

(3s.) **v. 39** 3 (2021): 37–52. ISSN-00378712 IN PRESS doi:10.5269/bspm.40672

The Generators of 3-class Group of Some Fields of Degree 6 Over \mathbb{Q}

Siham Aouissi, Moulay Chrif Ismaili, Mohamed Talbi and Abdelmalek Azizi

ABSTRACT:

Let $k = \mathbb{Q}\left(\sqrt[3]{p}, \zeta_3\right)$, where p is a prime number such that $p \equiv 1 \pmod{9}$, and let $C_{k,3}$ be the 3-component of the class group of k. In [6], Frank Gerth III proves a conjecture made by Calegari and Emerton [2] which gives necessary and sufficient conditions for $C_{k,3}$ to be of rank two. The purpose of the present work is to determine generators of $C_{k,3}$, whenever it is isomorphic to $\mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

Key Words: Pure cubic fields, 3-class groups, Generators.

Contents

T	Introduction	37
2	Norm residue symbol and ideal factorization theory	38
	2.1 The norm residue symbol	38
	2.2 Prime factorization in a pure cubic field and in its normal closure	40
3	The generators of $C_{k,3}$	43
4	Appendix	50

1. Introduction

Let $\Gamma = \mathbb{Q}(\sqrt[3]{p})$ be a pure cubic field, where p is a prime number such that $p \equiv 1 \pmod{9}$. We denote by $\zeta_3 = -1/2 + i\sqrt{3}/2$ the normalized primitive third roots of unity, $\mathbf{k} = \mathbb{Q}(\sqrt[3]{p}, \zeta_3)$ the normal closure of Γ and $C_{\mathbf{k},3}$ the 3-component of the class group of \mathbf{k} .

Assuming 9 divides exactly the 3-class number of Γ . Then $C_{\mathbf{k},3} \simeq \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ if and only if u = 1, where u is an index of units that will be defined in the notations below. In this paper, we will determine the generators of $C_{\mathbf{k},3}$ when $C_{\mathbf{k},3}$ is of type (9,3) and 3 is not a cubic residue modulo p. We spot that Calegari and Emerton ([2, Lemma 5.11]) proved that the rank of the 3-class group of $\mathbb{Q}(\sqrt[3]{p}, \zeta_3)$, with $p \equiv 1 \pmod{9}$, is equal to two if 9 divides the 3-class number of $\mathbb{Q}(\sqrt[3]{p})$. Moreover, in his work [6, Theorem 1, p.471], Frank Gerth III proves that the converse to Calegari-Emerton's result is also true. The present work can be viewed as a continuation of the works [2] and [6].

After reviewing some basic properties of the norm residue symbols and prime factorization in the normal closure of a pure cubic field that will be needed later, we will establish in section 3 some preliminary results of the 3-class group $C_{k,3}$. Using

Typeset by ℬ^Sℜstyle. © Soc. Paran. de Mat.

²⁰¹⁰ Mathematics Subject Classification: 11R11, 11R16, 11R20, 11R27, 11R29, 11R37.

Submitted December 12, 2017. Published April 02, 2018

this, we arrive to determine the generators of 3-class groups $C_{k,3}$ of type (9,3). All the study cases are illustrated by numerical examples and summarized in tables in section 4. The usual notations on which the work is based is as follows:

- $\Gamma = \mathbb{Q}(\sqrt[3]{d})$: a pure cubic field, where d is a cube-free natural number;
- $\mathbf{k}_0 = \mathbb{Q}(\zeta_3)$: the third cyclotomic field ;
- $\mathbf{k} = \mathbb{Q}(\sqrt[3]{d}, \zeta_3)$: the normal closure of the pure cubic field Γ ;
- $u = [E_k : E_0]$: the index of the sub-group E_0 generated by the units of intermediate fields of the extension k/\mathbb{Q} in E_k the group of units of k;
- $\lambda = 1 \zeta_3$ prime integer of k₀;
- $\langle \tau \rangle = \operatorname{Gal}(\mathbf{k}/\Gamma), \ \tau^2 = id, \ \tau(\zeta_3) = \zeta_3^2 \ \text{and} \ \tau(\sqrt[3]{d}) = \sqrt[3]{d};$
- $\langle \sigma \rangle = \text{Gal}(\mathbf{k}/\mathbb{Q}(\zeta_3)), \sigma^3 = id, \sigma(\zeta_3) = \zeta_3 \text{ and } \sigma(\sqrt[3]{d}) = \zeta_3 \sqrt[3]{d};$
- For an algebraic number field L:
 - \mathcal{O}_L : the ring of integers of L;
 - $-E_L$: the group of units of L;
 - $-\mathcal{D}_L$: the discriminant of L;
 - $-h_L$: the class number of L;
 - $-h_{L,3}$: the 3-class number of L;
 - $-C_{L,3}$: the 3-class group of L;
 - $-L_3^{(1)}$: the Hilbert 3-class field of L;
 - [\mathcal{I}] : the class of a fractional ideal \mathcal{I} in the class group of L;
- $\left(\frac{c}{p}\right)_3 = 1 \Leftrightarrow X^3 \equiv c \pmod{p}$ resolved on $\mathbb{Z} \Leftrightarrow c^{(p-1)/3} \equiv 1 \pmod{p}$, where $c \in \mathbb{Z}$ and p is a prime number congruent to $1 \pmod{3}$.

2. Norm residue symbol and ideal factorization theory

2.1. The norm residue symbol

Let L/K an abelian extension of number fields with conductor f. For each finite or infinite prime ideal \mathcal{P} of K, we note by $f_{\mathcal{P}}$ the largest power of \mathcal{P} that divides f. Let $a \in K^*$, we determine an auxiliary number a_0 by the two conditions $a_0 \equiv a \pmod{f_{\mathcal{P}}}$ and $a_0 \equiv 1 \pmod{\frac{f}{f_{\mathcal{P}}}}$. Let \mathcal{Q} an ideal co-prime with \mathcal{P} such that $(a_0) = \mathcal{P}^e \mathcal{Q}$ (b = 0 if \mathcal{P} is infinite). We note by

$$\left(\frac{a,L}{\mathcal{P}}\right) = \left(\frac{L/K}{\mathcal{Q}}\right)$$

the Artin map in L/K applied to Q.

Definition 2.1. Let K be a number field containing the l^{th} -roots of units, where $l \in \mathbb{N}$, then for each $a, b \in K^*$ and prime ideal \mathcal{P} of K, we define the **norm residue** symbol by:

$$\left(\frac{a,b}{\mathcal{P}}\right)_l = \frac{\left(\frac{a,K(\sqrt[l]{b})}{\mathcal{P}}\right)\sqrt[l]{b}}{\sqrt[l]{b}}.$$

Therefore, if the prime ideal \mathcal{P} is unramified in the field $K(\sqrt[l]{b})$, then we write

$$\left(\frac{b}{\mathcal{P}}\right)_l = \frac{\left(\frac{K(\sqrt[l]{b})}{\mathcal{P}}\right)\sqrt[l]{b}}{\sqrt[l]{b}}.$$

Remark 2.2. Notice that $\left(\frac{a,b}{\mathcal{P}}\right)_l$ and $\left(\frac{b}{\mathcal{P}}\right)_l$ are two l^{th} -roots of units.

