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Graded Semiprime Multiplication Modules

Rashid Abu-Dawwas

abstract: Let M be a G-graded R-module. In this article, we introduce the

concept of graded semiprime multiplication modules. A graded R-module M is said

to be graded semiprime multiplication if M has no graded semiprime R-submodules

or for every graded semiprime R-submodule N of M , N = IM for some graded ideal

I of R. We introduce several results concerning graded semiprime submodules and

we investigate them to present several results on graded semiprime multiplication

modules.
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1. Introduction

Throughout this article, R is assumed to be a commutative ring with a nonzero
unity 1. Let G be a group with identity e. A ring R is said to be G-graded ring

if there exist additive subgroups Rg of R such that R =
⊕

g∈G

Rg and RgRh ⊆ Rgh

for all g, h ∈ G. The elements of Rg are called homogeneous of degree g and Re

(the identity component of R) is a subring of R with 1 ∈ Re. For x ∈ R, x can

be written uniquely as
∑

g∈G

xg where xg is the component of x in Rg. Also, we

write h(R) =
⋃

g∈G

Rg and supp(R,G) = {g ∈ G : Rg 6= 0}. Let M be a left R -

module. Then M is a G-graded R-module if there exist additive subgroups Mg of

M indexed by the elements g ∈ G such that M =
⊕

g∈G

Mg and RgMh ⊆ Mgh for all

g, h ∈ G. The elements of Mg are called homogeneous of degree g. If x ∈ M , then x

can be written uniquely as
∑

g∈G

xg, where xg is the component of x in Mg. Clearly,

Mg is Re-submodule of M for all g ∈ G. Also, we write h(M) =
⋃

g∈G

Mg. and

2010 Mathematics Subject Classification: 16W50.

Submitted October 26, 2017. Published April 02, 2018

27
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.40197


28 R. Abu-Dawwas

supp(M,G) = {g ∈ G : Mg 6= 0}. Let R be a G-graded ring and I be an ideal of R.

Then I is called G-graded ideal if I =
⊕

g∈G

(

I
⋂

Rg

)

, i.e., if x ∈ I and x =
∑

g∈G

xg,

then xg ∈ I for all g ∈ G. Not all ideals of a G-graded ring are G-graded.
Let M be a G-graded R-module and N be an R-submodule of M . Then N is

called G-graded R-submodule if N =
⊕

g∈G

(

N
⋂

Mg

)

, i.e., if x ∈ N and x =
∑

g∈G

xg,

then xg ∈ N for all g ∈ G. Not all R-submodules of a G-graded R-module are
G-graded.

For more details in this terminology, see [15]. Moreover, the following lemma
can be found in ( [9], Lemma 2.1).

Lemma 1.1. Let R be a G-graded ring and M be a G-graded R-module.

1. If I and J are graded ideals of R, then I + J and I
⋂

J are graded ideals of

R.

2. If N and K are graded R-submodules of M , then N + K and N
⋂

K are

graded R-submodules of M .

3. If N is a graded R-submodule of M , r ∈ h(R), x ∈ h(M) and I is a graded

ideal of R, then Rx, IN and rN are graded R-submodules of M . Moreover,

(N :R M) = {r ∈ R : rM ⊆ N} is a graded ideal of R.

Also, in [10], if N is a graded R-submodule of M , then

Ann(N) = {r ∈ R : rN = 0}

is a graded ideal of R.
Let M be a G-graded R-module and N be an R-submodule of M . Then M/N

may be made into a graded module by putting (M/N)g = (Mg + N)/N for all
g ∈ G (see [15]). In fact, we prove the following.

Lemma 1.2. Let M be a graded R-module, K and N be R-submodules of M such

that K ⊆ N . Then N is a graded R-submodule of M if and only if N/K is a graded

R-submodule of M/K.

Proof: Suppose that N is a graded R-submodule of M . Clearly, N/K is an R-
submodule of M/K. Let x + K ∈ N/K. Then x ∈ N and since N is graded,

x =
∑

g∈G

xg where xg ∈ N for all g ∈ G and then (x +K)g = xg +K ∈ N/K for

all g ∈ G. Hence, N/K is a graded R-submodule of M/K. Conversely, let x ∈ N .

