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abstract: In this paper, the residual power series method (RPSM) is applied to
one of the most frequently used models in engineering and science, a nonlinear re-
action diffusion convection initial value problems. The approximate solutions using
the RPSM were compared to the exact solutions and to the approximate solutions
using the homotopy analysis method.
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1. Introduction

We consider the nonlinear reaction diffusion convection model, which is a math-
ematical model that describes how the concentration of the substance distributed
in the medium changes under the influence of the three processes (i.e convection,
diffusion and reaction). That is given by

ut = (a(u)ux)x + b(u)ux + c(u), (1.1)

where u = u(x, t) is an unknown function, and the arbitrary smooth functions a(u),
b(u) and c(u) denote the diffusion term, the convection term and the reaction term
respectively. The reaction diffusion convection equations are widely used in many
areas in science such as biology modeling, physics, chemistry, astrophysics, medicine
and engineering. For example, heat conduction [4], [5] and [20], haemodynamics
[9], [23] and [22], dynamics of blood coagulation [6] and [25], cardiac arrhythmias
[8] and [24] and atherosclerosis [16] and [15].

The following equation is a special case of the reaction diffusion convection
equations, the Murray equation [18] and [19]

ut = uxx + λ1uux + λ2u− λ3u
2, (1.2)
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where λ1, λ2, and λ3 are real numbers. Whereas, the generalized Burgers equation
[26] and [7]

ut + (u2/2)x = f(t)uxx x ∈ R, t > 0, (1.3)

this equation is the mathematical model of the propagation of the finite-amplitude
sound waves in variable–area ducts, where u is an acoustic variable, with the linear
effects of changes in the duct area taken out, and the coefficient f(t) is a positive
function that depends on the particular duct chosen. Also, the Fisher-Kolmogoroff
equation was suggested by Fisher [12] and [18] in (1937), is a simplest case of the
nonlinear reaction diffusion given by

ut = Duxx + ku(1− u), (1.4)

where k and D are positive parameters. It was used to determine the stochastic
model for the spatial spread of a favoured gene in population. Both equations are
special cases of the Murray equation.

There are several procedures to find the analytical approximate solution of the
nonlinear partial differential equations such as the homotopy analysis method HAM
presented by Liao [17], variational iteration method VIM presented by He [13], Ho-
motopy perturbation method [14] and the residual power series solution presented
by Abu Arqub [1] this powerful method is an accurate, efficient, straightforward
and simple technique to solve nonlinear equations by constructing a power series so-
lution subjected to a given initial condition. This method calculates the coefficients
of the power series by a sequence of algebraic equations of one or more variables
then we obtain the series solution, in particular a truncated series solution.

The idea behind the residual power series method [1] is to express the solution
of the IVP

ut = (a(u)ux)x + b(u)ux + c(u), (1.5)

completed by the initial data

u(x, 0) = f0(x), (1.6)

as a power series about the initial point t = t0. To do so the approximate solution
will be presented as

u(x, t) =

∞
∑

m=0

fm(x)(t − t0)
m. (1.7)

Clearly, when m = 0, u0(x, t) satisfies the initial condition (1.6), where u0(x, t) is
the initial guess approximation of u(x, t). Hence, f0(x) = u0(x, t) = u(x, 0). The
kth truncated solution uk(x, t) for k = 1, 2, 3, . . . approximate the solution u(x, t)
for the system (1.5)-(1.6) which is defined as follows:

uk(x, t) =

k
∑

m=0

fm(x)(t − t0)
m. (1.8)

Next, we rewrite the IVP (1.5) in the following way

ut − (a(u)ux)x − b(u)ux − c(u) = 0. (1.9)
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Also, we define the residual function for equation (1.5) by

Res(x, t) = ut − (a(u)ux)x − b(u)ux − c(u). (1.10)

And the kth truncated residual can be defined as follows:

Resk(x, t) = (uk)t − (a(uk−1)(uk)x)x − b(uk−1)(uk)x − c(uk−1). (1.11)

Clearly, Res(x, t) = 0 for each t. In order to approximate the solution, substi-
tute the kth truncated series uk(x, t) as given in (1.8) into equation (1.11) so we
have

Resk(x, t) =

k
∑

m=1

mfm(x)(t − t0)
m−1 −

(

a(uk−1)

k
∑

m=0

dfm(x)

dx
(t− t0)

m

)

x

− b(uk−1)

k
∑

m=0

dfm(x)

dx
(t− t0)

m − c(uk−1).

