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abstract:
Let k = Q

(

3
√
p, ζ3

)

, where p is a prime number such that p ≡ 1 (mod 9), and let
Ck,3 be the 3-component of the class group of k. In [6], Frank Gerth III proves a
conjecture made by Calegari and Emerton [2] which gives necessary and sufficient
conditions for Ck,3 to be of rank two. The purpose of the present work is to
determine generators of Ck,3, whenever it is isomorphic to Z/9Z × Z/3Z.
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1. Introduction

Let Γ = Q( 3
√
p) be a pure cubic field, where p is a prime number such that

p ≡ 1 (mod 9). We denote by ζ3 = −1/2 + i
√
3/2 the normalized primitive third

roots of unity, k = Q( 3
√
p, ζ3) the normal closure of Γ and Ck,3 the 3-component of

the class group of k.
Assuming 9 divides exactly the 3-class number of Γ. Then Ck,3 ≃ Z/9Z× Z/3Z if
and only if u = 1, where u is an index of units that will be defined in the notations
below. In this paper, we will determine the generators of Ck,3 when Ck,3 is of type
(9, 3) and 3 is not a cubic residue modulo p. We spot that Calegari and Emerton
( [2, Lemma 5.11]) proved that the rank of the 3-class group of Q( 3

√
p, ζ3), with

p ≡ 1 (mod 9), is equal to two if 9 divides the 3-class number of Q( 3
√
p). More-

over, in his work [6, Theorem 1, p.471], Frank Gerth III proves that the converse
to Calegari-Emerton’s result is also true. The present work can be viewed as a
continuation of the works [2] and [6] .
After reviewing some basic properties of the norm residue symbols and prime fac-
torization in the normal closure of a pure cubic field that will be needed later, we
will establish in section 3 some preliminary results of the 3-class group Ck,3. Using
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this, we arrive to determine the generators of 3-class groups Ck,3 of type (9, 3). All
the study cases are illustrated by numerical examples and summarized in tables in
section 4. The usual notations on which the work is based is as follows:

• Γ = Q( 3
√
d) : a pure cubic field, where d is a cube-free natural number;

• k0 = Q(ζ3) : the third cyclotomic field ;

• k = Q( 3
√
d, ζ3) : the normal closure of the pure cubic field Γ;

• u = [Ek : E0] : the index of the sub-group E0 generated by the units of
intermediate fields of the extension k/Q in Ek the group of units of k;

• λ = 1− ζ3 prime integer of k0;

• 〈τ 〉 = Gal (k/Γ), τ2 = id, τ (ζ3) = ζ23 and τ ( 3
√
d) = 3

√
d;

• 〈σ〉 = Gal (k/Q(ζ3)), σ
3 = id, σ(ζ3) = ζ3 and σ( 3

√
d) = ζ3

3
√
d;

• For an algebraic number field L:

– OL : the ring of integers of L;

– EL : the group of units of L;

– DL : the discriminant of L;

– hL : the class number of L;

– hL,3 : the 3-class number of L;

– CL,3 : the 3-class group of L;

– L
(1)
3 : the Hilbert 3-class field of L;

– [I] : the class of a fractional ideal I in the class group of L;

•
(

c

p

)

3

= 1 ⇔ X3 ≡ c(mod p) resolved on Z ⇔ c(p−1)/3 ≡ 1 (mod p), where

c ∈ Z and p is a prime number congruent to 1(mod 3).

2. Norm residue symbol and ideal factorization theory

2.1. The norm residue symbol

Let L/K an abelian extension of number fields with conductor f . For each finite
or infinite prime ideal P of K, we note by fP the largest power of P that divides
f . Let a ∈ K∗, we determine an auxiliary number a0 by the two conditions
a0 ≡ a (mod fP) and a0 ≡ 1 (mod f

fP
). Let Q an ideal co-prime with P such that

(a0) = P
e
Q (b = 0 if P is infinite). We note by

(

a, L

P

)

=

(

L/K

Q

)

the Artin map in L/K applied to Q.
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Definition 2.1. Let K be a number field containing the lth-roots of units, where
l ∈ N, then for each a, b ∈ K∗ and prime ideal P of K, we define the norm residue

symbol by:

(

a, b

P

)

l

=

(

a,K( l
√
b)

P

)

l
√
b

l
√
b

.