Then x =
∑

g∈G

xg where xg ∈ Mg for all g ∈ G and then (xg +K) ∈ (Mg+K)/K =

(M/K)g for all g ∈ G such that

∑

g∈G

(x+K)g =
∑

g∈G

(xg +K) =





∑

g∈G

xg



+K = x+K ∈ N/K.
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Since N/K is graded, xg +K ∈ N/K for all g ∈ G which implies that xg ∈ N for
all g ∈ G. Hence, N is a graded R-submodule of M . ✷

Graded multiplication modules have been introduced and studied by Escoriza
and Torrecillas in [8]. A graded R-module M is said to be graded multiplication
if for every graded R-submodule N of M , N = IM for some graded ideal I of R.
In this case, we can take I = (N :R M). Graded multiplication modules have been
studied by several authors, for example, see [1], [5] and [13].

Graded prime submodules have been introduced and studied by S. Ebrahimi
Atani in [6]. A proper gradedR-submoduleN of a gradedR-moduleM is said to be
graded prime if whenever r ∈ h(R) and m ∈ h(M) such that rm ∈ N , then either
r ∈ (N :R M) or m ∈ N . Graded prime submodules have been studied by several
authors, for example, see [2] and [3]. The set of all graded prime submodules of
M is denoted by GSpec(M).

Graded weak multiplication modules have been introduced and studied by F.
Farzalipour and P. Ghiasvand in [10]. A graded R-module M is said to be graded
weak multiplication if GSpec(M) = ∅ or for every graded prime R-submodule N
of M , N = IM for some graded deal I of R. Graded weak multiplication modules
have been studied by several authors, for example, see [4].

Graded semiprime submodules have been introduced by S. C. Lee and R. Var-
mazyar in [14]. A proper graded R-submodule N of M is said to be graded
semiprime if whenever I is a graded ideal of R and K is a graded R-submodule of
M such that InK ⊆ N for some positive integer n, then IK ⊆ N . A graded R-
moduleM is said to be graded semiprime if {0} is a graded semiprime R-submodule
of M . Graded semiprime submodules are also studied in [11]. The set of all graded
semiprime R-submodules of M is denoted by GSSpec(M).

Motivated from the concepts of graded multiplication modules in [8] and graded
weak multiplication modules in [10], we introduce a new class of graded R-modules,
called graded semiprime multiplication modules. A graded R-module M is said
to be graded semiprime multiplication if GSSpec(M) = ∅ or for every graded
semiprime R-submodule N of M , N = IM for some graded deal I of R.

In this article, several results have been introduced, for example, we prove that
ifK andN are R-submodules ofM such thatK ⊆ N , thenN is a graded semiprime
R-submodule of M if and only if N/K is a graded semiprime R-submodule ofM/K
(Theorem 2.2). Also, we prove that N is a graded prime R-submodule of M if and
only if N is a graded semiprime and a graded primary R-submodule ofM (Theorem
2.4). Moreover, we prove that if M is a graded semiprime multiplication R-module,
J is an ideal of R and K is an R-submodule of M such that J ⊆ (K :R M), then
M/K is a graded semiprime multiplication R/J-module (Theorem 2.6). Finally,
We define the torsion set of M with respect to the homogeneous elements of R to
be HT (M) = {m ∈ M : rm = 0 for some nonzero r ∈ h(R)}. We prove that if M
is a graded semiprime multiplication R-module over an integral domain R, then
either HT (M) = {0} or HT (M) = M (Theorem 2.16).
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2. Graded Semiprime Submodules and Graded Semiprime

Multiplication Modules

In this section, we introduce the concept of graded semiprime multiplication
modules. Also, we introduce several results concerning graded semiprime submod-
ules. We begin our results with the following theorem.

Theorem 2.1. Let M be a graded R-module and N be a graded R-submodule of

M . Then N is graded semiprime if and only if whenever r ∈ h(R) and m ∈ h(M)
such that rnm ∈ N for some positive integer n, then rm ∈ N .

Proof: Suppose that N is a graded semiprime R-submodule of M . Let r ∈ h(R)
and m ∈ h(M) such that rnm ∈ N for some positive integer n. Then I = Rr is a
graded ideal of R and K = Rm is a graded R-submodule of M such that InK ⊆ N .
Since N is graded semiprime, IK ⊆ N and then rm ∈ N . Conversely, let I be a
graded ideal of R and K be a graded R-submodule of M such that InK ⊆ N for
some positive integer n. Assume that a ∈ I and x ∈ K. Since I and K are graded,

a =
∑

g∈G

ag where ag ∈ I for all g ∈ G and x =
∑

g∈G

xg where xg ∈ K for all g ∈ G.

