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On The Existence of Positive Solutions for a Local Fractional
Boundary Value Problem with an Integral Boundary Condition
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abstract: In this work, we are concerned with the fractional differential equation

Dα

0+
u(t) + f(t, u(s)) = 0, 1 < α ≤ 2

where Dα

0+
is the standard Riemann-Liouville fractional derivative, subject to the

local boundary conditions

u(0) = 0, u(1) +

∫
η

0

u(t)dt = 0, 0 ≤ η < 1.

We try to obtain the existence of positive solutions by using some fixed point theo-
rems.
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1. Introduction

Fractional derivative, as an extension of ordinary derivative, is a suitable tool
for modeling of various physical phenomena, chemical processes and engineering.
Indeed, we can obtain numerous applications in viscoelasticity [3,37,38], dynamical
processes in self-similar structures [22], bioscience and modeling of neurons in biol-
ogy [33,23], Earth system dynamics [41] diffusion processes [24], electrochemistry
[29], signal processing [30], system control theory [39], and linear time-invariant
systems of any order with internal point delays [34]. Furthermore, fractional calcu-
lus has been found many applications in classical mechanics [32], and the calculus

2010 Mathematics Subject Classification: 34A08, 34B18, 26A33.

Submitted October 18, 2017. Published April 07, 2018

53
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.40065


54 A. Ahmadkhanlu

of variations [1], and is a very useful means for obtaining solutions of nonhomoge-
nous linear ordinary and partial differential equations [28].
There are some numerical methods for solving fractional differential equations,
fractional partial differential equations, fractional integro-differential equations and
dynamic systems containing fractional derivatives, such as Adomian’s decomposi-
tion method [35], Optimal perturbation iteration method [7,36], He’s variational
iteration method [15,25] , homotopy perturbation method [26,27] and other meth-
ods. Since default assumption of all these methods is the existence of solution,
the study of the existence and uniqueness of solution or multiplicity of solutions
of initial and boundary value problem, including fractional differential equations,
is important too in theoretical arguments. Remarkable researches in concern with
the existence and multiplicity of positive solutions for nonlinear fractional bound-
ary value problems have been done using fixed point theorems up to now (see
[2,11,12,13,16,17,21,24,34,40,42]).

Bai and Lu [4] and Zhang [42], investigated the existence of positive solutions
for equation

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2 (1.1)

with one of the boundary conditions

u(0) = u(1) = 0 (1.2)

u(0) + u′(0) = u(1) + u′(1) = 0, (1.3)

respectively. Bai [5] obtained existence results of positive solution for the following
nonlinear fractional boundary value problem

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2 (1.4)

u(0) = 0, βu(η) = u(1), (1.5)

by the use of fixed point index theory. Wang, et al., [40], by using the lower and
upper solutions method and fixed point theorem on cone, investigated the existence
and uniqueness of solution for the problem

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2 (1.6)

u(0) = 0, u(1) =

∫ 1

0

u(s)ds. (1.7)

Motivated by the above works, we study the existence and multiplicity of positive
solutions of the following boundary value problem

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2 (1.8)

u(0) = 0, u(1) +

∫ η

0

u(t)dt = 0, 0 < η ≤ 1 (1.9)

where f : [0, 1]× [0,∞) → [0,∞) is a continuous function and Dα
0+ is the standard

Riemann-Liouville fractional derivative. We obtain necessary and sufficient condi-
tions for existence of positive solutions of the problem. The existence of integral
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term in the boundary condition makes it more complicated to treat with the prob-
lem. Indeed calculating of the Green function and its properties have encountered
complexity.
We organize the rest of this paper as follows: In Section 2, we present some basic
definitions and conventions. Several preliminary facts and properties of fractional
calculus are also presented there. In Section 3, we derive the corresponding Green
function named by fractional Green function and we give some properties of the
fractional Green function. In section 4, by using some fixed point theorems on
cones, existence and multiplicity of positive solutions are obtained. Three exam-
ples demonstrate the applications of our results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a
Lebesgue-measurable function f : R+ → R is defined by (the Abel-integral operator)

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds (2.1)

provided that the integral exist.