Following [9], the principal properties of the norm residue symbol are given as follows:

Properties

1. The product formula:

•
$$\left(\frac{a_1a_2,b}{\mathcal{P}}\right)_l = \left(\frac{a_1,b}{\mathcal{P}}\right)_l \left(\frac{a_2,b}{\mathcal{P}}\right)_l;$$

• $\left(\frac{a,b_1b_2}{\mathcal{P}}\right)_l = \left(\frac{a,b_1}{\mathcal{P}}\right)_l \left(\frac{a,b_2}{\mathcal{P}}\right)_l;$

2. The inverse formula: $\left(\frac{a,b}{\mathcal{P}}\right)_l = \left(\frac{b,a}{\mathcal{P}}\right)_l^{-1};$

3. $\left(\frac{a,b}{\mathcal{P}}\right)_l = 1 \Leftrightarrow a \text{ is norm residue of } K(\sqrt[l]{b}) \text{ modulo } f_b;$

4.
$$\left(\frac{\sigma a, \sigma b}{\sigma \mathcal{P}}\right)_l = \sigma \left(\frac{a, b}{\mathcal{P}}\right)_l$$
, for each automorphism σ of K ;

5. If \mathcal{P} is not divisible by the conductor f_b of $K(\sqrt[l]{b})$ and appears in (a) with the exponent e, then:

•
$$\left(\frac{a,b}{\mathcal{P}}\right)_l = \left(\frac{b}{\mathcal{P}}\right)_l^{-e};$$

• \mathcal{P} is infinite $(e=0) \Rightarrow \left(\frac{a,b}{\mathcal{P}}\right)_l = 1;$

6. The classical reciprocity law: let $a, b \in K^*$, and the conductors f_a and f_b of respectively $K(\sqrt[l]{a})$ and $K(\sqrt[l]{b})$ are co-prime, then:

$$\left(\frac{a}{(b)}\right)_l = \left(\frac{b}{(a)}\right)_l;$$

- 7. $\prod_{\mathcal{P}} \left(\frac{a, b}{\mathcal{P}}\right)_l = 1$, where the product is taken on the finite and infinite prime ideals;
- 8. Let L is a finite extension of K, $a \in L$ and $b \in K^*$, then:

$$\prod_{\mathfrak{P}|\mathcal{P}} \left(\frac{a,b}{\mathfrak{P}}\right)_l = \left(\frac{\mathfrak{N}_{L/K}(a),b}{\mathcal{P}}\right)_l.$$

Remark 2.3. From property (3), we have:

$$a \text{ is a norm in } K(\sqrt[l]{b}) \Rightarrow \left(\frac{a,b}{\mathcal{P}}\right)_l = 1,$$

for each prime ideal \mathcal{P} of K.

For more basic properties of the norm residue symbol in the number fields, we refer the reader to the papers [3], [8] and [9]. Notice that in section 3, we will use the norm cubic residue symbols (l = 3). As the ring of integer \mathcal{O}_{k_0} is principal, $h_{k_0} = 1$, we will write the norm cubic residue symbol as follows:

$$\left(\frac{a,b}{(\pi)}\right)_3 = \left(\frac{a,b}{\pi}\right)_3$$
 and $\left(\frac{a}{(\pi)}\right)_3 = \left(\frac{a}{\pi}\right)_3$

where $a, b \in k_0^*$ and π is a prime integer of \mathcal{O}_{k_0} .

2.2. Prime factorization in a pure cubic field and in its normal closure

Let be $\Gamma = \mathbb{Q}(\sqrt[3]{d})$ a pure cubic field, and \mathcal{O}_{Γ} the ring of integers of Γ . We write the natural integer d in form $d = ab^2$, where a and b are cube-free and co-prime positive integers. In his paper [3], Dedekind has defined two different types of pure cubic fields as follows:

Definition 2.4. Using the same notations as above:

- 1. We say that $\Gamma = \mathbb{Q}(\sqrt[3]{d})$ is of the **first kind** if $3\mathfrak{O}_{\Gamma} = \mathfrak{P}^3$, where \mathfrak{P} is a prime ideal of \mathfrak{O}_{Γ} , in this case, $a^2 b^2 \not\equiv 0 \pmod{9}$.
- 2. We say that $\Gamma = \mathbb{Q}(\sqrt[3]{d})$ is of the second kind if $3\mathfrak{O}_{\Gamma} = \mathfrak{P}^2\mathfrak{P}_1$, where $\mathfrak{P} \neq \mathfrak{P}_1$ are two primes of \mathfrak{O}_{Γ} , in this case, $a^2 b^2 \equiv 0 \pmod{9}$.

Now, let p be a prime number. In the following Proposition, we give the decomposition of the prime p in the pure cubic field $\Gamma = \mathbb{Q}(\sqrt[3]{ab^2})$. We denote by $\mathcal{P}, \mathcal{P}_i$ prime ideals of Γ , and by \mathcal{N} the absolute norm $\mathcal{N}_{\Gamma/\mathbb{Q}}$.

Proposition 2.5.

Let p a prime number such that $p \neq 3$, then:

- 1. If p divides ab and $p \neq 3$, then $p\mathcal{O}_{\Gamma} = \mathcal{P}^3$, $\mathcal{N}(\mathcal{P}) = p$.
- 2. If $p \nmid 3ab$ and $p \equiv -1 \pmod{3}$, then $p \mathcal{O}_{\Gamma} = \mathcal{PP}_1$, with $\mathcal{N}(\mathcal{P}) = p$ and $\mathcal{N}(\mathcal{P}_1) = p^2$.
- 3. If $p \nmid 3ab$ and $p \equiv 1 \pmod{3}$, then:
 - (a) $pO_{\Gamma} = \mathcal{P}\mathcal{P}_1\mathcal{P}_2$ with $\mathcal{N}(\mathcal{P}) = \mathcal{N}(\mathcal{P}_1) = \mathcal{N}(\mathcal{P}_2)$, if ab^2 is a cubic residue modulo p;
 - (b) $pO_{\Gamma} = \mathcal{P}$ with $\mathcal{N}(\mathcal{P}) = p^3$, if ab^2 is not a cubic residue modulo p.

Proof: See [3].

The ramification of the prime 3 need a particular treatment, it is the purpose of the following Proposition:

Proposition 2.6.

The decomposition into prime factors of 3 is:

$$3\mathfrak{O}_{\Gamma} = \begin{cases} \mathfrak{P}^3, \ if \ a^2 \not\equiv b^2 \pmod{9}, \\ \mathfrak{P}^2\mathfrak{P}_1, \ if \ a^2 \equiv b^2 \pmod{9}. \end{cases}$$

Proof: See [3].

