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Existence of a Renormalized Solution of Nonlinear Parabolic Equations

with Lower Order Term and General Measure Data

A. Marah, A. Bouajaja and H. Redwane

abstract: We give an existence result of a renormalized solution for a class of

nonlinear parabolic equations
∂b(u)

∂t
−div

(

a(x, t,∇u)
)

+H(x, t,∇u) = µ, where the

right side is a general measure, b is a strictly increasing C1-function, −div(a(x, t,∇u))
is a Leray–Lions type operator with growth |∇u|p−1 in ∇u and H(x, t,∇u) is a non-
linear lower order term which satisfy the growth condition with respect to ∇u.

Key Words:Nonlinear parabolic equations, Existence, Renormalized solu-
tions, Lower order term, Measure data.
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1. Introduction

Let Ω be a bounded open subset of R
N , (N ≥ 1), T > 0 and let QT :=

Ω×(0, T ). We prove the existence of a renormalized solution for a class of nonlinear
parabolic equations of the type:

∂b(u)

∂t
− div

(

a(x, t,∇u)
)

+H(x, t,∇u) = µ in QT , (1.1)

b(u)(t = 0) = b(u0) in Ω, (1.2)

u = 0 on ∂Ω× (0, T ). (1.3)

In Problem (1.1)-(1.3) the framework is the following: the data µ is a general
measure, b is a strictly increasing C1-function, the operator −div(a(x, t,∇u)) is a
Leray–Lions operator which is coercive and grows like |∇u|p−1 with respect to ∇u
and H(x, t,∇u) is a nonlinear lower order. In the case where b(u) = u, H = 0, and
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the right hand side is a bounded measure, the existence of a distributional solution
was proved in [3], but due the lack of regularity of solution, the distributional
formulation is not strong enough to provide uniqueness (see [27] for a counter
example in the elliptic case). To overcome this difficulty the notion of renormalized
solutions firstly introduced by R.J. DiPerna and P.-L.Lions in [8] for the study of
Boltzmann equation was adapted to parabolic equations and elliptic equations with
L1 data. When µ is measure data that does not charge the sets of zero p-capacity
(the so called diffuse measure, see the definition in the section 2 below) a notion of
renormalized solution for Problem (1.1)-(1.3) was introduced in [11] for b(u) = u

and H = 0. Similar result was proved in [5] when H = 0. In [22] the existence of
renormalized solution was proved in the case where b(u) = u and H = 0 and µ is a
general measure (see also [6]). In [10] a similar notion of entropy solution is also
defined and proved to be equivalent to the renormalized one. In this paper we use
a new definition of renormalized solution which is adopted in [25] and [24] for the
study of parabolic p-Laplacian equations with general measure data.
The paper is organized as follows. In section 2 we give some preliminaries on the
concept of p-capacity. Section 3 will be devoted to set our main assumptions and
definition of renormalized solution and the statement of the existence result, while
in Section 4 we give the proof of our main result.

2. Preliminaries on parabolic capacity

We introduce the notion of p-capacity associated to our problem (for further
details see [21], [11]). Let QT = Ω × (0, T ) for any fixed T > 0 and 1 < p <

∞, and let us recall that V = W
1,p
0 (Ω) ∩ L2(Ω), endowed with its natural norm

‖.‖W 1,p
0 (Ω) + ‖.‖L2(Ω) and

W =
{

u ∈ Lp(0, T ;V ), ut ∈ Lp′

(0, T ;V ′)
}

,

endowed with its natural norm ‖.‖Lp(0,T ;V ) + ‖.‖Lp′(0,T ;V ′), remark that W is con-

tinuously embedded in C([0, T ], L2(Ω)), and if 1 < p < ∞, then C∞
c (QT ) is dense

in W . Let U ⊆ QT be an open set, we define the parabolic p-capacity of U as

capp(U) = inf
{

‖u‖W : u ∈W,u ≥ χU a.e. in QT

}

,

where as usual we set inf{∅} = +∞, then for any Borel set B ⊆ QT we define

capp(B) = inf
{

capp(U) : U open set of QT , B ⊆ U
}

.

We will denote by M(QT ) the set of all Radon measures with bounded variation on
QT , while, as we already mentioned, M0(QT ) the set of all measures with bounded
total variation over QT that do not charge the sets of zero p-capacity, that is if
µ ∈ M0(QT ), then µ(E) = 0, for all E ⊆ QT such that capp(E) = 0.
In [11] the authors proved the following decomposition theorem:



Existence of Renormalized Solution 95

Theorem 2.1. Let µ be a bounded measure on QT . If µ ∈ M0(QT ) then there
exists (f, g1, g2) such that f ∈ L1(QT ), g1 ∈ Lp′

(0, T ;W−1,p′

(Ω)), g2 ∈ Lp(0, T ;V )
and

∫

QT

φ dµ =

∫

QT

fφ dx dt+

∫ T

0

〈g1, φ〉 dt−

∫ T

0

〈φt, g2〉 dt φ ∈ C
∞
c (QT ).

Such a triplet (f, g1, g2) will called decomposition of µ.

Definition 2.2. A sequence of measures (µn) in QT is equidiffuse if for every
ε > 0 there exists η > 0 such that for every Borel set E ⊆ QT ,

capp(E) < η ⇒ |µn|(E) < ε ∀n ≥ 1.

Let ρn be a sequence of mollifiers on QT , the following result is proved in [25]

Proposition 2.3. If µ ∈ M0(QT ), then the sequence ρn ∗ µ is equidiffuse.

If µ ∈ M(QT ), thanks to a well known decomposition result (see for instance
[14]), we can split it into a sum (uniquely determined) of its absolutely continuous
part µd with respect to p-capacity and its singular part µs, that is µs is concentrated
on a set E of zero p-capacity. Hence, if µ ∈ M(QT ), we have

µ = µd + µs = µd + µ+
s − µ−

s .