Therefore, if the prime ideal P is unramified in the field K( l
√
b), then we write

(

b

P

)

l

=

(

K( l
√
b)

P

)

l
√
b

l
√
b

.

Remark 2.2. Notice that

(

a, b

P

)

l

and

(

b

P

)

l

are two lth-roots of units.

Following [9], the principal properties of the norm residue symbol are given as
follows:

Properties

1. The product formula:

•
(

a1a2, b

P

)

l

=

(

a1, b

P

)

l

(

a2, b

P

)

l

;

•
(

a, b1b2
P

)

l

=

(

a, b1
P

)

l

(

a, b2
P

)

l

;

2. The inverse formula:

(

a, b

P

)

l

=

(

b, a

P

)−1

l

;

3.

(

a, b

P

)

l

= 1 ⇔ a is norm residue of K( l
√
b) modulo fb;

4.

(

σa, σb

σP

)

l

= σ

(

a, b

P

)

l

, for each automorphism σ of K;

5. If P is not divisible by the conductor fb of K( l
√
b) and appears in (a) with

the exponent e, then:

•
(

a, b

P

)

l

=

(

b

P

)−e

l

;

• P is infinite (e = 0) ⇒
(

a, b

P

)

l

= 1;
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6. The classical reciprocity law: let a, b ∈ K∗, and the conductors fa and fb of
respectively K( l

√
a) and K( l

√
b) are co-prime, then:

(

a

(b)

)

l

=

(

b

(a)

)

l

;

7.
∏

P

(

a, b

P

)

l

= 1, where the product is taken on the finite and infinite prime

ideals;

8. Let L is a finite extension of K, a ∈ L and b ∈ K∗, then:

∏

P|P

(

a, b

P

)

l

=

(

NL/K(a), b

P

)

l

.

Remark 2.3. From property (3), we have:

a is a norm in K(
l
√
b) ⇒

(

a, b

P

)

l

= 1,

for each prime ideal P of K.

For more basic properties of the norm residue symbol in the number fields, we
refer the reader to the papers [3], [8] and [9]. Notice that in section 3, we will use
the norm cubic residue symbols (l = 3). As the ring of integer Ok0

is principal,
hk0

= 1, we will write the norm cubic residue symbol as follows:

(

a, b

(π)

)

3

=

(

a, b

π

)

3

and

(

a

(π)

)

3

=
( a

π

)

3

where a, b ∈ k∗0 and π is a prime integer of Ok0
.

2.2. Prime factorization in a pure cubic field and in its normal closure

Let be Γ = Q( 3
√
d) a pure cubic field, and OΓ the ring of integers of Γ. We write

the natural integer d in form d = ab2, where a and b are cube-free and co-prime
positive integers. In his paper [3], Dedekind has defined two different types of pure
cubic fields as follows:

Definition 2.4. Using the same notations as above:

1. We say that Γ = Q( 3
√
d) is of the first kind if 3OΓ = P3, where P is a prime

ideal of OΓ, in this case, a2 − b2 6≡ 0 (mod 9).

2. We say that Γ = Q(
3
√
d) is of the second kind if 3OΓ = P

2
P1, where P 6= P1

are two primes of OΓ, in this case, a2 − b2 ≡ 0 (mod 9).
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Now, let p be a prime number. In the following Proposition, we give the de-
composition of the prime p in the pure cubic field Γ = Q(

3
√
ab2). We denote by

P,Pi prime ideals of Γ, and by N the absolute norm NΓ/Q.

Proposition 2.5.

Let p a prime number such that p 6= 3, then:

1. If p divides ab and p 6= 3, then pOΓ = P3, N(P) = p.

2. If p ∤ 3ab and p ≡ −1 (mod 3), then pOΓ = PP1, with N(P) = p and
N(P1) = p2.

3. If p ∤ 3ab and p ≡ 1 (mod 3), then:

(a) pOΓ = PP1P2 with N(P) = N(P1) = N(P2), if ab2 is a cubic residue
modulo p;

(b) pOΓ = P with N(P) = p3, if ab2 is not a cubic residue modulo p.