The ideal factorization rules for the 3rd cyclotomic field k_0 (see [11]) is as follows:

- (*i*) $3\mathcal{O}_{k_0} = \lambda^2 = (1 \zeta_3)^2;$
- (*ii*) $pO_{k_0} = \pi_1 \pi_2$ in k_0 if $p \equiv 1 \pmod{3}$;
- (*iii*) $q\mathcal{O}_{k_0} = \mathsf{q}$ in k_0 if $q \equiv -1 \pmod{3}$.

Next, let k be the normal closure of Γ . We note by \mathcal{O}_k the ring of integers of k, \mathfrak{P} and \mathfrak{P}_s are prime ideals of k, $\mathcal{N} = \mathcal{N}_{k/\mathbb{Q}}$ the norm of k on \mathbb{Q} . Combining the ideal factorization rules for Γ with those of the field k_0 . The decomposition of the prime 3 in k is the purpose of the following Theorem:

Proposition 2.7.

The prime 3 decomposes in k as follows:

$$3\mathcal{O}_{k} = \begin{cases} \mathfrak{P}^{6}, \ si \ a^{2} \not\equiv b^{2} \pmod{9}, \\ \mathfrak{P}_{1}^{2} \mathfrak{P}_{2}^{2} \mathfrak{P}_{3}^{2}, \ si \ a^{2} \equiv b^{2} \pmod{9}. \end{cases}$$

Proof:

We have 3 ramifies in the quadratic field $k_0 = \mathbb{Q}(\zeta_3)$.

- 1) Suppose that Γ is the first kind, then by Proposition 2.6 we have $3\mathcal{O}_{\Gamma} = \mathcal{P}^3$. Hence, $3\mathcal{O}_k = \mathfrak{P}^6$.
- 2) Conversely, suppose that Γ is of second kind, then $3\mathcal{O}_{\Gamma} = \mathcal{P}^2\mathcal{P}_1$. It follows that $3\mathcal{O}_k = \mathfrak{P}_1^2\mathfrak{P}_2^2\mathfrak{P}_3^2$.

However, we have the following Proposition in which we characterize the decomposition of prime ideals of $p \neq 3$ in k.

Proposition 2.8.

Let p a prime number such that $p \neq 3$, then:

- 1. If p divides \mathcal{D}_{Γ} , then:
 - (a) $pO_k = \mathfrak{P}_1^3 \mathfrak{P}_2^3$, with $\mathcal{N}(\mathfrak{P}_1) = \mathcal{N}(\mathfrak{P}_2) = p$, if and only if -3 is a quadratic residue modulo p.
 - (b) $pO_k = \mathfrak{P}^3$, with $\mathcal{N}(\mathfrak{P}) = p^2$, if and only if -3 is not a quadratic residue modulo p.
- 2. If p does not divides \mathcal{D}_{Γ} and $p \equiv 1 \pmod{3}$, then:
 - (a) p decomposes completely in k if and only if \mathcal{D}_{Γ} is a cubic residue modulo p.
 - (b) $pO_k = \mathfrak{P}_1\mathfrak{P}_2$, with $\mathcal{N}(\mathfrak{P}_1) = \mathcal{N}(\mathfrak{P}_2) = p^3$, if and only if \mathcal{D}_{Γ} is not a cubic residue modulo p.
- If p does not divides D_Γ and p ≡ −1 (mod 3), then: pO_k = 𝔅₁𝔅₂𝔅₃, with N(𝔅₁) = N(𝔅₂) = N(𝔅₃) = p², if and only if −3 is not a quadratic residue modulo p.

Proof:

- 1. We use Proposition 2.5 and the decomposition of prime ideals in the quadratic fields $k_0 = \mathbb{Q}(\zeta_3)$.
- 2. Suppose that p does not divide \mathcal{D}_{Γ} and $p \equiv 1 \pmod{3}$, then -3 is a quadratic residue modulo p, then the multiplication formula gives

$$\left(\frac{-3}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{3}{p}\right).$$

On the one hand, by the Euler's Theorem we have

$$\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2},$$

On the other hand, the quadratic reciprocity law gives

$$\left(\frac{p}{3}\right)\left(\frac{3}{p}\right) = (-1)^{(p-1)/2},$$

since $p \equiv 1 \pmod{3}$, then p is a square modulo 3, which gives $\left(\frac{p}{3}\right) = 1$, so

$$\left(\frac{3}{p}\right) = (-1)^{(p-1)/2}.$$

Then

$$\left(\frac{-3}{p}\right) = ((-1)^{(p-1)/2})^2 = (-1)^{p-1} = 1.$$

Thus, p decomposes completely in k_0 .

- (a) If \mathcal{D}_{Γ} is a cubic residue modulo p, then by Proposition 2.5 we have p split completely in Γ . Hence p split completely in k.
- (b) If \mathcal{D}_{Γ} is not a cubic residue modulo p, we have p remains prime in Γ . Hence $p\mathcal{O}_{\mathbf{k}} = \mathfrak{P}_{1}\mathfrak{P}_{2}$.
- 3. We have $pO_{\Gamma} = \mathcal{PP}_1$, and p remains inert in k_0 , hence the result.

Remark 2.9. In the preceding Proposition 2.8, the situation $p\mathcal{O}_{k} = \mathfrak{P}_{1}\mathfrak{P}_{2}$ is never happens because if $p \equiv -1 \pmod{3}$, we have always $\left(\frac{-3}{p}\right) = -1$.

3. The generators of $C_{k,3}$

First, we let $C_{k,3}^{(\sigma)} = \{ \mathcal{A} \in C_{k,3} \mid \mathcal{A}^{\sigma} = \mathcal{A} \}$ be the group of ambiguous ideal classes of k/k₀, where σ is a generator of Gal (k/k₀), and put $q^* = 0$ or 1 according to ζ_3 is not norm or norm of an element of k\{0}. Let t be the number of primes ramifies in k/k₀. Then according to [4], we have

$$|C_{\mathbf{k},3}^{(\sigma)}| = 3^{t-2+q^*}$$

If we denote by $C_{k_0,3}$ the Sylow 3-subgroup of the ideal class group of k_0 , $C_{k_0,3} = \{1\}$. Let be $C_{k,3}^{(1-\sigma)} = \{\mathcal{A}^{(1-\sigma)} \mid \mathcal{A} \in C_{k,3}\}$. By the exact sequence :

$$1 \longrightarrow C_{\mathbf{k},3}^{(\sigma)} \longrightarrow C_{\mathbf{k},3} \xrightarrow{1-\sigma} C_{\mathbf{k},3} \longrightarrow C_{\mathbf{k},3}/C_{\mathbf{k},3}^{1-\sigma} \longrightarrow 1$$

we deduce that

$$|C_{\mathbf{k},3}^{(\sigma)}| = |C_{\mathbf{k},3}/C_{\mathbf{k},3}^{1-\sigma}|.$$