3. Assumptions and definition of a renormalized solution

Throughout the paper, we assume that the following assumptions hold true:
Ω is a bounded open set on R

N (N ≥ 1), T > 0 is given and we set QT = Ω×(0, T )

b : R → R and (3.1)

is a strictly increasing C1-function with b(0) = 0, and there exists γ > 0 and Λ > 0
such that

γ ≤ b′(s) ≤ Λ, ∀s ∈ R. (3.2)

a : QT × R
N → R

N is a Carathéodory function (3.3)

a(x, t, ξ).ξ ≥ α|ξ|p, (3.4)

for almost every (x, t) ∈ QT , for every ξ ∈ R
N , where α > 0 is a given real number.

|a(x, t, ξ)| ≤ β(L(x, t) + |ξ|p−1), (3.5)

for almost every (x, t) ∈ QT , for every ξ ∈ R
N , where β > 0 is a given real number,

L is a non negative function in Lp′

(QT ).

[a(x, t, ξ)− a(x, t, ξ′)][ξ − ξ′] > 0. (3.6)
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Let H : QT × R
N → R be Carathéodory function such that for a.e. (x, t) ∈ QT

and for every ξ ∈ R
N , the growth condition

|H(x, t, ξ)| ≤ g(x, t)|ξ|δ, (3.7)

is satisfied, with δ = p(N+1)−N
N+2 and g belongs to LN+2,1(QT ).

µ ∈ M(QT ), (3.8)

u0 is an element of L1(Ω). (3.9)

We use in the present paper the two Lorentz spaces Lq,1(QT ) and L
q,∞(QT ), see

for example ( [18], [19]) for references about Lorentz spaces Lq,s. if f∗ denotes the
decreasing rearrangement of a measurable function f ,

f∗(r) = inf
{

s ≥ 0 : meas{(x, t) ∈ QT : |f(x, t)| > s} < r
}

, r ∈ [0,meas(QT )],

Lq,1(QT ) is the space of Lebesgue measurable functions such that

‖f‖qLq,1(QT ) =

∫ meas(QT )

0

f∗r
1
q
dr

r
<∞,

while Lq,∞(Q) is the space of Lebesgue measurable functions such that

‖f‖Lq,∞(QT ) = sup
r>0

r[meas{(x, t) ∈ QT : |f(x, t)| > r}]
1
q <∞.

If 1 < q <∞ we have the generalized Hölder inequality

∀f ∈ Lq,∞(QT ), ∀g ∈ Lq′,1(QT ) such that
1

q
+

1

q′
= 1,

∫

Q

|fg| ≤ ‖f‖Lq,∞(QT )‖g‖Lq′,1(QT ). (3.10)

Now we give the definition of renormalized solution of Problem (1.1)− (1.3).

Definition 3.1. A measurable function u is a renormalized solution of Problem
(1.1)-(1.3) if

Tk(u) ∈ Lp(0, T ;W 1,p
0 (Ω)), for every k > 0, H(x, t,∇u) ∈ L1(QT ), (3.11)

and if there exists a sequence of measures Γk ∈ M(QT ) such that:

Γk → µs tightly as k → ∞, (3.12)

(3.13)

Bk(u)t − div
(

a(x, t,∇Tk(u))
)

+H(x, t,∇Tk(u)) = µd + Γk in D
′(QT ),

where Bk(s) =

∫ s

0

T ′
k(r)b

′(r) dr, ∀s ∈ R.
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Remark 3.2. Observe that (3.2) and (3.11) imply that each term in (3.13) is well

defined and that (3.13) implies that Bk(u)t−div
(

a(x, t,∇Tk(u))
)

+H(x, t,∇Tk(u))

is a bounded measure, then we have

Bk(u)t − div
(

a(x, t,∇Tk(u))
)

+H(x, t,∇Tk(u)) = µd + Γk in M(QT ).

A remark on the assumption (3.2) is also necessary. As one could check later, since
the data is a measure µ, we are forced to assume γ ≤ b′(s) ≤ Λ. We conjecture
that this assumption is only technical and could be removed in order to deal with
more general elliptic-parabolic problems (see for instance [1], [7]).

In order to prove the existence result we give the following Lemma

Lemma 3.3. Let u be a measurable function satisfying Tk(u) ∈ Lp(0, T ;W 1,p
0 (Ω))∩

L∞(0, T ;L2(Ω)) for every k > 0 such that:

sup
t∈(0,T )

∫

Ω

|Tk(u)|
2 dx+

∫

QT

|∇Tk(u)|
p dxdt ≤Mk ∀k > 0,

where M is a positive constant. Then

‖|u|p−1‖
L

p(N+1)−N
N(p−1)

,∞
(QT )

≤ CM
( p
N

+1) N
N+p′ |QT |

1
p′

N
N+p′ ,

‖|∇u|p−1‖
L

p(N+1)−N
(N+1)(p−1)

,∞
(QT )

≤ CM
(N+2)(p−1)
p(N+1)−N ,

where C is a constant which depends only on N and p.

Proof. See [13] and [12] . ✷

4. Existence result

Let us introduce the following regularization of the data: for n ≥ 1 fixed

un0 ∈ C∞
c (QT ), such that un0 → u0 in L1(Ω), (4.1)

µn ∈ C∞(QT ), µ
n = µn

d + µn
s , (4.2)

where µn
d = ρn ∗ µd and µn

s = ρn ∗ µ+
s − ρn ∗ µ−

s = λn+ − λn−.
Moreover we have

‖µn‖L1(QT ) ≤ |µ|M(QT ),

and
µn converges to µ in the narrow topology of measures.

Let us now consider the following regularized problem

un ∈ Lp(0, T ;W 1,p
0 (Ω)), (4.3)
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∫ T

0

〈
∂vn

∂t
, ϕ〉 dt+

∫

QT

a(x, t,∇un)∇ϕ dxdt+

∫

QT

H(x, t,∇un)ϕdxdt =

∫

QT

µnϕ dxdt

∀ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(QT ),

b(un)(t = 0) = b(un0 ) in Ω, (4.4)

where vn = b(un).
As a consequence, proving existence of a weak solution un ∈ Lp(0, T ;W 1,p

0 (Ω)) of
(4.3)-(4.4) is classical (see for instance [15]).
Now we give the following proposition which gives some compactness results.