Proof: See [3]. ✷

The ramification of the prime 3 need a particular treatment, it is the purpose
of the following Proposition:

Proposition 2.6.

The decomposition into prime factors of 3 is:

3OΓ =

{

P
3, if a2 6≡ b2 (mod 9),

P
2
P1, if a2 ≡ b2 (mod 9).

Proof: See [3]. ✷

The ideal factorization rules for the 3rd cyclotomic field k0 (see [11]) is as
follows:

(i) 3Ok0
= λ2 = (1 − ζ3)

2;

(ii) pOk0
= π1π2 in k0 if p ≡ 1 (mod 3);

(iii) qOk0
= q in k0 if q ≡ −1 (mod 3).

Next, let k be the normal closure of Γ. We note by Ok the ring of integers of
k, P and Ps are prime ideals of k, N = Nk/Q the norm of k on Q. Combining the
ideal factorization rules for Γ with those of the field k0. The decomposition of the
prime 3 in k is the purpose of the following Theorem:

Proposition 2.7.

The prime 3 decomposes in k as follows:

3Ok =

{

P6, si a2 6≡ b2 (mod 9),

P2
1P

2
2P

2
3, si a2 ≡ b2 (mod 9).
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Proof:

We have 3 ramifies in the quadratic field k0 = Q(ζ3).

1) Suppose that Γ is the first kind, then by Proposition 2.6 we have 3OΓ = P3.
Hence, 3Ok = P6.

2) Conversely, suppose that Γ is of second kind, then 3OΓ = P2P1. It follows
that 3Ok = P2

1P
2
2P

2
3.

✷

However, we have the following Proposition in which we characterize the de-
composition of prime ideals of p 6= 3 in k.

Proposition 2.8.

Let p a prime number such that p 6= 3, then:

1. If p divides DΓ, then:

(a) pOk = P3
1P

3
2, with N(P1) = N(P2) = p, if and only if −3 is a quadratic

residue modulo p.

(b) pOk = P3, with N(P) = p2, if and only if −3 is not a quadratic residue
modulo p.

2. If p does not divides DΓ and p ≡ 1 (mod 3), then:

(a) p decomposes completely in k if and only if DΓ is a cubic residue modulo
p.

(b) pOk = P1P2, with N(P1) = N(P2) = p3, if and only if DΓ is not a
cubic residue modulo p.

3. If p does not divides DΓ and p ≡ −1 (mod 3), then: pOk = P1P2P3, with
N(P1) = N(P2) = N(P3) = p2, if and only if −3 is not a quadratic residue
modulo p.

Proof:

1. We use Proposition 2.5 and the decomposition of prime ideals in the quadratic
fields k0 = Q(ζ3).

2. Suppose that p does not divide DΓ and p ≡ 1 (mod 3), then −3 is a quadratic
residue modulo p, then the multiplication formula gives

(−3

p

)

=

(−1

p

)(

3

p

)

.

On the one hand, by the Euler’s Theorem we have
(−1

p

)

= (−1)(p−1)/2,
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On the other hand, the quadratic reciprocity law gives

(p

3

)

(

3

p

)

= (−1)(p−1)/2,

since p ≡ 1 (mod 3), then p is a square modulo 3, which gives
(p

3

)

= 1, so

(

3

p

)

= (−1)(p−1)/2.

Then
(−3

p

)

= ((−1)(p−1)/2)2 = (−1)p−1 = 1.

Thus, p decomposes completely in k0.

(a) If DΓ is a cubic residue modulo p, then by Proposition 2.5 we have p
split completely in Γ. Hence p split completely in k.

(b) If DΓ is not a cubic residue modulo p, we have p remains prime in Γ.
Hence pOk = P1P2.

3. We have pOΓ = PP1, and p remains inert in k0, hence the result.

✷

Remark 2.9. In the preceding Proposition 2.8, the situation pOk = P1P2 is never

happens because if p ≡ −1 (mod 3), we have always

(−3

p

)

= −1.