The fact that $C_{k,3}^{(\sigma)}$ and $C_{k,3}/C_{k,3}^{1-\sigma}$ are elementary abelian 3-groups imply that:

rank
$$C_{k,3}^{(\sigma)} = \operatorname{rank}(C_{k,3}/C_{k,3}^{1-\sigma}).$$

Define the 3-group $C_{\mathbf{k},3}^{(1-\sigma)^i}$ for each $i \in \mathbb{N}$ by

$$C_{\mathbf{k},3}^{(1-\sigma)^{i}} = \{\mathcal{A}^{(1-\sigma)^{i}} \mid \mathcal{A} \in C_{\mathbf{k},3}\}$$

and let s be the positive integer such that $C_{\mathbf{k},3}^{(\sigma)} \subseteq C_{\mathbf{k},3}^{(1-\sigma)^{s-1}}$ and $C_{\mathbf{k},3}^{(\sigma)} \not\subseteq C_{\mathbf{k},3}^{(1-\sigma)^s}$.

The following Proposition gives the structure of the 3-class group $C_{k,3}$ when 27 divides exactly the class number of k:

Proposition 3.1. Let be Γ a pure cubic field, k its normal closure and u the index of units defined as above, then:

- 1) $C_{k,3} \simeq \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \Leftrightarrow [C_{\Gamma,3} \simeq \mathbb{Z}/9\mathbb{Z} \text{ and } u = 1];$
- 2) $C_{k,3} \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \Leftrightarrow [C_{\Gamma,3} \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \text{ and } u = 1].$

Proof:

1) Assume that $C_{\mathbf{k},3} \simeq \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, then $h_{\mathbf{k},3} = 27$. According to Theorem 14.1 of [1], we have $27 = \frac{u}{3} \cdot h_{\Gamma,3}^2$, then u = 1 because otherwise 27 will be a square in \mathbb{N} , which is a contradiction. Then $h_{\Gamma,3}^2 = 3^4$ and $h_{\Gamma,3} = 9$. On the other hand, by Lemma 2.1 and Lemma 2.2 of [5] we have $C_{\mathbf{k},3} \simeq C_{\Gamma,3} \times C_{\mathbf{k},3}^-$, then $|C_{\mathbf{k},3}| = 3$. Since $C_{\mathbf{k},3}$ is of type (9,3), we deduce that $C_{\mathbf{k},3}^-$ is a cyclic 3-group of order 3 and $C_{\mathbf{k},3}^+$ is a cyclic 3-group of order 9. Therefore u = 1 and $C_{\Gamma,3} \simeq \mathbb{Z}/9\mathbb{Z}$. Reciprocally, assume that u = 1 and $C_{\Gamma,3} \simeq \mathbb{Z}/9\mathbb{Z}$. By Theorem 14.1 of [1], we deduce that $|C_{\mathbf{k},3}| = \frac{1}{3} \cdot |C_{\Gamma,3}|^2$, then $|C_{\mathbf{k},3}| = 27$ and $|C_{\mathbf{k},3}^-| = 3$. Thus:

$$C_{\mathbf{k},3} \simeq C_{\Gamma,3} \times C_{\mathbf{k},3}^{-} \simeq \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}.$$

2) We have the same proof as above.

Lemma 3.2. Let $\mathbf{k} = \mathbb{Q}(\sqrt[3]{p}, \zeta_3)$, where p is a prime number such that $p \equiv 1 \pmod{3}$. 3). Let $C_{\mathbf{k},3}^{(\sigma)}$ be the ambiguous ideal class group of $\mathbf{k}/\mathbb{Q}(\zeta_3)$, where σ is a generator of $\operatorname{Gal}(\mathbf{k}/\mathbb{Q}(\zeta_3))$. Then $|C_{\mathbf{k},3}^{(\sigma)}| = 3$.

Proof: Since $p \equiv 1 \pmod{3}$, then according to section 2.2, we have $p = \pi_1 \pi_2$, where π_1 and π_2 are two primes of k_0 such that $\pi_2 = \pi_1^{\tau}$ and $\pi_1 \equiv \pi_2 \equiv 1 \pmod{30_{k_0}}$. We study all cases depending on the congruence class of p modulo 9, then:

• If $p \equiv 4$ or 7 (mod 9), then according to section 2.2, the prime 3 is ramified in the field L, so the prime ideal $(1 - \zeta_3)$ is ramified in k/k₀. Also π_1 and π_2 are totally ramified in k. So t = 3. In addition, the fact that $p \equiv 4$ or 7 (mod 9) imply that $\pi_i \not\equiv 1 \pmod{(1-\zeta_3)^3}$ for $i = \{1, 2\}$, then according to section 5 of [4] we obtain

$$\left(\frac{\zeta_3, p}{p}\right)_3 \neq 1$$

where the symbol $(-)_3$ is the cubic Hilbert symbol. We deduce that ζ_3 is not a norm in the extension k/k₀, so $q^* = 0$. Hence rank $C_{k,3}^{(\sigma)} = 1$ and then $|C_{k,3}^{(\sigma)}| = 3$.

• If $p \equiv 1 \pmod{9}$, the prime ideals which ramified in k/k₀ are π_1 and π_2 , so t = 2. Moreover, $\pi_1 \equiv \pi_2 \equiv 1 \pmod{(1 - \zeta_3)^3}$, then according to [4], the cubic Hilbert symbol:

$$\left(\frac{\zeta_3, p}{\pi_1}\right)_3 = \left(\frac{\zeta_3, p}{\pi_2}\right)_3 = 1,$$

We conclude that ζ_3 is a norm in the extension k/k₀, then $q^* = 1$, so rank $C_{k,3}^{(\sigma)} = 1$ and $|C_{k,3}^{(\sigma)}| = 3$.

The basic result for determining the generators of the 3-class group of $\mathbf{k} = \mathbb{Q}(\sqrt[3]{p}, \zeta_3)$ when the 3-class number of k is divisible by 27 exactly, where p is a prime number such that $p \equiv 1 \pmod{9}$, is summarized in the following Theorem:

Theorem 3.3. Let $\Gamma = \mathbb{Q}(\sqrt[3]{p})$, where p is a prime number such that $p \equiv 1 \pmod{9}$, $k = \mathbb{Q}(\sqrt[3]{p}, \zeta_3)$ its normal closure and $C_{k,3}$ the 3-class group of k. Assuming 9 divides the 3-class number of Γ exactly, then:

The 3-class group $C_{k,3}$ is isomorphic to $\mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ if and only if u = 1.