Definition 2.2. The fractional derivative (in the sense of Reimann-Liouville) of
order 0 < α < 1 of a continuous function f : R+ → R is defined as the left inverse
of the fractional integral of f

Dαf(t) =
d

dt
I1−αf(t) (2.2)

That is

Dαf(t) =
1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αf(s)ds, (2.3)

provided that the right side exists.

Lemma 2.3. Assume u ∈ C(0, 1) ∩ L((0, 1)) with a fractional derivative of order
α > 0 that belongs to C(0, 1) ∩ L((0, 1)). Then

Iα0+D
α
0+u(t)dt = u(t) + C1t

α−1 + C2t
α−2 + . . .+ Cnt

α−n,

for some Ci ∈ R, i = 1, 2, . . . , n. where n = [α] + 1.

For the theory and applications of fractional integrals and fractional derivatives
we refer the reader to [18,31].

Theorem 2.4. ( [20]) Let B be a Banach space and let P ⊂ B be cone in B.
Assume that Ω1,Ω2 are open with 0 ∈ Ω1,Ω1 ⊂ Ω2. Let T : P ∩ (Ω2 \ Ω1) → P be
a completely continuous operator such that either
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(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2

Then T has a fixed point in P ∩ (Ω2 \ Ω1).

Theorem 2.5. ( [21]) Let P be a cone in a real Banach space B, Pc = {x ∈
P : ‖x‖ < C}, θ is a nonnegative continuous concave functional on P such that
θ(x) ≤ ‖x‖, for all C ∈ P c, and P (θ, b, d) = {x ∈ P : b ≤ θ(x), ‖x‖ ≤ d} Suppose
that T : P c → P c is completely continuous and there exists positive constant 0 <
a < b < d ≤ c such that

(i) {x ∈ P (θ, b, d) : θ(x) > b} 6= ∅ and θ(Tx) > b for x ∈ P (θ, b, d),

(ii) ‖Tx‖ < a for x ∈ P a,

(iii) θ(Tx) > b for x ∈ P (θ, b, c) with ‖Tx| > d.

Then T has at least three fixed points x1, x2 and x3 with
‖x1‖ < a, b < θ(x2), a < ‖x3‖ with θ(x3) < b.

3. Green Function

Lemma 3.1. Let g(t) ∈ L([0, 1]) and 1 < α ≤ 2, the uniqe solution of

Dα
0+u(t) + g(t) = 0, 0 < t < 1

u(0) = 0, u(1) +
∫ η

0 u(t)dt = 0, 0 ≤ η ≤ 1
(3.1)

is

u(t) =

∫ 1

0

G(t, s)g(s)ds

where

G(t, s) =















































αtα−1(1 − s)α−1 − (t− s)α−1 + tα−1(η − s)α

Γ(α)(α + ηα)
, 0 ≤ s ≤ η ≤ t ≤ 1

αtα−1(1 − s)α−1

Γ(α)(α+ ηα)
, 0 ≤ η ≤ t ≤ s ≤ 1

αtα−1(1 − s)α−1 − (t− s)α−1 + tα−1(η − s)α

Γ(α)(α + ηα)
, 0 ≤ s ≤ t ≤ η ≤ 1

αtα−1(1 − s)α−1 + tα−1(η − s)α

Γ(α)(α + ηα)
, 0 ≤ t ≤ s ≤ η ≤ 1.