3. The generators of Ck,3

First, we let C
(σ)
k,3 = {A ∈ Ck,3 | Aσ = A} be the group of ambiguous ideal

classes of k/k0, where σ is a generator of Gal (k/k0), and put q∗ = 0 or 1 according
to ζ3 is not norm or norm of an element of k\{0}. Let t be the number of primes
ramifies in k/k0. Then according to [4], we have

|C(σ)
k,3 | = 3t−2+q∗ .

If we denote by Ck0,3 the Sylow 3-subgroup of the ideal class group of k0,

Ck0,3 = {1}. Let be C
(1−σ)
k,3 = {A(1−σ) | A ∈ Ck,3}. By the exact sequence :

1 −→ C
(σ)
k,3 −→ Ck,3

1−σ−→ Ck,3 −→ Ck,3/C
1−σ
k,3 −→ 1

we deduce that
|C(σ)

k,3 | = |Ck,3/C
1−σ
k,3 |.

The fact that C
(σ)
k,3 and Ck,3/C

1−σ
k,3 are elementary abelian 3-groups imply that:

rank C
(σ)
k,3 = rank (Ck,3/C

1−σ
k,3 ).
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Define the 3-group C
(1−σ)i

k,3 for each i ∈ N by

C
(1−σ)i

k,3 = {A(1−σ)i | A ∈ Ck,3},

and let s be the positive integer such that C
(σ)
k,3 ⊆ C

(1−σ)s−1

k,3 and C
(σ)
k,3 6⊆ C

(1−σ)s

k,3 .

The following Proposition gives the structure of the 3-class group Ck,3 when 27
divides exactly the class number of k:

Proposition 3.1. Let be Γ a pure cubic field, k its normal closure and u the index
of units defined as above, then:

1) Ck,3 ≃ Z/9Z× Z/3Z ⇔ [CΓ,3 ≃ Z/9Z and u = 1];

2) Ck,3 ≃ Z/3Z× Z/3Z× Z/3Z ⇔ [CΓ,3 ≃ Z/3Z× Z/3Z and u = 1].

Proof:

1) Assume that Ck,3 ≃ Z/9Z × Z/3Z, then hk,3 = 27. According to Theorem
14.1 of [1], we have 27 = u

3 · h2
Γ,3, then u = 1 because otherwise 27 will be a

square in N, which is a contradiction. Then h2
Γ,3 = 34 and hΓ,3 = 9.

On the other hand, by Lemma 2.1 and Lemma 2.2 of [5] we have Ck,3 ≃
CΓ,3 ×C−

k,3, then |C−
k,3| = 3. Since Ck,3 is of type (9, 3), we deduce that C−

k,3

is a cyclic 3-group of order 3 and C+
k,3 is a cyclic 3-group of order 9. Therefore

u = 1 and CΓ,3 ≃ Z/9Z. Reciprocally, assume that u = 1 and CΓ,3 ≃ Z/9Z.
By Theorem 14.1 of [1], we deduce that |Ck,3| = 1

3 · |CΓ,3|2, then |Ck,3| = 27

and |C−
k,3| = 3. Thus:

Ck,3 ≃ CΓ,3 × C−
k,3 ≃ Z/9Z× Z/3Z.

2) We have the same proof as above.

✷

Lemma 3.2. Let k = Q( 3
√
p, ζ3), where p is a prime number such that p ≡ 1 (mod

3). Let C
(σ)
k,3 be the ambiguous ideal class group of k/Q(ζ3), where σ is a generator

of Gal (k/Q(ζ3)). Then |C(σ)
k,3 | = 3.

Proof: Since p ≡ 1 (mod 3), then according to section 2.2, we have p = π1π2,
where π1 and π2 are two primes of k0 such that π2 = πτ

1 and π1 ≡ π2 ≡ 1 (mod
3Ok0

). We study all cases depending on the congruence class of p modulo 9, then:

• If p ≡ 4 or 7 (mod 9), then according to section 2.2, the prime 3 is ramified
in the field L, so the prime ideal (1 − ζ3) is ramified in k/k0. Also π1 and
π2 are totally ramified in k. So t = 3. In addition, the fact that p ≡ 4 or 7
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(mod 9) imply that πi 6≡ 1 (mod (1 − ζ3)
3) for i = {1, 2}, then according to

section 5 of [4] we obtain
(

ζ3, p

p

)

3

6= 1

where the symbol (
,
)3 is the cubic Hilbert symbol. We deduce that ζ3 is

not a norm in the extension k/k0, so q∗ = 0. Hence rank C
(σ)
k,3 = 1 and then

|C(σ)
k,3 | = 3.