Proof:

- \Rightarrow) By Proposition 3.1, it is clear that if $C_{k,3}$ is isomorphic to $\mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ then u = 1.
- (⇐) Assume that u = 1, then according to Theorem 14.1 of [1], $h_{k,3} = 27$. Since 9 divides the 3-class number of Γ, then by Lemma 5.11 of [2] we have rank $C_{k,3} = 2$. Hence $C_{k,3} \simeq \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

Proposition 3.4. Let $\Gamma = \mathbb{Q}(\sqrt[3]{p})$, where p is a prime number such that $p \equiv 1 \pmod{9}$, $k = \mathbb{Q}(\sqrt[3]{p}, \zeta_3)$ it's normal closure, and $C_{k,3}$ be the 3-class group of k. Assume that 9 divides the 3-class number of Γ exactly and u = 1. Put $\langle A \rangle = C_{k,3}^+$, where $A \in C_{k,3}$ such that $A^9 = 1$ and $A^3 \neq 1$. Let $C_{k,3}^{(\sigma)}$ be the 3-group of ambiguous ideal classes of k/k_0 and $C_{k,3}^{1-\sigma} = \{A^{1-\sigma} | A \in C_{k,3}\}$ be the principal genus of $C_{k,3}$. Then:

- 1. $C_{\mathbf{k},3}^{(\sigma)}$ is a subgroup of $C_{\mathbf{k},3}^+$, $\mathcal{A} \notin C_{\mathbf{k},3}^{(\sigma)}$ and $C_{\mathbf{k},3}^{(\sigma)} = \langle \mathcal{A}^3 \rangle = \langle \mathcal{B}^{1-\sigma} \rangle$, where $\mathcal{B} \in C_{\mathbf{k},3}$ such that $C_{\mathbf{k},3}^- = \langle \mathcal{B} \rangle$.
- 2. $C_{\mathbf{k},3}^- = \langle (\mathcal{A}^2)^{\sigma-1} \rangle$, and we have $C_{\mathbf{k},3}^{1-\sigma} = C_{\mathbf{k},3}^- \times C_{\mathbf{k},3}^{(\sigma)}$ is a 3-group of type (3,3),

where $C_{k,3}^+$ and $C_{k,3}^-$ are defined in Lemma 2.1 of [5].

Proof:

1. Since 9 divides the 3-class number of Γ exactly and u = 1, then according to Theorem 3.3, $C_{k,3}$ is of type (9,3), this implies by [6] that the integer s defined above is equal 3, and according to Case 4 of [6], we conclude that $\left(C_{k,3}^{(\sigma)}\right)^+ = 3$ and $\left|\left(C_{k,3}^{(\sigma)}\right)^-\right| = 1$, this implies that $C_{k,3}^{(\sigma)}$ is a subgroup of $C_{k,3}^+$. Therefore, $\langle \mathcal{A}^3 \rangle$ is the unique subgroup of order 3 of $C_{k,3}^+$ and $C_{k,3}^{(\sigma)}$ is cyclic of order 3, then $C_{k,3}^{(\sigma)} = \langle \mathcal{A}^3 \rangle$.

Moreover, if $C_{\mathbf{k},3}^- = \langle \mathcal{B} \rangle$ where $\mathcal{B} \in C_{\mathbf{k},3}$, then $\mathcal{B} \notin C_{\mathbf{k},3}^{(\sigma)}$, so $\mathcal{B}^{\sigma} \neq \mathcal{B}$. Furthermore, $\mathcal{B}^{\sigma} \neq \mathcal{B}^2$ because otherwise we will have $\mathcal{B}^{\sigma^2} = (\mathcal{B}^2)^{\sigma} = (\mathcal{B}^{\sigma})^2 = \mathcal{B}^4$, as $\mathcal{B} \in C_{\mathbf{k},3}^-$, then $\mathcal{B}^3 = 1$. Therefore, $\mathcal{B}^{\sigma^2} = \mathcal{B}$, so $\mathcal{B}^{\sigma^3} = \mathcal{B}^{\sigma}$, since $\sigma^3 = 1$, then $\mathcal{B}^{\sigma} = \mathcal{B}$. This is impossible because $\mathcal{B}^{\sigma} \neq \mathcal{B}$. As $\mathcal{B}^3 = 1$ and $\mathcal{B}^{1+\sigma+\sigma^2} = 1$, then $\mathcal{B}^{\sigma^2} = \mathcal{B}^{2+2\sigma}$. This equality makes it possible to show that $\mathcal{B}^{1-\sigma}$ is an ambiguous class. We conclude that $C_{\mathbf{k},3}^{(\sigma)} = \langle \mathcal{B}^{1-\sigma} \rangle$.

2. We reason as in the assertion 1. Since $\mathcal{A}^2 \notin C_{\mathbf{k},3}^-$, we deduce that $C_{\mathbf{k},3}^- = \langle (\mathcal{A}^2)^{1-\sigma} \rangle$. then $C_{\mathbf{k},3}^-$ and $C_{\mathbf{k},3}^{(\sigma)}$ are contained in $C_{\mathbf{k},3}^{1-\sigma}$ which is of order 9, because $|C_{\mathbf{k},3}| = 27$ and $|C_{\mathbf{k},3}^{(\sigma)}| = 3$. Consequently, $C_{\mathbf{k},3}^{1-\sigma} = C_{\mathbf{k},3}^{(\sigma)} \times C_{\mathbf{k},3}^- = \langle \mathcal{A}^3, \mathcal{B} \rangle$.

Our principal result can be stated as follows:

Theorem 3.5. Let $\mathbf{k} = \mathbb{Q}(\sqrt[3]{p}, \zeta_3)$, where p is a prime number such that $p \equiv 1 \pmod{9}$. The prime 3 decomposes in \mathbf{k} as $3\mathfrak{O}_{\mathbf{k}} = \mathfrak{P}^2\mathfrak{Q}^2\mathfrak{R}^2$, where \mathfrak{P} , \mathfrak{Q} and \mathfrak{R} are prime ideals of \mathbf{k} . Put $h = \frac{h_{\mathbf{k}}}{27}$, where $h_{\mathbf{k}}$ is the class number of \mathbf{k} . Assume that 9 divides exactly the 3-class number of $\mathbb{Q}(\sqrt[3]{p})$ and u = 1. If 3 is not a cubic residue modulo p, then:

- 1. The class $[\mathbb{R}^h]$ generate $C^+_{\mathbf{k},3}$;
- 2. The 3-class group $C_{k,3}$ is generated by classes $[\mathbb{R}^h]$ and $[\mathbb{R}^h][\mathbb{P}^h]^2$, and we have:

$$C_{\mathbf{k},3} = \langle [\mathcal{R}^h] \rangle \times \langle [\mathcal{R}^h] [\mathcal{P}^h]^2 \rangle = \langle [\mathcal{R}^h], [\mathcal{P}^h]^2 \rangle$$

In Appendix of this paper, we illustrated this results by the numerical examples with the aid of *Pari* programming [12] and summarized in some tables in section 4.