Proposition 4.1. Let un and vn be defined as before. Then

‖|∇un|δ‖
L

N+2
N+1

,∞
(QT )

≤ C, (4.5)

‖un‖L∞(0,T ;L1(Ω)) ≤ C, (4.6)
∫

Q

|∇Tk(u
n)|p dxdt ≤ Ck, (4.7)

∫

Q

|∇Tk(v
n)|p dxdt ≤ Ck, (4.8)

un is bounded in Lq(0, T ;W 1,q
0 (Ω)) ∀ 1 < q < p−

N

N + 1
, (4.9)

Moreover, there exists a measurable function u and v = b(u) such that Tk(u) and
Tk(v) belong to Lp(0, T ;W 1,p

0 (Ω)), and u belongs to L∞(0, T ;L1(Ω)), up to a sub-
sequence, for any k > 0 and for any 1 < q < p− N

N+1 we have

(4.10)

un → u a.e. on QT weakly in Lq(0, T ;W 1,q
0 (Ω)) and strongly in L1(QT ),

Tk(u
n)⇀ Tk(u) weakly in Lp(0, T ;W 1,p

0 (Ω)) and a.e. in QT , (4.11)

Tk(v
n)⇀ Tk(v) weakly in Lp(0, T ;W 1,p

0 (Ω)) and a.e. in QT . (4.12)

Proof. The proof of this Proposition relies on standard techniques for problems of
type (4.3)-(4.4). Let k > 0, we take Tk(u

n)χ(0,t) as test function in (4.3) for every
t ∈ (0, T ) and we have

(4.13)
∫

Ω

Bk(u
n)(t) dx+

∫

Qt

a(x, t,∇un)∇Tk(u
n) dxdt

≤

∫

Qt

|H(x, t,∇un)||Tk(u
n)| dxdt+

∫

Qt

µnTk(u
n) dxdt+

∫

Ω

Bk(u
n
0 ) dx,
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where Bk(s) =

∫ s

0

Tk(r)b
′(r) dr.

Using (3.4) and (3.7) we obtain

∫

Ω

Bk(u
n)(t) dx + α

∫

Qt

|∇Tk(u
n)|p dxdt

≤ k
(

∫

Qt

|g(x, t)||∇un|δ dxdt + ‖µn‖L1(Qt) + ‖b(un0 )‖L1(Ω)

)

,

if we take the supremum for t ∈ (0, t1), where t1 ∈ (0, T ) will be choosen later, by
(3.2) we have

γ

2
sup

t∈(0,t1)

∫

Ω

|Tk(u
n)|2 dx+ α

∫

Qt1

|∇Tk(u
n)|p dxdt

≤ k
(

∫

Qt1

|g(x, t)||∇un|δ dxdt + ‖µn‖L1(QT ) + ‖b(un0 )‖L1(Ω)

)

,

and thanks to the generalized Hölder inequality we obtain

γ

2
sup

t∈(0,t1)

∫

Ω

|Tk(u
n)|2 dx+ α

∫

Qt1

|∇Tk(u
n)|p dxdt (4.14)

≤ k
(

‖|∇un|δ‖
L

N+2
N+1

,∞
(Qt1 )

‖g‖LN+2,1(Qt1 )
+ ‖µn‖L1(QT ) + ‖b(un0 )‖L1(Ω)

)

≤Mk,

where M = ‖|∇un|δ‖
L

N+2
N+1

,∞
(Qt1 )

‖g‖LN+2,1(Qt1 )
+ ‖µn‖L1(QT ) + ‖b(un0 )‖L1(Ω),

by Lemma 3.3 we obtain

‖|∇un|δ‖
L

N+2
N+1

,∞
(Qt1 )

= ‖|∇un|p−1‖
δ

p−1

L
p(N+1)−N
(N+1)(p−1)

,∞
(Qt1 )

(4.15)

≤ C(‖|∇un|δ‖
L

N+2
N+1

,∞
(Qt1 )

‖g‖LN+2,1(Qt1 )
+ ‖µn‖L1(QT ) + ‖b(un0 )‖L1(Ω)).

If we choose t1 such that

1− C‖g‖LN+2,1(Qt1 )
> 0, (4.16)

holds, then we have

‖|∇un|δ‖
L

N+2
N+1

,∞
(Qt1 )

≤ C, (4.17)

which yields (4.5).

Since Bk(s) ≥ γ

∫ s

0

T1(r) dr ≥ γ(|s| − 1) ∀s ∈ R, we obtain

‖un‖L∞(0,t1;L1(Ω)) ≤
1

γ
M + meas(Ω).
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From (4.17) it follows that

‖un‖L∞(0,t1;L1(Ω)) ≤ C. (4.18)

Now we use the same technique as in ( [23]). We consider a partition of the interval
[0, T ] into a finite number of intervals [0, t1], [t1, t2],...,[tn−1, T ] such that for each
[ti−1, ti] the condition (4.16) holds.
In this way in each cylindre Ω× [ti−1, ti] we obtain a priori estimates of type (4.5)
and (4.6). From (4.14) and (4.17) with T in place of t1 we obtain (4.7).
By using (4.6) and (4.7), and thanks to L. Boccardo and T. Gallouët (see [3])
we obtain (4.9). By (3.2), (4.9), and since µn is bounded in L1(QT ), one obtain
that ∂vn

∂t is bounded in L1(0, T ;W−1,q′(Ω)) for every q′ < 1 + 1
(p−1)(N+1) , using a

standard compactness arguments (see [26]) yield (4.10), (4.11) and (4.12). ✷

Let us introduce for k ≥ 0 fixed, the time regularization of the function Tk(v).
This kind of regularization has been first introduced by R. Landes. More recently, it
has been exploited to solve a few nonlinear evolution problems with L1 or measure
data. This specific time regularization of Tk(v) (for fixed k ≥ 0) is defined as
follows. Let (vν0 )ν in L∞(Ω)∩W 1,p

0 (Ω) such that ‖vν0‖L∞(Ω) ≤ k, for all ν > 0, and

vν0 → Tk(b(u0)) a.e. in Ω with 1
ν ‖v

ν
0‖Lp(Ω) → 0 as ν → +∞.