• If p ≡ 1 (mod 9), the prime ideals which ramified in k/k0 are π1 and π2, so
t = 2. Moreover, π1 ≡ π2 ≡ 1 (mod (1 − ζ3)

3), then according to [4], the
cubic Hilbert symbol:

(

ζ3, p

π1

)

3

=

(

ζ3, p

π2

)

3

= 1,

We conclude that ζ3 is a norm in the extension k/k0, then q∗ = 1, so

rank C
(σ)
k,3 = 1 and |C(σ)

k,3 | = 3.

✷

The basic result for determining the generators of the 3-class group of k =
Q( 3

√
p, ζ3) when the 3-class number of k is divisible by 27 exactly, where p is a

prime number such that p ≡ 1 (mod 9), is summarized in the following Theorem:

Theorem 3.3. Let Γ = Q( 3
√
p), where p is a prime number such that p ≡ 1 (mod 9),

k = Q( 3
√
p, ζ3) its normal closure and Ck,3 the 3-class group of k. Assuming 9 di-

vides the 3-class number of Γ exactly, then:
The 3-class group Ck,3 is isomorphic to Z/9Z× Z/3Z if and only if u = 1.

Proof:

⇒) By Proposition 3.1, it is clear that if Ck,3 is isomorphic to Z/9Z×Z/3Z then
u = 1.

⇐) Assume that u = 1, then according to Theorem 14.1 of [1], hk,3 = 27.
Since 9 divides the 3-class number of Γ, then by Lemma 5.11 of [2] we have
rank Ck,3 = 2. Hence Ck,3 ≃ Z/9Z× Z/3Z.

✷

Proposition 3.4. Let Γ = Q( 3
√
p), where p is a prime number such that p ≡

1 (mod 9), k = Q( 3
√
p, ζ3) it’s normal closure, and Ck,3 be the 3-class group of k.

Assume that 9 divides the 3-class number of Γ exactly and u = 1. Put 〈A〉 = C+
k,3,

where A ∈ Ck,3 such that A9 = 1 and A3 6= 1. Let C
(σ)
k,3 be the 3-group of ambiguous

ideal classes of k/k0 and C1−σ
k,3 = {A1−σ |A ∈ Ck,3} be the principal genus of Ck,3.

Then:
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1. C
(σ)
k,3 is a subgroup of C+

k,3, A 6∈ C
(σ)
k,3 and C

(σ)
k,3 = 〈A3〉 = 〈B1−σ〉, where

B ∈ Ck,3 such that C−
k,3 = 〈B〉.

2. C−
k,3 = 〈(A2)σ−1〉, and we have C1−σ

k,3 = C−
k,3×C

(σ)
k,3 is a 3-group of type (3, 3),

where C+
k,3 and C−

k,3 are defined in Lemma 2.1 of [5].

Proof:

1. Since 9 divides the 3-class number of Γ exactly and u = 1, then according
to Theorem 3.3, Ck,3 is of type (9, 3), this implies by [6] that the integer
s defined above is equal 3, and according to Case 4 of [6], we conclude

that|
(

C
(σ)
k,3

)+

| = 3 and |
(

C
(σ)
k,3

)−

| = 1, this implies that C
(σ)
k,3 is a subgroup

of C+
k,3. Therefore, 〈A3〉 is the unique subgroup of order 3 of C+

k,3 and C
(σ)
k,3

is cyclic of order 3, then C
(σ)
k,3 = 〈A3〉.