Proof:

We start our proof by showing that $[\mathcal{R}^h]$ is of order 9:

Since the field $\Gamma = \mathbb{Q}(\sqrt[3]{p})$ with $p \equiv 1 \pmod{9}$ is of second kind, then by Proposition 2.6 we have $3\mathcal{O}_{\Gamma} = \mathcal{H}^2 \mathcal{S}$, where \mathcal{H} and \mathcal{S} are prime of Γ , since $\mathcal{H}\mathcal{O}_k = \mathcal{P}\mathcal{Q}$ and $\mathcal{S}\mathcal{O}_k = \mathcal{R}^2$, then $3\mathcal{O}_k = \mathcal{P}^2\mathcal{Q}^2\mathcal{R}^2$, where \mathcal{P} , \mathcal{Q} and \mathcal{R} are prime ideals of k. Moreover, the prime ideal \mathcal{R} is invariant by τ , then $[\mathcal{R}] \in \{\chi \in C_{\mathbf{k},3} | \chi^{\tau} = \chi\}$. If 9 divides the 3-class number of $\mathbb{Q}(\sqrt[3]{p})$ exactly and u = 1, then by Theorem

If 9 divides the 3-class number of $\mathbb{Q}(\sqrt[3]{p})$ exactly and u = 1, then by Theorem 3.3 we have $C_{\mathbf{k},3}$ is of type (9,3). According to Proposition 3.1, we have $C_{\mathbf{k},3}^+$ is cyclic of order 9, thus $[\mathcal{R}^h]^9 = 1$. Hence the class $[\mathcal{R}^h]$ is of order 9 if and only if \mathcal{R}^h and \mathcal{R}^{3h} are not principal.

We argue by the absurd: assume that \mathcal{R}^h is principal, we have

$$\begin{split} [\mathcal{R}^{h}] &= 1 \quad \Rightarrow \quad \exists \alpha \in \mathbf{k} \quad | \quad \mathcal{R}^{h} = \alpha \mathcal{O}_{\mathbf{k}}, \\ &\Rightarrow \quad \mathcal{N}_{\mathbf{k}|\mathbf{k}_{0}}(\mathcal{R}^{h}) = \mathcal{N}_{\mathbf{k}|\mathbf{k}_{0}}(\alpha \mathcal{O}_{\mathbf{k}}), \\ &\Rightarrow \quad \lambda^{h} \mathcal{O}_{\mathbf{k}_{0}} = \mathcal{N}_{\mathbf{k}|\mathbf{k}_{0}}(\alpha) \mathcal{O}_{\mathbf{k}_{0}}, \text{ where } \lambda = 1 - \zeta_{3}, \\ &\Rightarrow \quad \exists \epsilon \in E_{\mathbf{k}_{0}} \mid \lambda^{h} = \epsilon \cdot \mathcal{N}_{\mathbf{k}|\mathbf{k}_{0}}(\alpha), \\ &\Rightarrow \quad \exists \beta \in \mathcal{O}_{\mathbf{k}} \mid \lambda^{h} = \mathcal{N}_{\mathbf{k}|\mathbf{k}_{0}}(\beta), \text{ because } E_{\mathbf{k}_{0}} \subseteq \mathcal{N}_{\mathbf{k}|\mathbf{k}_{0}}(\mathbf{k}^{*}), \end{split}$$

that is to say λ^h is a norm in $\mathbf{k} = \mathbf{k}_0(\sqrt[3]{p}) = \mathbf{k}_0(\sqrt[3]{\pi_1\pi_2})$, where π_1 and π_2 are two primes of \mathbf{k}_0 such that $p = \pi_1\pi_2$. Hence, by property (5) we have:

$$(*) \qquad \left(\frac{\lambda^h, \pi_1 \pi_2}{\mathcal{P}}\right)_3 = 1,$$

for all ideal \mathcal{P} of k_0 .

In particular, we calculate this symbol for $\mathcal{P} = \pi_1 \mathcal{O}_{k_0}$ or $\mathcal{P} = \pi_2 \mathcal{O}_{k_0}$. For $\mathcal{P} = \pi_1 \mathcal{O}_{k_0}$, using the property (1) of the norm residue symbol, we have:

$$\left(\frac{\lambda^h, \pi_1 \pi_2}{\mathcal{P}}\right)_3 = \left(\frac{\lambda^h, \pi_1 \pi_2}{\pi_1}\right)_3 = \left(\frac{\lambda^h, \pi_1}{\pi_1}\right)_3 \cdot \left(\frac{\lambda^h, \pi_2}{\pi_1}\right)_3$$

the properties (2) and (5) imply that:

$$\left(\frac{\lambda^h, \pi_2}{\pi_1}\right)_3 = \left(\frac{\lambda, \pi_2}{\pi_1}\right)_1^h = \left(\frac{\lambda}{\pi_1}\right)_3^{0 \times h} = 1.$$

and from the properties (1) and (6) we have

$$\left(\frac{\lambda^h, \pi_1}{\pi_1}\right)_3 = \left(\frac{\lambda, \pi_1}{\pi_1}\right)_3^h = \left(\frac{\lambda}{\pi_1}\right)_3^h$$

consequently

$$\left(\frac{\lambda^h, \pi_1 \pi_2}{\pi_1}\right)_3 = \left(\frac{\lambda}{\pi_1}\right)_3^h$$

Since the two primes π_1 and π_2 play symmetric roles, then we obtain a similar relation when $\mathcal{P} = \pi_2$:

$$\left(\frac{\lambda^h, \pi_1 \pi_2}{\pi_2}\right)_3 = \left(\frac{\lambda}{\pi_2}\right)_3^h.$$

The equation (*) imply that

$$\left(\frac{\lambda}{\pi_1}\right)_3^h = \left(\frac{\lambda}{\pi_2}\right)_3^h = 1.$$

The fact that 3 is not a cubic residue modulo p imply that

$$\left(\frac{\lambda}{\pi_1 \pi_2}\right)_3 \neq 1$$

then

$$\left(\frac{\lambda}{\pi_1}\right)_3 \neq 1 \text{ or } \left(\frac{\lambda}{\pi_2}\right)_3 \neq 1.$$

Since 3 does not divide h, then

$$\left(\frac{\lambda}{\pi_1}\right)_3^h \neq 1 \text{ or } \left(\frac{\lambda}{\pi_2}\right)_3^h \neq 1.$$

which is a contradiction. Consequently, the ideal \mathcal{R}^h is not principal.