For fixed k ≥ 0 and ν > 0, let us consider the unique solution Tk(v)ν ∈ L∞(QT ) ∩
Lp(0, T,W 1,p

0 (Ω)) of the monotone problem:

∂Tk(v)ν
∂t

+ ν(Tk(v)ν − Tk(v)) = 0 in D
′(QT ),

Tk(v)ν(t = 0) = vν0 in Ω.

The behavior of Tk(v)ν as ν → +∞ is investigated in [17] and we just recall here
that:

Tk(v)ν → Tk(v) strongly in Lp(0, T,W 1,p
0 (Ω)) a.e. in QT as ν → +∞

with ‖Tk(v)ν‖L∞(Ω) ≤ k for any ν > 0, and ∂Tk(v)ν
∂t ∈ Lp(0, T,W 1,p

0 (Ω)).
We will denote ω(n, ν, k, ε) any quantity that vanishes as the parameters go to their
limit point with in the same order in which they appear, that is, for example

lim
ε→0

lim
k→∞

lim
ν→∞

lim
n→∞

|ω(n, ν, k, ε)| = 0.

We give the following result which has been proved in [2].

Lemma 4.2. Let vn be a sequence in Lp(0, T ;W 1,p
0 (Ω)) ∩ C0([0, T ];L2(Ω)), and

(vn)t ∈ Lp′

(0, T ;W−1,p′

(Ω)), suppose that vn converges almost everywhere in QT

to a function v such that Tk(v) ∈ Lp(0, T ;W 1,p
0 (Ω)) for every k > 0. then we have

∫ T

0

〈
∂vn

∂t
, Tε(v

n − Tk(v)ν))〉 dt ≥ ω(n, ν, k, ε).
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Proposition 4.3. The sequence (∇un) converges to ∇u a.e. in QT .

Proof. Adopting the method used in [2], we prove that for some θ > 0 , one has
up to subsequences still denoted by un (for simplicity of notation, we will omit the
dependence of a on x and t),

[

(a(∇un)− a(∇u)).(∇un −∇u)
]θ

→ 0 a.e. in Q. (4.19)

Note that (4.19) will be true if we show that

∫

QT

[

(a(∇un)− a(∇u)).(∇un −∇u)
]θ

dxdt = ω(n) (4.20)

The same argument in [16] and under asumptions on a(x, t, ξ) implies that ∇un

converges to ∇u a.e. in QT .
Thanks to Proposition 4.1, the following estimate holds

meas({|v| ≥ k}) = ω(k),

We can write
∫

QT

[

(a(∇un)− a(∇u)).(∇un −∇u)
]θ

dxdt

=

∫

{|v|≥k}

[

(a(∇un)− a(∇u)).(∇un −∇u)
]θ

dxdt

+

∫

{|v|<k}

[

(a(∇un)− a(∇u)).(∇un −∇u)
]θ

dxdt

= In,k + Jn,k.

Since un is bounded in Lq(0, T ;W 1,q
0 (Ω)) for q < p− N

N+1 , we can choose θ < q
p < 1,

so that using Hölder inequality, we obtain

|In,k| ≤ c meas({|v| ≥ k})1−θp/q,

and then In,k = ω(k). Now we set

Ψn,k =
(

a(∇un)− a(∇uχ{|v|<k})
)(

∇un −∇uχ{|v|<k}

)

,

and we have
∫

QT

[

(a(∇un)− a(∇u)).(∇un −∇u)
]θ

dxdt (4.21)

≤

∫

QT

Ψθ
n,kχ{|vn−Tk(v)ν |≤ε} +

∫

QT

Ψθ
n,kχ{|vn−Tk(v)ν |>ε} + ω(k),

since Ψθ
n,k is bounded in Lq/θp(QT ) independently of n and k, χ{|vn−Tk(v)ν |>ε}

converges to χ{|v−Tk(v)|>ε} almost everywhere in QT as n tends to +∞ (see [2],
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Lemma 3.2 ) and χ{|v−Tk(v)ν |>ε} converges to zero almost everywhere in QT as ν
and k tends to +∞ we obtain

∫

QT

Ψθ
n,kχ{|vn−Tk(v)ν |>ε} = ω(n, ν, k),

using Hölder inequality, (4.21) becomes

∫

QT

[

(a(∇un)− a(∇u)).(∇un −∇u)
]θ

dxdt

≤ meas(QT )
1−θ

(

∫

QT

Ψn,kχ{|vn−Tk(v)ν |≤ε}

)θ

+ ω(n, ν, k).

Then it remains to prove that

∫

QT

Ψn,kχ{|vn−Tk(v)ν |≤ε} = ω(n, ν, k, ε). (4.22)

By assumption (3.2) we can write

∫

QT

Ψn,kχ{|vn−Tk(v)ν |≤ε} (4.23)

≤
1

γ

(

∫

QT

b′(un)a(∇un)
(

∇un −∇uχ{|v|≤k}

)

χ{|vn−Tk(v)ν |≤ε}

)

−
1

γ

(

∫

QT

b′(un)a(∇uχ{|v|≤k})
(

∇un −∇uχ{|v|≤k}

)

χ{|vn−Tk(v)ν |≤ε}

)

By Proposition 4.1 and since |Tk(v)ν | ≤ k we obtain

∫

QT

b′(un)a(∇uχ{|v|≤k})
(

∇un −∇uχ{|v|≤k}

)

χ{|vn−Tk(v)ν |≤ε} (4.24)

=

∫

QT

a(∇uχ{|v|≤k})
(

∇vn − b′(un)b′(u)−1∇vχ{|v|≤k}

)

χ{|vn−Tk(v)ν |≤ε}

=

∫

QT

a(∇uχ{|v|≤k})
(

∇vn −∇Tk(v)ν
)

χ{|vn−Tk(v)ν |≤ε}

+

∫

QT

a(∇uχ{|v|≤k})
(

∇Tk(v)ν − b′(un)b′(u)−1∇Tk(v)
)

χ{|vn−Tk(v)ν |≤ε}

= A1 +A2.