For every g, h ∈ G, angxh ∈ InK ⊆ N , so by assumption, agxh ∈ N for all g, h ∈ G
and then ax ∈ N which implies that IK ⊆ N . Hence, N is a graded semiprime
R-submodule of M . ✷

Theorem 2.2. Let M be a graded R-module, K and N be R-submodules of M
such that K ⊆ N . Then N is a graded semiprime R-submodule of M if and only

if N/K is a graded semiprime R-submodule of M/K.

Proof: Suppose that N is a graded semiprime R-submodule of M . By Lemma
1.2, N/K is a graded R-submodule of M/K. Let r ∈ h(R) and m+K ∈ h(M/K)
such that rn(m + K) ∈ N/K for some positive integer n. Then m ∈ h(M) such
that rnm ∈ N and since N is graded semiprime, rm ∈ N which implies that
r(m + K) ∈ N/K. Hence, N/K is a graded semiprime R-submodule of M/K.
Conversely, by Lemma 1.2, N is a graded R-submodule of M . Let r ∈ h(R) and
m ∈ h(M) such that rnm ∈ N for some positive integer n. Then m+K ∈ h(M/K)
such that rn(m + K) = rnm + K ∈ N/K and since N/K is graded semiprime,
r(m + K) ∈ N/K which implies that rm ∈ N . Hence, N is a graded semiprime
R-submodule of M . ✷

Graded primary submodules have been introduced and studied by S. Ebrahimi
Atani and F. Farzalipour in [7]. A proper graded R-submodule N of M is said
to be graded primary if whenever r ∈ h(R) and m ∈ h(M) such that rm ∈ N ,
then either m ∈ N or rn ∈ (N :R M) for some positive integer n. Graded primary
submodules are deeply studied in [16] and [12].

The following example shows that a graded primary submodule need not be
graded semiprime, and a graded semiprime submodule need not be graded primary.
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Example 2.3. Let R = Z, M = Z[i] and G = Z2. Then R is trivially graded by

R0 = R and R1 = {0}. Also, M is graded by M0 = Z and M1 = iZ. Clearly, N =
4Z

⊕

〈0〉 is a graded primary R-submodule of M , but N is not graded semiprime

since 2 ∈ h(R) and (3, 0) ∈ h(M) such that 22(3, 0) ∈ N and 2(3, 0) /∈ N . On the

other hand, K = 6Z
⊕

〈0〉 is a graded semiprime R-submodule of M that is not

graded primary.

However, we introduce the following theorem.

Theorem 2.4. Let M be a graded R-module and N be a graded R-submodule of M .

Then N is graded prime if and only if N is graded semiprime and graded primary.

Proof: Suppose that N is a graded prime R-submodule of M . Clearly, N is
graded primary. Let I be a graded ideal of R and K be a graded R-submodule of
M such that InK ⊆ N for some positive integer n. Then either I ⊆ (N :R M) or
K ⊆ N and hence IK ⊆ N . Thus, N is a graded semiprime R-submodule of M .
Conversely, let r ∈ h(R) and m ∈ h(M) such that rm ∈ N . Suppose that m /∈ N .
Since N is graded primary, rn ∈ (N :R M) for some positive integer n. Let x ∈ M .

Then x =
∑

g∈G

xg where xg ∈ Mg for all g ∈ G and then rnxg ∈ rnM ⊆ N for all

g ∈ G. Since N is graded semiprime, rxg ∈ N for all g ∈ G and then rx ∈ N . So,
rM ⊆ N , i.e., r ∈ (N :R M). Hence, N is a graded prime R-submodule of M . ✷

Definition 2.5. Let M be a graded R-module. Then M is said to be graded

semiprime multiplication if GSSpec(M) = ∅ or for every graded semiprime R-

submodule N of M , N = IM for some graded deal I of R.

It is easy to prove that if M is a graded semiprime multiplication R-module,
then N = (N :R M)M for every graded semiprime R-submodule of M . Also, by
Theorem 2.4, one can see that the class of graded semiprime multiplication modules
contains the class of graded weak multiplication modules.