Since the class $[\mathbb{R}^h]$ is invariant by τ , we deduce that the ideal \mathbb{R}^{3h} is principal if and only if $\langle [\mathbb{R}^h] \rangle = C_{\mathbf{k},3}^{(\sigma)}$. Since 9 divides exactly the 3-class number of $\mathbb{Q}(\sqrt[3]{p})$ and u = 1, then by we get

Since 9 divides exactly the 3-class number of $\mathbb{Q}(\sqrt[3]{p})$ and u = 1, then by we get $|C_{\mathbf{k},3}| = 27$, so the positive integer *s* defined above is equal 3, then $C_{\mathbf{k},3}^{(1-\sigma)^3} = 1$, this implies that $C_{\mathbf{k},3}^{(\sigma)} = C_{\mathbf{k},3}^{(1-\sigma)^2}$. Suppose that $[\mathcal{R}^h] \in C_{\mathbf{k},3}^{(\sigma)}$, then $[\mathcal{R}^h] = [\mathcal{L}^{(1-\sigma)^2}]$ with \mathcal{L} is prime ideal of \mathbf{k} , then there exist $\alpha \in \mathbf{k}^*$ such that $\mathcal{R}^h = (\alpha) \cdot \mathcal{L}^{(1-\sigma)^2}$, so $\mathcal{N}_{\mathbf{k}|\mathbf{k}_0}(\mathcal{R}^h) = \mathcal{N}_{\mathbf{k}|\mathbf{k}_0}(\alpha.\mathcal{L}^{(1-\sigma)^2})$, since $\mathcal{N}_{\mathbf{k}|\mathbf{k}_0}(\mathcal{L}^{(1-\sigma)^2}) = \mathcal{L}^{(1-\sigma)(1-\sigma^3)} = 1$, then $\lambda^h \mathcal{O}_{\mathbf{k}} = \mathcal{N}_{\mathbf{k}|\mathbf{k}_0}(\alpha)\mathcal{O}_{\mathbf{k}}$, where $\lambda = 1 - \zeta_3$, so there exist $\varepsilon \in E_{\mathbf{k}}$ such that $\lambda^h = \varepsilon \cdot \mathcal{N}_{\mathbf{k}|\mathbf{k}_0}(\alpha)$, as λ^h and $\mathcal{N}_{\mathbf{k}|\mathbf{k}_0}(\alpha)$ are in \mathbf{k}_0 then $\varepsilon \in E_{\mathbf{k}_0}$, since $E_{\mathbf{k}_0} \subseteq \mathcal{N}_{\mathbf{k}|\mathbf{k}_0}(\mathbf{k}^*)$ then $\lambda^h = \mathcal{N}_{\mathbf{k}|\mathbf{k}_0}(\alpha_1)$ where $\alpha_1 \in \mathcal{O}_{\mathbf{k}}$, that means λ^h is a norm in $\mathbf{k} = \mathbf{k}_0(\sqrt[3]{p})$ which is impossible. Finally, $[\mathcal{R}^h]$ is of order 9. This completes the proof of the first statement.

48

The second step in the proof is showing that the class $[\mathcal{R}^h][\mathcal{P}^h]^2$ is of order 3. We know that $(\mathcal{R}^h)^{\tau} = \mathcal{R}^h$ and $(\mathcal{P}^h)^{\tau} = \mathcal{Q}^h$, then:

$$\begin{aligned} \left(\mathcal{R}^h \cdot (\mathcal{P}^h)^2 \right)^{1+\tau} &= \left(\mathcal{R}^h \right)^{1+\tau} \cdot \left((\mathcal{P}^h)^2 \right)^{1+\tau} \\ &= \left(\mathcal{P}^h \right)^2 \cdot (\mathcal{R}^h)^2 \cdot (\mathcal{Q}^h)^2 \\ &= 3^h \mathcal{O}_k, \end{aligned}$$

which imply that $[\mathcal{R}^h \cdot (\mathcal{P}^h)^2]^{1+\tau} = 1$. Hence $[\mathcal{R}^h \cdot (\mathcal{P}^h)^2] \in C_{\mathbf{k},3}^-$. On the other hand $\mathcal{R}^h \cdot (\mathcal{P}^h)^2$ is not principal, because otherwise we have $[\mathcal{R}^h] = [\mathcal{P}^h]^7$, the fact that $[(\mathcal{R}^h)^2 \cdot (\mathcal{P}^h)^2 \cdot (\mathcal{Q}^h)^2] = 1$ imply that $[(\mathcal{Q}^h)^2] = 1$, which is a contradiction because the class $[\mathcal{Q}^h]$ is of order 9 (reasoning as \mathcal{R}^h). Hence $[\mathcal{R}^h][\mathcal{P}^h]^2$ is of order 3 and generate the group $C_{\mathbf{k},3}^-$.

Since $[\mathbb{R}^h]$ is a generator of $C^+_{\mathbf{k},3}$, we deduce that

$$C_{\mathbf{k},3} = \langle [\mathcal{R}^h], [\mathcal{R}^h] [\mathcal{P}^h]^2 \rangle.$$

Corollary 3.6. Using the same notation as above, we have the following properties:

1. $\mathbb{P}^{\sigma} = \mathbb{Q}, \ \mathbb{Q}^{\sigma} = \mathbb{R};$

2.
$$\mathcal{R}^{\tau} = \mathcal{R} \text{ and } \langle [\mathcal{R}] \rangle = \{ \chi \in C_{k,3} | \chi^{\tau} = \chi \};$$

3.
$$\mathfrak{P}^{\tau\sigma} = \mathfrak{P} \text{ and } \langle [\mathfrak{P}] \rangle = \{ \chi \in C_{\mathbf{k},3} | \chi^{\tau\sigma} = \chi \};$$

- 4. $\Omega^{\tau\sigma^2} = \Omega$ and $\langle [\Omega] \rangle = \{ \chi \in C_{\mathbf{k},3} | \chi^{\tau\sigma^2} = \chi \};$
- 5. The 3-class group can be generated also by:

$$C_{\mathbf{k},3} = \langle [\mathcal{P}^h], [\mathcal{P}^h] [\mathcal{Q}^h]^2 \rangle = \langle [\mathcal{Q}^h], [\mathcal{Q}^h] [\mathcal{R}^h]^2 \rangle$$

6. The 3-group $C_{k,3}^{(\sigma)}$ of ambiguous ideal classes is given by:

$$C_{\mathbf{k},3}^{(\sigma)} = \langle [\mathcal{R}^{3h}] \rangle = \langle [\mathcal{P}^{3h}] \rangle = \langle [\mathcal{Q}^{3h}] \rangle$$

7. The principal genus $C_{k,3}^{1-\sigma} = \{\mathcal{A}^{1-\sigma} \mid \mathcal{A} \in C_{k,3}\}$ is of type (3,3) and generated by:

$$C_{\mathbf{k},3}^{1-\sigma} = \langle [\mathcal{R}^{3h}], [\mathcal{R}^h] [\mathcal{P}^h]^2 \rangle.$$

Proof:

The fact that the ideals \mathcal{P}^h , \mathcal{Q}^h and \mathcal{R}^h are not principals, we prove the assertions (1), (2), (3) and (4) by applying the decomposition of 3 in the normal closure k. For the assertion (5), since the ideals \mathcal{P}^h , \mathcal{Q}^h and \mathcal{R}^h are not principal, we obtain the result by the same reasoning above.