For ε < 1 and thanks to Propsition 4.1 we obtain

A1 =

∫

QT

a(∇uχ{|v|≤k})∇Tε(v
n − Tk(v)ν )
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=

∫

QT

a(∇uχ{|v|≤k})∇Tε(Tk+1(v
n)− Tk(v)ν)

=

∫

QT

a(∇uχ{|v|≤k})∇Tε(Tk+1(v)− Tk(v)ν) + ω(n),

and the strong convergence of ∇Tk(v)ν to ∇Tk(v) in (Lp(QT ))
N leads to

A1 =

∫

QT

a(∇uχ{|v|≤k})∇Tε(Tk+1(v)− Tk(v)) + ω(n, ν)

= ω(n, ν).

By Proposition 4.1 we have b′(un) converges to b′(u) almost everywhere in QT , since
a(∇uχ{|v|≤k}) belongs to (Lp′

(QT ))
N , ∇Tk(v)ν and ∇Tk(v) belong to (Lp(QT ))

N

, the Lebesgue’s convergence theorem leads to

|A2| ≤

∫

QT

|a(∇uχ{|v|≤k})||∇Tk(v)ν − b′(un)b′(u)−1∇Tk(v)|,

≤

∫

QT

|a(∇uχ{|v|≤k})||∇Tk(v)ν −∇Tk(v)|+ ω(n),

and by the strong convergence of ∇Tk(v)ν to ∇Tk(v) in (Lp(QT ))
N we obtain

A2 = ω(n, ν).

On the other hand we have
∫

QT

b′(un)a(∇un)
(

∇un −∇uχ{|v|≤k}

)

χ{|vn−Tk(v)ν |≤ε} (4.25)

=

∫

QT

a(∇un)∇(vn − Tk(v)ν)χ{|vn−Tk(v)ν |≤ε}

+

∫

QT

a(∇un)
(

∇Tk(v)ν − b′(un)b′(u)−1∇Tk(v)
)

χ{|vn−Tk(v)ν |≤ε}.

We deal with the second term on the right side of (4.25), by assumption (3.1) it is
clear that {|vn| ≤ k + ε} ⊂ {|un| ≤ kε = max {b−1(k + ε), |b−1(−k − ε)|}} and by
Hölder inequality we have

∣

∣

∣

∫

QT

a(∇un)
(

∇Tk(v)ν − b′(un)b′(u)−1∇Tk(v)
)

χ{|vn−Tk(v)ν |≤ε}

∣

∣

∣

≤ ‖a(∇Tkε
(un)‖Lp′(QT )‖∇Tk(v)ν − b′(un)b′(u)−1∇Tk(v)‖Lp(QT ),

the almost everywhere convergence of b′(un) to b′(u) and Lebesgue’s convergence
theorem imply that b′(un)b′(u)−1∇Tk(v) converges to ∇Tk(v) strongly in
(Lp(QT ))

N , since |a(∇Tkε
(un)| is bounded in Lp′

(QT ) we obtain

∣

∣

∣

∫

QT

a(∇un)
(

∇Tk(v)ν − b′(un)b′(u)−1∇Tk(v)
)

χ{|vn−Tk(v)ν |≤ε}

∣

∣

∣
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≤ C‖∇Tk(v)ν −∇Tk(v)‖Lp(QT ) + ω(n),

and the strong convergence of ∇Tk(v)ν to ∇Tk(v) in (Lp(QT ))
N leads to

∫

QT

b′(un)a(∇un)
(

b′(un)−1∇Tk(v)ν − b′(u)−1∇Tk(v)
)

χ{|vn−Tk(v)ν |≤ε} = ω(n, ν).

Hence (4.23), (4.24) and (4.25) imply that

∫

QT

Ψn,kχ{|vn−Tk(v)ν |≤ε} ≤

∫

QT

a(∇un)∇(vn − Tk(v)ν )χ{|vn−Tk(v)ν |≤ε} + ω(n, ν).

Now we use the equation solved by un. Taking Tε(v
n − Tk(v)ν) in (4.3) we obtain

∫ T

0

〈
∂vn

∂t
, Tε(v

n − Tk(v)ν )〉 dt+

∫

QT

a(∇un)∇Tε(v
n − Tk(v)ν) dxdt

+

∫

QT

H(x, t,∇un)Tε(v
n − Tk(v)ν) dxdt =

∫

QT

µnTε(v
n − Tk(v)ν ) dxdt.

By property of µn we have

∣

∣

∣

∫

QT

µnTε(v
n − Tk(v)ν) dxdt

∣

∣

∣
≤ ε‖µn‖L1(QT ) ≤ ε|µ|M(QT ).

By generalized Hölder inequality we have

∣

∣

∣

∫

QT

H(x, t,∇un)Tε(v
n − Tk(v)ν) dxdt

∣

∣

∣
≤ ε‖g‖LN+2,1(QT )‖|∇u

n|δ‖
L

N+2
N+1

,∞
(QT )

.

By Lemma 4.2 we obtain

∫

QT

a(∇un)∇Tε(v
n − Tk(v)ν) dxdt ≤ ε

(

C‖g‖LN+2,1(QT ) + |µ|M(QT )

)

.

Hence
∫

QT

a(∇un)∇Tε(v
n − Tk(v)ν) dxdt ≤ ω(n, ν, ε). (4.26)

Then by (4.26) we obtain (4.22) and therefore (4.20) and (4.19). ✷

Remark 4.4. Let us observe that from Proposition 4.3 we have H(x, t,∇un) con-
verges to H(x, t,∇u) a.e. in QT and by Proposition 4.1 H(x, t,∇un) is equi-
integrable in L1(QT ). Indeed if E is a measurable set of QT , due the growth as-
sumption (3.7) on H, estimate (4.5) yields that

∫

E

|H(x, t,∇un)| dxdt ≤

∫

E

g(x, t)|∇un|δ dxdt
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≤ C‖g‖LN+2,1(E).

We conclude that H(x, t,∇un) is equi-integrable in L1(QT ). Then by Vitali’s the-
orem we deduce that H(x, t,∇un) converges to H(x, t,∇u) strongly in L1(QT ).
Let also remark that from Proposition 4.3, assumption (3.5) on a and Vitali’s the-
orem, we deduce that a(x, t,∇un) is strongly compact in L1(QT ).