(3.2)

Proof. In view of Lemma 2.3, the fractional differential equation in (3.1) is equiv-
alent to the integral equation

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds+ C1t
α−1 + C2t

α−2, (3.3)
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for some C1, C2 ∈ R. From the boundary condition u(0) = 0, we have C2 = 0. In
view of the second boundary condition, we conclude that

u(1) = − 1

Γ(α)

∫ 1

0

(1− s)α−1g(s)ds+ C1 = −
∫ η

0

u(t)dt. (3.4)

So

C1 =
1

Γ(α)

∫ 1

0

(1− s)α−1g(s)ds−
∫ η

0

u(t)dt. (3.5)

Thus

u(t) =
−1

Γ(α)

∫ t

0

(t−s)α−1g(s)ds+
tα−1

Γ(α)

∫ 1

0

(1−s)α−1g(s)ds−tα−1

∫ η

0

u(s)ds. (3.6)

By integrating from both side of relation above in [0, η], we have

∫ η

0

u(s)ds = − 1

Γ(α)

∫ η

0

∫ τ

0

(τ − s)α−1g(s)dsdτ

+
1

Γ(α)

∫ η

0

τα−1

∫ 1

0

(1− s)α−1g(s)dsdτ

−
∫ η

0

τα−1

∫ η

0

u(s)dsdτ

(3.7)

By use of the Fubini’s theorem over the first integral we have
∫ η

0

u(s)ds = − 1

Γ(α)

∫ η

0

∫ η

s

(τ − s)α−1g(s)dτds

+
ηα

αΓ(α)

∫ 1

0

(1− s)α−1g(s)dsdτ

−ηα

α

∫ η

0

u(s)dsdτ

= − 1

Γ(α)

∫ η

0

(η − s)αg(s)ds+
ηα

αΓ(α)

∫ 1

0

(1 − s)α−1g(s)dsdτ

−ηα

α

∫ η

0

u(s)ds.

(3.8)
So
∫ η

0

u(s)ds =
−1

(α+ ηα)Γ(α)

∫ η

0

(η−s)αg(s)ds+
ηα

(α + ηα)Γ(α)

∫ 1

0

(1−s)α−1g(s)ds.

(3.9)
Now

u(t) =
−1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds+
αtα−1

(α+ ηα)Γ(α)

∫ 1

0

(1− s)α−1g(s)ds

+
tα−1

(α+ ηα)Γ(α)

∫ η

0

(η − s)αg(s)ds. (3.10)

This complete the proof. ✷
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Lemma 3.2. The function G(t, s) in Lemma 3.1 satisfies the following conditions.

(i) G(t, s) is continuous on [0, 1]× [0, 1],

(ii) G(t, s) > 0, for any s, t ∈ (0, 1),

(iii) G(t, s) ≤ G(s, s) for s, t ∈ [0, 1],

(iv) there exists a positive γ(s) ∈ C(0, 1), such that

min
η≤t≤1

G(t, s) ≥ γ(s) max
0≤t≤1

G(t, s) = γ(s)G(s, s) ∀ 0 < s < 1

Proof. Let us assume

g1(t, s) =
αtα−1(1− s)α−1 − (t− s)α−1 + tα−1(η − s)α

Γ(α)(α + ηα)
, 0 ≤ s ≤ η ≤ t ≤ 1

g2(t, s) =
αtα−1(1− s)α−1

Γ(α)(α+ ηα)
, 0 ≤ η ≤ t ≤ s ≤ 1

g3(t, s) =
αtα−1(1− s)α−1 − (t− s)α−1 + tα−1(η − s)α

Γ(α)(α + ηα)
, 0 ≤ s ≤ t ≤ η ≤ 1

g4(t, s) =
αtα−1(1− s)α−1 + tα−1(η − s)α

Γ(α)(α+ ηα)
, 0 ≤ t ≤ s ≤ η ≤ 1.