Moreover, if C−
k,3 = 〈B〉 where B ∈ Ck,3, then B 6∈ C

(σ)
k,3 , so Bσ 6= B. Further-

more, Bσ 6= B2 because otherwise we will have Bσ2

= (B2)σ = (Bσ)2 = B4,

as B ∈ C−
k,3, then B3 = 1. Therefore, Bσ2

= B, so Bσ3

= Bσ, since

σ3 = 1, then Bσ = B. This is impossible because Bσ 6= B. As B3 = 1
and B1+σ+σ2

= 1, then Bσ2

= B2+2σ. This equality makes it possible to

show that B1−σ is an ambiguous class. We conclude that C
(σ)
k,3 = 〈B1−σ〉.

2. We reason as in the assertion 1. Since A2 6∈ C−
k,3, we deduce that C−

k,3 =

〈(A2)1−σ〉. then C−
k,3 and C

(σ)
k,3 are contained in C1−σ

k,3 which is of order 9,

because |Ck,3| = 27 and |C(σ)
k,3 | = 3. Consequently, C1−σ

k,3 = C
(σ)
k,3 × C−

k,3 =

〈A3,B〉.

✷

Our principal result can be stated as follows:

Theorem 3.5. Let k = Q( 3
√
p, ζ3), where p is a prime number such that p ≡ 1

(mod 9). The prime 3 decomposes in k as 3Ok = P2Q2R2, where P, Q and R are
prime ideals of k . Put h = hk

27 , where hk is the class number of k. Assume that 9
divides exactly the 3-class number of Q( 3

√
p) and u = 1. If 3 is not a cubic residue

modulo p, then:

1. The class [Rh] generate C+
k,3;

2. The 3-class group Ck,3 is generated by classes [Rh] and [Rh][Ph]2, and we
have:

Ck,3 = 〈[Rh]〉 × 〈[Rh][Ph]2〉 = 〈[Rh], [Ph]2〉.
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In Appendix of this paper, we illustrated this results by the numerical examples
with the aid of Pari programming [12] and summarized in some tables in section
4.

Proof:

We start our proof by showing that [Rh] is of order 9:
Since the field Γ = Q( 3

√
p) with p ≡ 1 (mod 9) is of second kind, then by Proposi-

tion 2.6 we have 3OΓ = H2S, where H and S are prime of Γ, since HOk = PQ and
SOk = R2, then 3Ok = P2Q2R2, where P, Q and R are prime ideals of k. Moreover,
the prime ideal R is invariant by τ , then [R] ∈ {χ ∈ Ck,3|χτ = χ}.
If 9 divides the 3-class number of Q( 3

√
p) exactly and u = 1, then by Theorem

3.3 we have Ck,3 is of type (9, 3). According to Proposition 3.1, we have C+
k,3 is

cyclic of order 9, thus [Rh]9 = 1. Hence the class [Rh] is of order 9 if and only if
R

h andR3h are not principal.
We argue by the absurd: assume that Rh is principal, we have

[Rh] = 1 ⇒ ∃α ∈ k | R
h = αOk,

⇒ Nk|k0
(Rh) = Nk|k0

(αOk),

⇒ λh
Ok0

= Nk|k0
(α)Ok0

, where λ = 1− ζ3,

⇒ ∃ǫ ∈ Ek0
| λh = ǫ ·Nk|k0

(α),

⇒ ∃β ∈ Ok | λh = Nk|k0
(β), because Ek0

⊆ Nk|k0
(k∗),

that is to say λh is a norm in k = k0( 3
√
p) = k0( 3

√
π1π2), where π1 and π2 are

two primes of k0 such that p = π1π2. Hence, by property (5) we have:

(∗)
(

λh, π1π2

P

)

3

= 1,

for all ideal P of k0.
In particular, we calculate this symbol for P = π1Ok0

or P = π2Ok0
.

For P = π1Ok0
, using the property (1) of the norm residue symbol, we have:

(

λh, π1π2

P

)

3

=

(

λh, π1π2

π1

)

3

=

(

λh, π1

π1

)

3

·
(

λh, π2

π1

)

3

the properties (2) and (5) imply that:

(

λh, π2

π1

)

3

=

(

λ, π2

π1

)h

1

=

(

λ

π1

)0×h

3

= 1.

and from the properties (1) and (6) we have

(

λh, π1

π1

)

3

=

(

λ, π1

π1

)h

3

=

(

λ

π1

)h

3
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consequently
(

λh, π1π2

π1

)

3

=

(

λ

π1

)h

3

.
Since the two primes π1 and π2 play symmetric roles, then we obtain a similar

relation when P = π2:

(

λh, π1π2

π2

)

3

=

(

λ

π2

)h

3

.