Theorem 2.6. Let M be a graded semiprime multiplication R-module. If J is an

ideal of R and K is an R-submodule of M such that J ⊆ (K :R M), then M/K is

a graded semiprime multiplication R/J-module.

Proof: Let N/K be a graded semiprime submodule of M/K. Then by Theorem
2.2, N is a graded semiprime submodule of M and then N = (N :R M)M and
hence N/K = (N/K :R/J M/K)(M/K). Thus, M/K is a graded semiprime
multiplication R/J-module. ✷

Corollary 2.7. Let M be a graded semiprime multiplication R-module. Then

M/K is a graded semiprime multiplication R-module for every R-submodule K of

M .

Proof: Apply Theorem 2.6 with J = {0}. ✷
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Lemma 2.8. Let M be a graded R-module and K be a graded R-module of M .

Then K is a graded semiprime R-submodule of M if and only if M/K is a graded

semiprime R-module.

Proof: Suppose that K is a graded semiprime R-submodule of M . Let r ∈ h(R)
and m+K ∈ h(M/K) such that rn(m+K) = 0 +K for some positive integer n.
Then m ∈ h(M) such that rnm +K = 0 +K, i.e., rnm ∈ K. Since K is graded
semiprime, rm ∈ K and then rm +K = 0 +K, i.e., r(m +K) = 0 +K. Hence,
M/K is a graded semiprime R-module. Conversely, let r ∈ h(R) and m ∈ h(M)
such that rnm ∈ K for some positive integer n. Then m+K ∈ h(M/K) such that
rn(m+K) = rnm+K = 0+K. Since, M/K is graded semiprime, r(m+K) = 0+K
which implies that rm ∈ K. Hence, K is a graded semiprime R-submodule of M .

✷

Let R and S be two G-graded rings. A homomorphism f : R → S is said to
be graded homomorphism if f(Rg) ⊆ Sg for all g ∈ G. One can prove that if I is
a graded ideal of R and J is a graded ideal of S, then f(I) is a graded ideal of S
and f−1(J) is a graded ideal of R (see [15]).

Lemma 2.9. Let R and S be two G-graded rings. Suppose that f : R → S is a

graded homomorphism. If f is surjective, then f(Rg) = Sg for all g ∈ G.

Proof: Let g ∈ G. Since f is graded homomorphism, f(Rg) ⊆ Sg. Let sg ∈ Sg.
If sg = 0, then sg = f(0R) ∈ f(Rg). Suppose that sg 6= 0. Since f is surjective,

there exists r ∈ R − {0} such that f(r) = sg. Assume that r =

n
∑

i=1

rgi where

rgi ∈ Rgi −{0}, gi 6= gj for i 6= j. Then sg = f(r) =

n
∑

i=1

f(rgi ) =

k
∑

i=1

f(rgti ) where

1 ≤ ti ≤ n and f(rgti ) 6= 0 for all 1 ≤ i ≤ k. Since f(rgti ) ∈ Sgti
, sg ∈ Sg

⋂

k
∑

i=1

Sgti
.

Hence, g = gt1 = ........ = gtn and hence k = 1 and f(rgti ) = f(rg) = sg. So,
Sg ⊆ f(Rg) and hence f(Rg) = Sg. ✷

Lemma 2.10. Let R and S be two G-graded rings. Suppose that f : R → S is

a surjective graded homomorphism and M is a graded S-module. If M is graded

semiprime as an R-module, then M is graded semiprime as an S-module.

Proof: Let s ∈ h(S) and m ∈ h(M) such that snm = 0 for some positive integer
n. Since s ∈ h(S), there exists g ∈ G such that s ∈ Sg = f(Rg) by Lemma
2.9 and then there exists r ∈ Rg such that f(r) = s. So, r ∈ h(R) such that
rnm = f(rn)m = (f(r))nm = snm = 0. Since M is graded semiprime as an R-
module, rm = 0 and then sm = f(r)m = rm = 0. Hence, M is graded semiprime
as an S-module. ✷
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Lemma 2.11. Let R and S be two G-graded rings. Suppose that there exists a

surjective graded homomorphism from R to S and M is a graded S-module. If K is

a graded semiprime R-submodule of M , then K is a graded semiprime S-submodule

of M .