(3.11)
One can check easily that (i) is true. So we prove that (ii) holds. It is clear that for
all 0 ≤ s, t ≤ 1, g2 and g4 are positive. We show that g1(t, s) > 0, 0 ≤ s ≤ η ≤ t ≤ 1.
The same argument can be used for g3(t, s). Let h(t, s) = α(1−s)α−1−(1− s

t
)α−1+

(η − s)α. Then g1(t, s) =
tα−1h(t,s)
Γ(α)(α+ηα) . Since

∂h(t,s)
∂t

= −(α− 1)( s
t2
)(1 − s

t
)α−2 ≤ 0,

h(t, s) is decreasing on [s, 1] with respect to t. It is enough to show that h(1, s) > 0.
By simple calculation we can deduce that h(1, s) = (α− 1)(1− s)α−1 + (η − s)α is
positive. That is g1(t, s) is positive for s, t ∈ (0, 1).
Next we show that (iii) holds. It is clear that g2(t, s) and g4(t, s) are increasing with
respect to t on [0, s] and by the same argument in (ii) one can show that g1(t, s)
and g3(t, s) are decreasing in [s, 1]. Thus G(t, s) is increasing with respect to t for
t ≤ s and G(t, s) is decreasing with respect to t for t ≥ s. Hence G(t, s) ≤ G(s, s)
for s, t ∈ [0, 1].
Finally we show that (iv) holds. In view of G(t, s) in (3.2), we have

min
η≤t≤1

G(t, s) =

{

minη≤t≤1{g1(t, s), g3(t, s)}, 0 ≤ s ≤ η,
minη≤t≤1{g2(t, s), g4(t, s)}, η ≤ s ≤ 1

=

{

g1(η, s), 0 ≤ s ≤ η,
g2(η, s), η ≤ s ≤ 1

(3.12)

Let

γ(s) =

{

g1(η,s)
G(s,s) , 0 ≤ s ≤ η,
g2(η,s)
G(s,s) , η ≤ s ≤ 1,

(3.13)
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where

G(s, s) =

{

αsα−1(1−s)α−1+sα−1(η−s)α

Γ(α)(α+ηα) , 0 ≤ s ≤ η,
αsα−1(1−s)α−1

Γ(α)(α+ηα) , η ≤ s ≤ 1.
(3.14)

Then

min
η≤t≤1

G(t, s) ≥ γ(s) max
0≤t≤1

G(t, s) = γ(s)G(s, s), for 0 < s < 1. (3.15)

This completes the proof. ✷

4. Main Results

In this section, we give some existence and multiplicity theorem for the problem
(1.8)-(1.9). For this, we impose some conditions on f which allow us to apply
Theorem 2.4 and 2.5. Let E = C[0, 1] be endowed with the maximum norm,
|u| = max0≤t≤1 |u(t)| and ordering u ≤ v if u(t) ≤ v(t) for all t ∈ [0, 1]. Also let
P ⊂ E be u ∈ E such that u(t) ≥ 0. We define the nonnegative continuous concave
functional θ on the cone P by

θ(u) = min
η≤t≤1

|u(t)|.

Throughout this section, we may use the following conditions.

(H1) (i) f(t, u) is Lebesque measurable with respect to t on [0, 1].

(ii) f(t, u) is continuous with respect to u on [0,∞)

(H2) f(t, u) is continuous on [0, 1]× [0,∞).

Theorem 4.1. Assume that the condition (H1) holds and there exists a real-valued
function h(t) ∈ [0, 1] such that for almost every t ∈ [0, 1] and all u, v ∈ [0,∞), we

have |f(t, u)− f(t, v)| ≤ h(t)|u − v|. If 0 <
∫ 1

0
G(s, s)h(s)ds < 1, then there exists

a unique solution of FBVP (1.8)-(1.9) on [0, 1].