The equation (∗) imply that

(

λ

π1

)h

3

=

(

λ

π2

)h

3

= 1.

The fact that 3 is not a cubic residue modulo p imply that

(

λ

π1π2

)

3

6= 1

then
(

λ

π1

)

3

6= 1 or

(

λ

π2

)

3

6= 1.

Since 3 does not divide h, then

(

λ

π1

)h

3

6= 1 or

(

λ

π2

)h

3

6= 1.

which is a contradiction. Consequently, the ideal Rh is not principal.

Since the class [Rh] is invariant by τ , we deduce that the ideal R3h is principal

if and only if 〈[Rh]〉 = C
(σ)
k,3 .

Since 9 divides exactly the 3-class number of Q( 3
√
p) and u = 1, then by we get

|Ck,3| = 27, so the positive integer s defined above is equal 3, then C
(1−σ)3

k,3 = 1,

this implies that C
(σ)
k,3 = C

(1−σ)2

k,3 . Suppose that [Rh] ∈ C
(σ)
k,3 , then [Rh] = [L(1−σ)2 ]

with L is prime ideal of k, then there exist α ∈ k∗ such that Rh = (α) · L(1−σ)2 ,

so Nk|k0
(Rh) = Nk|k0

(α.L(1−σ)2), since Nk|k0
(L(1−σ)2) = L(1−σ)(1−σ3) = 1, then

λh
Ok = Nk|k0

(α)Ok, where λ = 1 − ζ3, so there exist ε ∈ Ek such that λh =

ε ·Nk|k0
(α), as λh and Nk|k0

(α) are in k0 then ε ∈ Ek0
, since Ek0

⊆ Nk|k0
(k∗) then

λh = Nk|k0
(α1) where α1 ∈ Ok, that means λh is a norm in k = k0( 3

√
p) which is im-

possible. Finally, [Rh] is of order 9. This completes the proof of the first statement.
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The second step in the proof is showing that the class [Rh][Ph]2 is of order 3.
We know that (Rh)τ = R

h and (Ph)τ = Q
h, then:

(

R
h · (Ph)2

)1+τ
=

(

R
h
)1+τ ·

(

(Ph)2
)1+τ

= (Ph)2 · (Rh)2 · (Qh)2

= 3hOk,

which imply that [Rh · (Ph)2]1+τ = 1. Hence [Rh · (Ph)2] ∈ C−
k,3.

On the other hand Rh · (Ph)2 is not principal, because otherwise we have [Rh] =
[Ph]7, the fact that [(Rh)2 · (Ph)2 · (Qh)2] = 1 imply that [(Qh)2] = 1, which is a
contradiction because the class [Qh] is of order 9 (reasoning as Rh). Hence [Rh][Ph]2

is of order 3 and generate the group C−
k,3.

Since [Rh] is a generator of C+
k,3, we deduce that

Ck,3 = 〈[Rh], [Rh][Ph]2〉.

✷

Corollary 3.6. Using the same notation as above, we have the following properties:

1. Pσ = Q, Qσ = R;

2. Rτ = R and 〈[R]〉 = {χ ∈ Ck,3|χτ = χ};

3. Pτσ = P and 〈[P]〉 = {χ ∈ Ck,3|χτσ = χ};

4. Qτσ2

= Q and 〈[Q]〉 = {χ ∈ Ck,3|χτσ2

= χ};

5. The 3-class group can be generated also by:

Ck,3 = 〈[Ph], [Ph][Qh]2〉 = 〈[Qh], [Qh][Rh]2〉.

6. The 3-group C
(σ)
k,3 of ambiguous ideal classes is given by:

C
(σ)
k,3 = 〈[R3h]〉 = 〈[P3h]〉 = 〈[Q3h]〉.