Now we define the space S by

S =
{

z ∈ Lp(0, T ;W 1,p
0 (Ω)), zt ∈ Lp′

(0, T ;W−1,p′

(Ω)) + L1(QT )
}

,

endowed with its natural norm ‖.‖Lp(0,T ;W 1,p
0 (Ω))+‖.‖Lp′(0,T ;W−1,p′(Ω))+L1(QT ), and

its sub-space W1 as

W1 =
{

z ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(QT ), zt ∈ Lp′

(0, T ;W−1,p′

(Ω)) + L1(QT )
}

,

endowed with its natural norm

‖.‖Lp(0,T ;W 1,p
0 (Ω)) + ‖.‖L∞(QT ) + ‖.‖Lp′(0,T ;W−1,p′ (Ω))+L1(QT ),

for any p > 1.
Let us recall that a function z is called capp-quasi continuous if for every ε > 0
there exists an open set Fε with cap(Fε) ≤ ε such that the restriction of z to
QT \Fε is continuous. The following result shows that every functions in W1

satisfy a capacitary estimate for the parabolic capacity.

Theorem 4.5. Let z ∈ W1, then z admits a unique capp-quasi continuous repre-
sentative. Moreover, we have

capp({|z| > k}) ≤
C

k
max{[z]

1
p

∗ , [z]
1
p′

∗ },

where

[z]∗ = ‖z‖p
Lp(0,T ;W 1,p

0 (Ω))
+ ‖z1t ‖

p′

Lp′(0,T ;W−1,p′ (Ω))

+‖z‖L∞(QT )‖z
2
t ‖L1(QT ) + ‖z‖2L∞(0,T ;L2(Ω)),

such that z1t ∈ Lp′

(0, T ;W−1,p′

(Ω)), z2t ∈ L1(QT ) is any decomposition of zt, that
is zt = z1t + z2t .

Proof. See [22], Theorem 3 and Lemma 2. ✷

Now we prove the following theorem

Theorem 4.6. Let un ∈ Lp(0, T ;W 1,p
0 (Ω)) be a solution of Problem (4.3)-(4.4)

then

capp({|v
n| > k}) ≤

C

k
max{k

1
p , k

1
p′ }. ∀k ≥ 1
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Proof. Due to the presence of the lower order term H , the approach used in [25]
in the proof of Theorem 1.2 does not apply here, to overcome this difficulty we are
going to exploit the method used in [22] Theorem 4. Let us first introduce the
following function

Gk(s) =











1 if |s| ≤ k,

k + 1− |s| if k < |s| ≤ k + 1,

0 if |s| > k + 1.

let us denote by Gk(s) the primitive function of Gk(s). Since we have

∫

QT

|∇Tk(v
n)|p dxdt ≤ Ck,

we obtain
∫

QT

|∇Gk(v
n)|p dxdt ≤ Ck. (4.27)

Given ϕ ∈ C∞
c (QT ) and taking Gk(v

n)ϕ as test function in (4.3) we have in the
sense of distribution

Gk(v
n)t = div

(

Gk(v
n)a(x, t,∇un)

)

(4.28)

−b′(un)a(x, t,∇un).∇unχ{k≤vn<k+1} + b′(un)a(x, t,∇un).∇unχ{−k−1<vn≤−k}

−H(x, t,∇un)Gk(v
n) +Gk(v

n)µn,

therefore by assumption (3.2) and Proposition 4.1, we have

Gk(v
n)t ∈ Lp′

(0, T ;W−1,p′

(Ω)) + L1(Q),

and
Gk(v

n) ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(QT ),

thanks to Theorem 4.5, Gk(v
n) has a capp-quasicontinuous representative. To

conclude the proof is enough to prove the capacitary estimate of vn.
Since {|vn| > k} = {Gk(v

n) > k}, by Theorem 4.5 we obtain

capp({|v
n| > k}) ≤

C

k
max{[Gk(v

n)]
1
p

∗ , [Gk(v
n)]

1
p′

∗ }.

Taking θk(v
n) = Tk+1(v

n)− Tk(v
n) as test function in (4.3) leads to

∫

Ω

Θk(v
n)(T ) dx+

∫

{k<|vn|≤k+1}

b′(un)a(x, t,∇un).∇un dxdt

+

∫

QT

H(x, t,∇un)θk(v
n) dxdt =

∫

QT

θk(v
n)µn dxdt+

∫

Ω

Θk(b(u
n
0 )) dx,
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where Θk(s) =

∫ s

0

θk(r) dr ∀s ∈ R.

Since ‖θk(vn)‖L∞(QT ) ≤ 1 and H(x, t,∇un) is strongly compact in L1(Q) one
obtains

∫

QT

b′(un)a(x, t,∇un).∇unχ{k≤vn<k+1} dxdt ≤ C,

∫

QT

b′(un)a(x, t,∇un).∇unχ{−k−1<vn≤−k} dxdt ≤ C,

∫

QT

|H(x, t,∇un)Gk(v
n)| dxdt ≤ C.

Then, from (4.28) it follows that

‖Gk(v
n)1t ‖

p′

Lp′(0,T ;W−1,p′ (Ω))
≤ Ck,

‖Gk(v
n)2t‖L1(Q) ≤ C,

using the following estimate

‖Gk(v
n)‖2L∞(0,T ;L2(Ω)) ≤ ‖Gk(v

n)‖L∞(QT )‖Gk(v
n)‖L∞(0,T ;L1(Ω)),

since vn is bounded in L∞(0, T ;L1(Ω)), we conclude that

capp({|v
n| > k}) ≤

C

k
max{k

1
p , k

1
p′ }.