Proof. Consider the operator T : P → P defined as

Tu(t) :=

∫ 1

0

G(t, s)f(s, u(s))ds. (4.1)

We show that T is a contraction mapping. In fact, for any u, v ∈ P , we have

|Tu(t)− Tv(t)| =

∣

∣

∣

∣

∫ 1

0

G(t, s)[f(s, u(s))− f(s, v(s))]ds

∣

∣

∣

∣

≤
∫ 1

0

G(t, s)|f(s, u(s))− f(s, v(s))|ds

≤
∫ 1

0

G(t, s)h(s)|u(s) − v(s)|ds

≤
∫ 1

0

G(t, s)h(s)ds‖u − v‖,
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That is
‖Tu− Tv‖ ≤ k‖u− v‖, (4.2)

where k =
∫ 1

0
G(t, s)h(s)ds ∈ (0, 1). By the Banach contraction mapping principle,

T has unique fixed point which is a solution of FBVP (1.8)-(1.9). This complete
the proof. ✷

Lemma 4.2. Assume that (H2) holds. Let T : P → E be the operator defined by

Tu(t) :=

∫ 1

0

G(t, s)f(s, u(s))ds, (4.3)

Then T : P → P is completely continuous

Proof. Since f(t, u) and G(t, s) are continuous and nonnegative, we deduce that
T : P → P is continuous. Now let Ω ⊂ P be bounded, that’s mean there
exists a positive constant K such that ‖u‖ ≤ K, for all u ∈ Ω. Let M =
max0≤t≤1,0≤u≤K |f(t, u)|+ 1 . Then for all u ∈ Ω, we have

|Tu(t)| ≤
∫ 1

0

G(t, s)f(s, u(s))ds ≤ M

∫ 1

0

G(s, s)ds. (4.4)

Hence T (Ω) is bounded.
For each u ∈ Ω and for all t1, t2 ∈ [0, 1] satisfy t1 < t2, we have

|Tu(t2)− Tu(t1)|

=

∣

∣

∣

∣

∫ 1

0

G(t2, s)f(s, u(s))ds−
∫ 1

0

G(t1, s)f(s, u(s))ds

∣

∣

∣

∣

≤ 1

Γ(α)

∫ t2

t1

[(t2 − s)α−1 − (t1 − s)α−1]f(s, u(s))ds

+
α(tα−1

2 − tα−1
1 )

(α+ ηα)Γ(α)

∫ 1

0

(1− s)α−1f(s, u(s))ds

+
(tα−1

2 − tα−1
1 )

(α+ ηα)Γ(α)

∫ η

0

(η − s)αf(s, u(s))ds

≤ M(α+ 1 + ηα+1)

(α+ ηα)Γ(α)(α+ 1)
(tα−1

2 − tα−1
1 )

Since tα−1 is uniformly continuous when t ∈ [0, 1] and 1 < α ≤ 2, it is easy to
show that T (Ω) is equicontinuous. As t1 → t2, the right-hand side of the above
inequality tends to zero. Using continuity of the Arzela-Ascoli Theorem we deduce
that T (Ω) is compact. That is, T : P → P is completely continuous. ✷

Our second result is based on Theorem 2.4. Let

M =

(
∫ 1

0

G(s, s)ds

)−1

, N =

(
∫ 1

η

γ(s)G(s, s)ds

)−1
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Theorem 4.3. Let (H2) holds and assume there exists two positive constant R >
r > 0 such that

(A1) f(t, u) ≤ MR, for (t, u) ∈ [0, 1]× [0, R]

(A2) f(t, u) ≥ Nr, for (t, u) ∈ [0, 1]× [0, r]

Then FBVP (1.8)-(1.9) has at least one positive solution u such that r1 ≤ ‖u‖ ≤ R.

Proof. By Lemma 4.2, T : P → P is completely continuous. We apply Theorem
2.4. Our proof will be continuoud in two steps.
Step 1. Let Ω2 := {u ∈ P : ‖u‖ < R} For u ∈ ∂Ω2, we have 0 ≤ u(t) ≤ R for all
t ∈ [0, 1]. From (A1) for t ∈ [0, 1], we have

‖Tu‖ = max
0≤t≤1

∫ 1

0

G(t, s)f(s, u(s))ds ≤ MR

∫ 1

0

G(s, s)ds = R = ‖u‖.