7. The principal genus C1−σ
k,3 = {A1−σ |A ∈ Ck,3} is of type (3, 3) and generated

by:
C1−σ

k,3 = 〈[R3h], [Rh][Ph]2〉.

Proof:

The fact that the ideals Ph, Qh and Rh are not principals, we prove the assertions
(1), (2), (3) and (4) by applying the decomposition of 3 in the normal closure k.
For the assertion (5), since the ideals Ph, Qh and Rh are not principal, we obtain
the result by the same reasoning above.
The assertions (6) and (7) follows by using Proposition 3.4. ✷
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4. Appendix

Using the Pari programming [12], we illustrate the results of our main Theorem
3.5 by numerical examples. We have

Ck,3 = 〈[Rh], [Rh][Ph]2〉

The following table verifies, for each prime number p ≡ 1 (mod 9) such that
(

3

p

)

3

6= 1 and 9 divides the 3-class number of Q( 3
√
p) exactly and u = 1, that

the ideals Rh and R
3h are not principal. Therefore, the ideal R9h is always princi-

pal.
Table 1

p Type of Ck,3 Is principal Rh Is principal R3h Is principal R9h

199 [9, 3] [8, 0] [6, 0] [0, 0]
487 [9, 3] [10, 0] [12, 0] [0, 0]
1297 [9, 3] [16, 0] [12, 0] [0, 0]
1693 [9, 3] [2, 2] [6, 0] [0, 0]
1747 [9, 3] [8, 0] [6, 0] [0, 0]
1999 [9, 3] [8, 0] [6, 0] [0, 0]
2017 [9, 3] [8, 0] [6, 0] [0, 0]
2143 [9, 3] [14, 0] [6, 0] [0, 0]
2377 [9, 3] [7, 0] [3, 0] [0, 0]
2467 [9, 3] [20, 0] [15, 0] [0, 0]
2593 [9, 3] [4, 2] [3, 0] [0, 0]
2917 [9, 3] [8, 0] [6, 0] [0, 0]
3511 [9, 3] [10, 0] [12, 0] [0, 0]
3673 [9, 3] [8, 0] [6, 0] [0, 0]
3727 [9, 3] [5, 0] [6, 0] [0, 0]
4159 [9, 3] [4, 2] [12, 0] [0, 0]
4519 [9, 3] [4, 4] [12, 0] [0, 0]
4591 [9, 3] [1, 2] [3, 0] [0, 0]
4789 [9, 3] [25, 5] [30, 0] [0, 0]
5347 [9, 3] [8, 0] [6, 0] [0, 0]
5437 [9, 3] [77, 0] [33, 0] [0, 0]
6949 [9, 3] [7, 2] [3, 0] [0, 0]
8209 [9, 3] [2, 2] [6, 0] [0, 0]
8821 [9, 3] [4, 0] [3, 0] [0, 0]
9631 [9, 3] [2, 1] [6, 0] [0, 0]
9721 [9, 3] [2, 0] [6, 0] [0, 0]

However, we verify in the following table that the ideal Rh
P
2h is not principal

and RhP2h is of order 3.
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Table 2

p Type of Ck,3 Is principal RhP2h Is principal (RhP2h)3

199 [9, 3] [0, 1] [0, 0]
487 [9, 3] [0, 2] [0, 0]
1297 [9, 3] [6, 4] [0, 0]
1693 [9, 3] [6, 2] [0, 0]
1747 [9, 3] [0, 1] [0, 0]
1999 [9, 3] [0, 2] [0, 0]
2017 [9, 3] [0, 2] [0, 0]
2143 [9, 3] [0, 4] [0, 0]
2377 [9, 3] [3, 2] [0, 0]
2467 [9, 3] [0, 10] [0, 0]
2593 [9, 3] [0, 2] [0, 0]
2917 [9, 3] [0, 1] [0, 0]
3511 [9, 3] [0, 2] [0, 0]
3673 [9, 3] [0, 1] [0, 0]
3727 [9, 3] [3, 1] [0, 0]
4159 [9, 3] [6, 2] [0, 0]
4519 [9, 3] [24, 4] [0, 0]
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