Proof: By Lemma 2.8, M/K is a graded semiprime R-module and then by Lemma
2.10,M/K is a graded semiprime S-module and hence by Lemma 2.8,K is a graded
semiprime S-submodule of M . ✷

Theorem 2.12. Let R and S be two G-graded rings. Suppose that f : R → S is

a surjective graded homomorphism and M is a graded S-module. If M is a graded

semiprime multiplication S-module, then M is a graded semiprime multiplication

R-module.

Proof: Let K be a graded semiprime R-submodule of M . Then by Lemma 2.11,
K is a graded semiprime S-submodule of M . Since M is graded semiprime multi-
plication as an S-module, K = JM for some graded ideal J of S. By Lemma 2.9,
I = f−1(J) is a graded ideal of R such that f(I) = f(f−1(J))

⋂

f(R) = J and
hence IM = f(I)M = JM = K. Thus, M is a graded semiprime multiplication
R-module. ✷

Definition 2.13. Let M be a graded R-module. We define the torsion set of M
with respect to the homogeneous elements of R to be

HT (M) = {m ∈ M : rm = 0 for some nonzero r ∈ h(R)}.

Lemma 2.14. If M is a graded R-module over an integral domain R, then HT (M)
is a graded R-submodule of M .

Proof: Let m,n ∈ HT (M). Then there exist r, s ∈ h(R) − {0} such that rm =
sn = 0. Since r, s ∈ h(R), there exist g, h ∈ G such that r ∈ Rg and r ∈ Rh and
then rs ∈ RgRh ⊆ Rgh ⊆ h(R). Since R is an integral domain, rs ∈ h(R) − {0}
such that rs(m−n) = rsm− rsn = s(rm)− r(sn) = 0 which implies that m−n ∈
HT (M). Let t ∈ R. Then r(tm) = t(rm) = 0 which implies that tm ∈ HT (M).
Hence, HT (M) is an R-submodule of M . We show that HT (M) is graded. Let
m ∈ HT (M). Then there exists a nonzero r ∈ h(R) such that rm = 0. Assume

that m =
∑

g∈G

mg where mg ∈ Mg for all g ∈ G. Since r ∈ h(R), r ∈ Rh for some

h ∈ G and then rmg ∈ RhMg ⊆ Mgh for all g ∈ G. So, rmg ∈ h(M) for all g ∈ G
such that

∑

g∈G

rmg = r





∑

g∈G

mg



 = rm = 0 ∈ {0}

and since {0} is a graded R-submodule, rmg ∈ {0} for all g ∈ G, i.e., rmg = 0
for all g ∈ G which implies that mg ∈ HT (M) for all g ∈ G. Hence, HT (M) is a
graded R-submodule of M . ✷
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Lemma 2.15. Let M be a graded R-module over an integral domain R. If

HT (M) 6= M , then HT (M) is a graded prime R-submodule of M with (HT (M) :R
M) = {0}.

Proof: By Lemma 2.14, HT (M) is a graded R-submodule of M . Let r ∈ h(R)
and m ∈ h(M) such that rm ∈ HT (M). Then there exists a nonzero s ∈ h(R)
such that s(rm) = 0. If r = 0, then r ∈ (HT (M) :R M). Suppose that r 6= 0, then
sr ∈ h(R) − {0} such that sr(m) = s(rm) = 0 which implies that m ∈ HT (M).
Hence, HT (M) is a graded prime R-submodule of M . We show that (HT (M) :R
M) = {0}. Let r ∈ (HT (M) :R M). Then rM ⊆ HT (M). Since HT (M) 6= M ,
there exists m ∈ M such that m /∈ HT (M) and then rm ∈ rM ⊆ HT (M)
which implies that there exists a nonzero s ∈ h(R) such that s(rm) = 0. Since
m /∈ HT (M), sr = 0 and since s 6= 0, r = 0. Hence, (HT (M) :R M) = {0}. ✷

Theorem 2.16. Let M be a graded R-module over an integral domain R. If

M is a graded semiprime multiplication R-module, then either HT (M) = {0} or

HT (M) = M .

Proof: Suppose that HT (M) 6= M . Then by Lemma 2.15, HT (M) is a graded
prime R-submodule of M with (HT (M) :R M) = {0}. By Theorem 2.4, HT (M)
is a graded semiprime R-submodule of M and since M is graded semiprime multi-
plication, HT (M) = (HT (M) :R M)M = {0}. ✷
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