Step 2. Let Ω1 := {u ∈ P : ‖u‖ < r}. For u ∈ ∂Ω1, we have 0 ≤ u(t) ≤ r for all
t ∈ [0, 1]. By (A2) for t ∈ [η, 1], there is

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds ≥
∫ 1

0

γ(s)G(s, s)f(s, u(s))ds

≥ Nr

∫ 1

η

γ(s)G(s, s)ds = r = ‖u‖.

So for all u ∈ ∂Ω1 we have
‖Tu‖ ≥ ‖u‖.

Therefore (ii) of Theorem 2.4 complete the proof. ✷

Theorem 4.4. Let (H2) holds and there exists constants 0 < a < b < c such that
the following assumptions hold

(A’1) f(t, u) < Ma, for (t, u) ∈ [0, 1]× [0, a];

(A’2) f(t, u) ≥ Nb, for (t, u) ∈ [η, 1]× [b, c];

(A’3) f(t, u) < Mc, for (t, u) ∈ [0, 1]× [0, c];

Then the boundary value problem (1.8)-(1.9) has at least three positive solutions
u1, u2 and u3 such that

max
0≤t≤1

|u1(t)| < a, b < min
η≤t≤1

|u2(t)|, a < max
0≤t≤1

|u3(t)|, min
η≤t≤1

|u3(t)| < b.

Proof. We show that the conditions of Theorem 2.5 hold. If u ∈ P̄c, then ‖u‖ ≤ c.
From Assumption (A’3) we have f(t, u(t)) ≤ Mc for all 0 ≤ t ≤ 1. Consequently

‖Tu‖ = max
0≤t≤1

∣

∣

∣

∣

∫ 1

0

G(t, s)f(s, u(s))ds

∣

∣

∣

∣

≤ G(s, s)f(s, u(s))ds

≤
∫ 1

0

G(s, s)Mcds ≤ c.
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Hence, T : P̄c → P̄c. In the same way, if u ∈ P̄a, then assumption (A’1) f(t, u(t)) <
Ma, 0 ≤ t ≤ 1. Therefore, condition (ii) of Theorem 2.5 is satisfied. To check
condition (i) of Theorem 2.5, we choose u(t) = (b + c)/2, 0 ≤ t ≤ 1. it is easy
to see that u(t) = (b + c)/2 ∈ P (θ, b, c), θ(u) = θ((b + c)/2) > b, consequently,
{u ∈ P (θ, b, c) : θ(u) > b} 6= ∅, then b ≤ u(t) ≤ c for η ≤ t ≤ 1. Now from
assumption (A’2), we have f(t, u(t)) ≥ Nb for η ≤ t ≤ 1. So

θ(Tu) = min
η≤t≤1

|(Tu)(t)| ≥
∫ 1

0

γ(s)G(s, s)f(s, u(s))ds

>

∫ 1

η

γ(s)G(s, s)Nbds = b,

consequently

θ(Tu) > b, for all u ∈ P (θ, b, c)

This shows that condition (i) of Theorem 2.5 is satisfied. Hence by Theorem 2.5,
the FBVP (1.8)-(1.9) has at least three positive solutions u1, u2 and u3 such that

max
0≤t≤1

|u1(t)| < a, b < min
η≤t≤1

|u2(t)|, a < max
0≤t≤1

|u3(t)|, min
η≤t≤1

|u3(t)| < b.

This complete the proof. ✷

5. Examples

Example 5.1.

Consider the fractional boundary value problem

D
3
2

0+u(t) +
etu

(1 + et)(1 + u)
+ sin2 πt+ 1 = 0, 0 < t < 1

u(0) = 0, u(1) +

∫ 1
2

0

u(t)dt = 0.

(5.1)

where f(t, u) = etu
(1+et)(1+u) + sin2 πt + 1 ∈ [0, 1] × [0,∞), h(t) = et

1+et
. for all

u, v ∈ [0,∞), t ∈ [0, 1], we have

|f(t, u)− f(t, v)| ≤ et

1 + et
| u

(1 + u)
− v

(1 + v)
|

≤ et

1 + et
|u− v|

(1 + u)(1 + v)
≤ et

1 + et
|u− v|.