The assertions (6) and (7) follows by using Proposition 3.4.

4. Appendix

Using the *Pari* programming [12], we illustrate the results of our main Theorem 3.5 by numerical examples. We have

$$C_{\mathbf{k},3} = \langle [\mathcal{R}^h], [\mathcal{R}^h] [\mathcal{P}^h]^2 \rangle$$

The following table verifies, for each prime number $p \equiv 1 \pmod{9}$ such that $\left(\frac{3}{p}\right)_3 \neq 1$ and 9 divides the 3-class number of $\mathbb{Q}(\sqrt[3]{p})$ exactly and u = 1, that the ideals \mathbb{R}^h and \mathbb{R}^{3h} are not principal. Therefore, the ideal \mathbb{R}^{9h} is always principal.

Τ	al	bl	le	1

p	Type of $C_{k,3}$	Is principal \mathcal{R}^h	Is principal \mathcal{R}^{3h}	Is principal \mathcal{R}^{9h}
199	[9, 3]	[8, 0]	[6, 0]	[0, 0]
487	[9, 3]	[10, 0]	[12, 0]	[0, 0]
1297	[9, 3]	[16, 0]	[12, 0]	[0, 0]
1693	[9, 3]	[2, 2]	[6, 0]	[0, 0]
1747	[9, 3]	[8, 0]	[6, 0]	[0, 0]
1999	[9, 3]	[8, 0]	[6, 0]	[0, 0]
2017	[9, 3]	[8, 0]	[6, 0]	[0, 0]
2143	[9, 3]	[14, 0]	[6, 0]	[0, 0]
2377	[9, 3]	[7, 0]	[3, 0]	[0, 0]
2467	[9, 3]	[20, 0]	[15, 0]	[0, 0]
2593	[9, 3]	[4, 2]	[3, 0]	[0, 0]
2917	[9, 3]	[8, 0]	[6, 0]	[0, 0]
3511	[9, 3]	[10, 0]	[12, 0]	[0, 0]
3673	[9, 3]	[8, 0]	[6, 0]	[0, 0]
3727	[9, 3]	[5, 0]	[6, 0]	[0, 0]
4159	[9, 3]	[4, 2]	[12, 0]	[0, 0]
4519	[9, 3]	[4, 4]	[12, 0]	[0, 0]
4591	[9, 3]	[1, 2]	[3,0]	[0, 0]
4789	[9, 3]	[25, 5]	[30, 0]	[0, 0]
5347	[9, 3]	[8, 0]	[6, 0]	[0, 0]
5437	[9, 3]	[77, 0]	[33,0]	[0,0]
6949	[9, 3]	[7, 2]	[3,0]	[0,0]
8209	[9, 3]	[2, 2]	[6, 0]	[0,0]
8821	[9, 3]	[4, 0]	[3,0]	[0, 0]
9631	[9, 3]	[2, 1]	[6, 0]	[0, 0]
9721	[9, 3]	[2, 0]	[6, 0]	[0, 0]

However, we verify in the following table that the ideal $\mathcal{R}^h \mathcal{P}^{2h}$ is not principal and $\mathcal{R}^h \mathcal{P}^{2h}$ is of order 3.

[p	Type of $C_{k,3}$	Is principal $\mathbb{R}^{h}\mathbb{P}^{2h}$	Is principal $(\mathcal{R}^h \mathcal{P}^{2h})^3$
ſ	199	[9, 3]	[0, 1]	[0, 0]
	487	[9, 3]	[0, 2]	[0, 0]
	1297	[9, 3]	[6, 4]	[0,0]
	1693	[9, 3]	[6, 2]	[0,0]
	1747	[9,3]	[0,1]	[0,0]
	1999	[9,3]	[0,2]	[0,0]
	2017	[9, 3]	[0,2]	[0,0]
	2143	[9, 3]	[0,4]	[0,0]
	2377	[9, 3]	[3,2]	[0,0]
	2467	[9,3]	[0, 10]	[0,0]
	2593	[9,3]	[0,2]	[0,0]
	2917	[9, 3]	[0,1]	[0,0]
	3511	[9,3]	[0,2]	[0,0]
	3673	[9,3]	[0,1]	[0,0]
	3727	[9,3]	[3, 1]	[0,0]
	4159	[9,3]	[6, 2]	[0,0]
	4519	[9,3]	[24, 4]	[0,0]

Table 2

References

- P. Barrucand and H. Cohn, Remarks on principal factors in a relative cubic field, J. Number Theory 3 (1971), 226–239.
- F.Calegari and M. Emerton, On the ramification of Hecke algebras at Eisenstein primes, Invent. Math. 160 (2005), 97–144.
- 3. R. Dedekind, Über die Anzahl der Idealklassen in reinen kubischen Zahlkörpern. J. für reine und angewandte Mathematik, Bd. **121** (1900), 40-123.
- F. Gerth III, On 3-Class Groups of Cyclic Cubic Extensions of Certain Number Fields, J. Number Theory 8 (1976), 84–94.
- 5. F. Gerth III, On 3-class groups of pure cubic fields, J. Reine Angew. Math 278/279 (1975), 52–62.
- F. Gerth III, On 3-class groups of certain pure cubic fields, Australian Mathematical Society Volume 72, Number 3, December 2005, pp.471-476.
- 7. G. Gras, Sur les l-classes d'idéaux dans les extensions cycliques relatives de degré premier l, Ann. Inst. Fourier, Grenoble, tome 23, fasc **3** (1973).
- H.Hasse, Bericht Über neuere Untersuchungen und probleme aus der Theorie der algebraischen Zahlköberrper, I, Jber. Deutsch. Math. Verein. 35 (1926), 1–55.
- H. Hasse, Newe Begründung Und Verallgemeinerung der Theorie der Normenrest Symbols, Journal für reine und ang. Math. 162 (1930), 134-143.
- C. S. Herz, Construction of class fields, Seminar on Complex Multiplication, Springer-Verlag, New York, 1966.

- 11. Kenneth Ireland Michael Rosen: A classical Introduction to Modern Number Theory, Second Edition, Springer 1992.
- 12. The PARI Group, PARI/GP, Version 2.9.4, Bordeaux, 2017, (http://pari.math.u-bordeaux.fr).

Siham Aouissi and Moulay Chrif Ismaili, Department of Mathematics and Computer Sciences, Mohamed 1st University, Oujda - Morocco. E-mail address: aouissi.siham@gmail.com, mcismaili@yahoo.fr.

and

Mohamed Talbi, Regional Center of Professions of Education and Training in the Oriental, Oujda - Morocco. E-mail address: ksirat1971@gmail.com.

and

Abdelmalek Azizi, Department of Mathematics and Computer Sciences, Mohamed 1st University, Oujda - Morocco. E-mail address: abdelmalekazizi@yahoo.fr.