved that if [D(x), x] ∈ rad(A) for all x ∈ A,
then D maps A into rad(A). Vukman [30] proved that the same conclusion holds
if [D(x), x]3 ∈ rad(A) for all x ∈ A. In [17], Kim proved that if D is a continuous
linear Jordan derivation in a Banach algebra A, such that [D(x), x]D(x)[D(x), x] ∈
rad(A), for all x ∈ A, then D maps A into rad(A). In [22], Park proved that
if [[D(x), x], D(x)] ∈ rad(A), for all x ∈ A, then again D maps A into rad(A).
Recently, Kim [16] proved that if D is a continuous linear Jordan derivation in a
Banach algebra A, such that D(x)3[D(x), x] ∈ rad(A), for all x ∈ A, then D maps
A into rad(A).

In this line of investigation, we prove the following:

Theorem 4.1. Let A be a non-commutative Banach algebra, n a fixed positive
integer, H = La + d and G = Lb + δ two continuous generalized derivations of A,
where La and Lb denote the left multiplication by some element a ∈ A and some
b ∈ A, respectively. If (H(xy) + G(yx))n − (xy ± yx) ∈ rad(A) for all x, y ∈ A,
then d(A) ⊆ rad(A) and δ(A) ⊆ rad(A).

Proof: By the hypothesis H and G are continuous and moreover since it is well
known that La and Lb also are continuous, we get d and δ are continuous, too.
By [27], any continuous derivation of Banach algebra leaves the primitive ideals
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invariant. Hence for any primitive ideal P of A, we have H(P ) ⊆ ap + d(P ) ⊆ P
and G(P ) ⊆ bp + δ(P ) ⊆ P . It means that continuous generalized derivations
H and G leaves the primitive ideal invariant. Denote A

P
= A for any primitive

ideals P . Hence we may introduce the generalized derivations HP : A → A and
GP : A → A defined by FP (x) = Fp(x + P ) = F (x) + P = ax + d(x) + P and
GP (x) = Gp(x + P ) = G(x) + P = bx + δ(x) + P for all x̄ ∈ Ā, where A/P = Ā
and x = x + P , respectively. Since P is a primitive ideal, the factor algebra Ā is
primitive and so it is prime. By (F (xy) + G(yx))n − (xy ± yx) ∈ rad(A) for all
x, y ∈ A we have

(FP (x̄ȳ) +GP (ȳx̄)
n − (x̄ȳ ± ȳx̄) = 0.

for all x, y ∈ A. Now, by Theorem 2.3, it is immediate that A is commutative or
d = 0̄ and δ = 0̄. Now, we assume that P is primitive ideal such that A is commu-
tative. In [28], Singer and Werner proved that any continuous linear derivation on
a commutative Banach algebra maps the algebra into the radical. Furthermore by
[13], any linear derivation on semisimple Banach algebra is continuous. We know
that there are no non-zero linear continuous derivations on commutative semisim-
ple Banach algebras. Therefore, d = 0̄ and δ = 0̄ in Ā. Hence we get d(A) ⊆ P
and δ(A) ⊆ P for all primitive ideal P of A. Since rad(A) is the intersection of all
primitive ideals, we get d(A) ⊆ rad(A) and δ(A) ⊆ rad(A), and we get the required
conclusion. ✷
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