Now by simple calculation, we have
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∫ 1

0

G(s, s)h(s)ds ≤
3
2

Γ(32 )(
3
2 + (12 )

3
2 )

(
∫ 1

0

s
1
2 (1− s)

1
2

et

1 + et
ds

)

+
3
2

Γ(32 )(
3
2 + (12 )

3
2 )

(

∫ 1
2

0

s
1
2 (

1

2
− s)

3
2

et

1 + et
ds

)

≤
3
2

Γ(32 )(
3
2 + (12 )

3
2 )

(

∫ 1

0

s
1
2 (1− s)

1
2 ds+

∫ 1
2

0

s
1
2 (

1

2
− s)

3
2 ds

)

∼= 0.6637.

Thus all the assumption in Theorem 4.1 are satisfied, our results can be applied to
the problem (5.1)

Example 5.2.

Consider the problem

D
3
2

0+u(t) +
1

4
(u2(t) + sin2 πt) + 1 = 0

u(0) = 0, u(1) +

∫ 1
2

0

u(t)dt = 0.

(5.2)

Let f(t, u) = 1
4 (u

2(t) + sin2 t) + 1, (t, u) ∈ [0, 1]× [0,∞). In view of Example 5.1,
∫ 1

0
G(s, s)ds ∼= 0.6637 and

∫ 1

η

γ(s)G(s, s)ds =

∫ 1

1
2

g2(
1

2
, s)ds =

3
2

Γ(32 )(
3
2 + (12 )

3
2 )

∫ 1

1
2

(
1

2
)

1
2 (1 − s)

1
2 ds

=
12

36 + 6
√
2
.

Hence M = 1.5067.... and N = 3.7071..... Now by choosing r = 0.25 and R = 1,
we have

f(t, u) =
1

4
(u2(t) + sin2 t) + 1 ≤ 1.5 ≤ MR, (t, u) ∈ [0, 1]× [0, R],

f(t, u) =
1

4
(u2(t) + sin2 t) + 1 ≥ 1 ≥ Nr, (t, u) ∈ [0, 1]× [0, r]

Hence all conditions of Theorem 4.3 are satisfied consequently FBVP (5.2) has at
least one positive solution u such that 1

4 ≤ ‖u‖ ≤ 1.

Example 5.3.

Consider the problem

D
3
2

0+u(t) + f(t, u(t)) = 0

u(0) = 0, u(1) +

∫ 1
2

0

u(t)dt = 0,
(5.3)
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where

f(t, u) =

{

4u2 + sin2 πt
10 , (t, u) ∈ [0, 1]× [0, 1],

u+ 3 + sin2 πt
10 , (t, u) ∈ [0, 1]× (1,∞).

By considering M and N as in Example 5.2 and choosing a = 1
4 , b = 1, c = 8, we

have

f(t, u) = 4u2 +
sin2 πt

10
≤ 0.35 ≤ Ma = 0.3767...., (t, u) ∈ [0, 1]× [0, a],

f(t, u) = u+ 3 +
sin2 πt

10
≤ 11.1 ≤ Mc = 12.0536...., (t, u) ∈ [0, 1]× [0, 8],

f(t, u) = u+ 3 +
sin2 πt

10
≥ 4 ≥ Nb = 3.7071...., (t, u) ∈ [

1

2
, 1]× [1, 8]

Hence all conditions of Theorem 4.4 are satisfied consequently, FBVP (5.3) has at
least three positive solutions u1, u2 and u3 such that

‖u1‖ <
1

4
, 1 < θ(u2),

1

4
< ‖u3‖.

6. Conclusion

In this paper, by adding an integral term containing a parameter to one of
boundary conditions a new problem was defined. Using fixed point theory, enabled
us to prove the existence of positive solutions for this problem. Findings were
applied on some illustrative examples.
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