✷

We have the following technical result

Lemma 4.7. Let µs = µ+
s − µ−

s ∈ M(QT ) where µ+
s and µ−

s are concentrated
respectively, on two disjoint E+ and E− of zero p-capacity. Then, for every δ > 0,
there exist two compact sets K+

δ ⊆ E+ and K−
δ ⊆ E− such that

µ+
s (E

+\K+
δ ) ≤ δ, µ−

s (E
+\K−

δ ) ≤ δ, (4.29)

and there exist ψ+
δ , ψ

−
δ ∈ C∞

c (QT ), such that

ψ+
δ ≡ 1 and ψ−

δ ≡ 1 respectively on K+
δ and K−

δ , (4.30)

0 ≤ ψ+
δ , ψ−

δ ≤ 1, (4.31)

supp(ψ+
δ ) ∩ supp(ψ−

δ ) ≡ ∅. (4.32)

Moreover

‖ψ+
δ ‖S ≤ δ, ‖ψ−

δ ‖S ≤ δ, (4.33)
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and in particular, there exists a decomposition of (ψ+
δ )t and a decomposition of

(ψ−
δ )t such that

‖(ψ+
δ )

1
t‖Lp′(0,T ;W−1,p′(Ω)) ≤

δ

3
, ‖(ψ+

δ )
2
t ‖L1(QT ) ≤

δ

3
, (4.34)

‖(ψ−
δ )

1
t‖Lp′(0,T ;W−1,p′(Ω)) ≤

δ

3
, ‖(ψ−

δ )
2
t ‖L1(QT ) ≤

δ

3
. (4.35)

Both ψ+
δ and ψ−

δ converges to zero ∗−weakly in L∞(QT ), in L1(QT ), and up to
subsequences, almost everywhere as δ vanishes. Moreover, if λn+ and λn− are as in
(4.2) we have

∫

QT

ψ−
δ dλ

n
+ = ω(n, δ),

∫

QT

ψ−
δ dµ

+
s ≤ δ, (4.36)

∫

QT

ψ+
δ dλ

n
− = ω(n, δ),

∫

QT

ψ+
δ dµ

−
s ≤ δ, (4.37)

∫

QT

(1− ψ+
δ ) dλ

n
+ = ω(n, δ),

∫

QT

(1 − ψ+
δ ) dµ

+
s ≤ δ, (4.38)

∫

QT

(1− ψ−
δ ) dλ

n
− = ω(n, δ),

∫

QT

(1 − ψ−
δ ) dµ

−
s ≤ δ. (4.39)

Proof. See [22], Lemma 5. ✷

Now we prove the following theorem

Theorem 4.8. Under assumptions (3.1)-(3.8), there exists at least a renormalized
solution u of Problem (1.1)-(1.3).

Let us fix σ > 0 and define

Sk,σ(s) =











1 if |s| ≤ k,

0 if |s| > k + σ,

affine if otherwise.

Proof. Step 1. Estimates in L1(QT ) on the energy term. Using hk,σ(u
n) =

1
σ (Tk+σ(u

n)− Tk(u
n)) as test function in (4.3) we obtain

∫

Ω

B⋆
hk,σ

(un)(T ) dx+
1

σ

∫

{k<|un|≤k+σ}

a(x, t,∇un).∇un dxdt

+

∫

QT

H(x, t,∇un)hk,σ(u
n) dxdt =

∫

QT

hk,σ(u
n)µn dxdt +

∫

Ω

B⋆
hk,σ

(un0 ) dx,

where B⋆
hk,σ

(s) =

∫ s

0

b′(r)hk,σ(r) dr ∀s ∈ R.

So that dropping positive terms

1

σ

∫

{k<|un|≤k+σ}

a(x, t,∇un).∇un dxdt (4.40)
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≤

∫

{|un|>k}

|µn| dxdt +

∫

{|un|>k}

|H(x, t,∇un)| dxdt+

∫

{|un
0 |>k}

b(un0 ) dx.

which implies, in particular,

1

σ

∫

{k<|un|≤k+σ}

a(x, t,∇un).∇un dxdt ≤ C. (4.41)

Step 2. Equation for the truncations. Given ϕ ∈ C∞
c (QT ), taking Sk,σ(u

n)ϕ as
test function in (4.3), we obtain

B⋆
Sk,σ

(un)t − div
(

Sk,σ(u
n)a(x, t,∇un)

)

+H(x, t,∇un)Sk,σ(u
n)

= µn
d + µn

sSk,σ(u
n) +

1

σ
sign(un)a(x, t,∇un).∇unχ{k<|un|≤k+σ}

+µn
d (Sk,σ(u

n)− 1) in D
′(QT ), (4.42)

where B⋆
Sk,σ

(s) =

∫ s

0

b′(r)Sk,σ(r) dr.

From (4.41), there exists a bounded Radon measure ςnk such that, as σ goes to zero

1

σ
sign(un)a(x, t,∇un).∇unχ{k<|un|≤k+σ} ⇀ ςnk ⋆ weakly in M(QT ).

Taking the limit as σ vanishes in (4.42) it follows that

Bk(u
n)t − div

(

a(x, t,∇Tk(u
n))

)

+H(x, t,∇Tk(u
n)) = µn

d + µn
sχ{|un|≤k}

+ςnk − µn
dχ{|un|≥k} in D

′(QT ),

where Bk(s) =

∫ s

0

T ′
k(r)b

′(r) dr, ∀s ∈ R.

We define the measure Γk
n as

Γk
n = µn

sχ{|un|≤k} + ςnk − µn
dχ{|un|≥k}.

Notice that
‖Γk

n‖L1(QT ) ≤ C,

so that there exist Γk ∈ M(Q) such that

Γk
n ⇀ Γk ⋆ weakly in M(QT ).

Therefore, using Proposition 4.1 and Proposition 4.3 , in the sense of distribution
we have

(4.43)

Bk(u)t − div
(

a(x, t,∇Tk(u))
)

+H(x, t,∇Tk(u
n)) = µd + Γk in D

′(QT ).
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Step 3. The limit of Γk. By substracting (4.43) from the distributional formula-
tion of (4.3) we obtain for any ϕ ∈ C∞

c (QT )
∫

QT

(vn −Bk(u))ϕt dxdt+

∫

QT

(a(x, t,∇un)− a(x, t,∇Tk(u))∇ϕdxdt (4.44)

+

∫

QT

(H(x, t,∇un)−H(x, t,∇Tk(u)))ϕ dxdt

=

∫

QT

(µn
d − µd)ϕ dxdt+

∫

Q

(µn
s − Γk)ϕ dxdt.

Using Proposition 4.1 and Proposition 4.3 we obtain from (4.44) in the sense of
distribution

Γk = µs + ω(n, k) in D
′(QT ).

To complete the proof we have to show that the previous limit is actually tight.
Let us choose without loss of generality ϕ ∈ C1(QT ) (then by density argument we
show the result holds with ϕ ∈ C(QT )). We have

∫

QT

Γkϕdxdt =

∫

QT

ΓkΨδϕdxdt +

∫

QT

Γk(1−Ψδ)ϕdxdt,

where Ψδ = ψ+
δ + ψ−

δ is chosen as in Lemma 4.7. Thanks to the previeous result
we can write

∫

QT

ΓkΨδϕdxdt =

∫

QT

µ+
s Ψδϕdxdt −

∫

QT

µ−
s Ψδϕdxdt + ω(n, k),

we have
∫

QT

µ+
s Ψδϕ dxdt =

∫

K+
δ

µ+
s ψ

+
δ ϕdxdt +

∫

E+\K+
δ

µ+
s ψ

+
δ ϕdxdt+

∫

QT

µ+
s ψ

−
δ ϕdxdt,

since ψ+
δ = 1 on K+

δ by Lebesgue’s theorem we have

∫

QT

µ+
s Ψδϕdxdt =

∫

QT

µ+
s ϕdxdt + ω(δ)

by Lemma 4.7 we obtain

∣

∣

∣

∫

E+\K+
δ

µ+
s ψ

+
δ ϕdxdt

∣

∣

∣
≤ δ‖ϕ‖L∞(QT ),

and
∣

∣

∣

∫

QT

µ+
s ψ

−
δ ϕdxdt

∣

∣

∣
≤ ‖ϕ‖L∞(QT )

∫

QT

ψ−
δ ϕdµ

+
s = ω(δ).

Then we otain
∫

QT

µ+
s Ψδϕdxdt =

∫

QT

µ+
s ϕdxdt+ ω(δ).
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Similarly we obtain

∫

QT

µ−
s Ψδϕdxdt =

∫

QT

µ−
s ϕdxdt+ ω(δ).

Hence
∫

QT

ΓkΨδϕdxdt =

∫

QT

ϕdµs + ω(k, δ).

To conclude we have to prove that

∫

Q

Γk(1−Ψδ)ϕdxdt = ω(k, δ).

From the definition of Γk we have
∫

QT

(1−Ψδ)ϕdΓ
k = lim

n

(

lim
σ

1

σ

∫

{k<|un|≤k+σ}

sign(un)a(x, t,∇un).∇un(1−Ψδ)ϕ

+

∫

{|un|≤k}

(1 −Ψδ)ϕdµ
n
s −

∫

{|un|>k}

(1−Ψδ)ϕ dµ
n
d

)

.

By Proposition 2.3 the sequence µn
d is equi-diffuse, thanks to assumption (3.2) and

Theorem 4.6 we deduce that

∣

∣

∣

∫

{|un|>k}

(1−Ψδ)ϕ dµ
n
d

∣

∣

∣
≤ ‖ϕ‖L∞(QT )

∫

{|vn|>kγ}

|µn
d | dxdt = ω(n, k).

We have
∫

{|un|≤k}

(1−Ψδ)ϕ dµ
n
s =

∫

{|un|≤k}

(1−Ψδ)ϕ dλ
n
+ −

∫

{|un|≤k}

(1 −Ψδ)ϕdλ
n
−,

and
∫

{|un|≤k}

(1−Ψδ)ϕdλ
n
+ =

∫

{|un|≤k}

(1− ψ+
δ )ϕ dλ

n
+ −

∫

{|un|≤k}

ψ−
δ ϕdλ

n
+,

Thanks to Lemma 4.7 we obtain

∣

∣

∣

∫

{|un|≤k}

(1−Ψδ)ϕdλ
n
+

∣

∣

∣
≤ ‖ϕ‖L∞(QT )

(

∫

QT

(1−ψ+
δ )dλ

n
++

∫

QT

ψ−
δ dλ

n
+

)

= ω(n, δ).

Similarly we obtain
∫

{|un|≤k}

(1 −Ψδ)ϕdλ
n
− = ω(n, δ),

and then
∫

{|un|≤k}

(1−Ψδ)ϕ dµ
n
s = ω(n, δ).
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It remains to prove that

∫

{k<|un|≤k+σ}

1

σ
sign(un)a(x, t,∇un).∇un(1− Ψδ)ϕdxdt = ω(σ, n, k, δ).

we use hk,σ(u
n)(1−Ψδ) as test function in (4.3) we obtain

∫

QT

B⋆
hk,σ

(un)(Ψδ)t +

∫

Ω

B⋆
hk,σ

(un)(T )−

∫

Ω

B⋆
hk,σ

(un0 )(1 −Ψδ(0)) (4.45)

+
1

σ

∫

{k<|un|≤k+σ}

a(x, t,∇un).∇un(1 −Ψδ)−

∫

QT

a(x, t,∇un).∇Ψδhk,σ(u
n)

+

∫

QT

H(x, t,∇un)hk,σ(u
n)(1−Ψδ)

=

∫

QT

hk,σ(u
n)(1−Ψδ)µ

n
d +

∫

QT

hk,σ(u
n)(1−Ψδ)µ

n
s .

Using assumption (3.2), the convergence in L1(QT ) of u
n, a(x, t,∇un), H(x, t,∇un)

and the regularity of Ψδ we obtain

∫

Ω

B⋆
hk,σ

(un)(T ) = ω(σ, n, k),

∫

QT

B⋆
hk,σ

(un)(Ψδ)t = ω(σ, n, k),

∫

Ω

B⋆
hk,σ

(un0 )(1−Ψδ(0)) = ω(σ, n, k),

∫

QT

a(x, t,∇un).∇Ψδhk,σ(u
n) = ω(σ, n, k),

∫

QT

H(x, t,∇un)hk,σ(u
n)(1 −Ψδ) = ω(σ, n, k).

Thanks to Theorem 4.6 and equi-diffuse property of µn
d

∫

QT

hk,σ(u
n)(1−Ψδ)µ

n
d = ω(σ, n, k),

finally by Lemma 4.7 we have

∫

QT

hk,σ(u
n)(1−Ψδ)µ

n
s = ω(σ, n, δ).

Hence we conclude that u is a renormalized solution of Problem (1.1)-(1.3). ✷
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Économiques et Sociales. Université Hassan 1,
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