(1.12)

Define Res∞(x, t) = limk→∞ Resk(x, t), we may also notice that Res∞(x, t) = 0
for each t. This concludes that the Res∞(x, t) is infinitely differentiable at t = 0.
Therefore, as an essential rule of residual power series method [1]

∂s−1Res∞(x, 0)

∂ts−1
=

∂s−1Resk(x, 0)

∂ts−1
= 0, for s = 1, 2, 3, . . . , k.

To find the first approximate solution, we let k = 1 in equation (1.12) then using
the fact that Res∞(x, 0) = Res1(x, 0) = 0, we conclude that

f1(x) =
d

dx

{

a(u0)
d

dx
f0(x)

}

− b(u0)
d

dx
f0(x) + c(u0).

Hence, using the first truncated series the first approximate solution for the IVP
(1.5)-(1.6) can be written as

u1(x, t) = u0 +

[

d

dx

{

a(u0)
d

dx
f0(x)

}

− b(u0)
d

dx
f0(x) + c(u0)

]

t.

Furthermore, to find the second approximate solution we use k = 2, so we achieve

u2(x, t) =

2
∑

m=0

fm(x)tm,

then we substitute u2(x, t) into equation (1.12) and different both sides of the
resulting equation with respect to t and substituting t = 0, as a result we will be
able to find f2(x). Hence, the second approximate solution can be represented as:

u2(x, t) = f0(x) + f1(x)t + f2(x)t
2.
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We can repeat this procedure as many times, allowing us to reach the arbitrary ap-
proximate solution. In [1] Abu Arqub used the residual power series method to find
the approximate solution of fussy differential equations, he proved the convergence
of the method. So, we may generalize his results to our problem nonlinear-reaction-
diffusion-convection IVP given by (1.5)-(1.6).

Theorem 1.1. [1] Suppose that u(x, t) is the exact solution for the initial value
problem (1.5)-(1.6). Then, the approximate solution obtained by the residual power
series method is just the Taylor expansion of u(x, t).

Corollary 1.2. [1] If u(x, t) is a polynomial, then the exact solution will be ob-
tained using the residual power series method.

In this paper we use the residual power series method to get the numerical
solution for nonlinear reaction diffusion convection problems.

This paper is organized as follows in Section 2 the residual power series method
is described and applied to two nonlinear reaction-diffusion-convection problems.
In section 3 the numerical results and the graphs are presented. Finally, in section
4 we conclude that RPSM is better than the HAM method.

2. Numerical applications of the residual power series method

In this section, we apply the residual power series method RPSM to solve some
nonlinear reaction-diffusion-convection problem.

Example 2.1. Consider the IVP
{

ut = uxx + uux + u− u2,
u(x, 0) = 1 + ex, −∞ ≤ x ≤ ∞,

(2.1)

such that the exact solution for (2.1) is u(x, t) = 2e2t
√
ex − e−4x.

Suppose we define the solution

u(x, t) =

∞
∑

m=0

fm(x)tm, t ∈ [0, R), x ∈ I. (2.2)

Then, we define uk(x, t) to be the kth truncated series of u(x, t) given by

uk(x, t) =

k
∑

m=0

fm(x)tm, t ∈ [0, R), x ∈ I, (2.3)

with
u0(x, t) = f0(x) = u(x, 0).

Hence, we can write equation (2.3) as follows:

uk(x, t) = f0(x) +
k
∑

m=1

fm(x)tm, t ∈ [0, R), x ∈ I, k ∈ {1, 2, · · · }. (2.4)



RPSM for Solving Nonlinear Reaction-diffusion-convection Problems 181

Now, we need to evaluate the coefficients fm(x), where m = 1, 2, · · · , k in the
series expansion of equation (2.4) above. To do so we define the residual function
Res(x, t), of equation (2.1), as follows:

Res(x, t) = ut − uxx − uux − u+ u2,

while, we define the kth residual function Resk(x, t), as follows:

Resk(x, t) = (uk)t − (uk)xx − uk(uk)x − uk + u2
k, k = 1, 2, 3, · · · . (2.5)

As in Abu Arqub and partners [1], [10] it is clear that the Res(x, t) = 0 and

lim
k→∞

Resk(x, t) = Res(x, t) for x ∈ I and t ≥ 0. Then
∂s−1

∂ts−1
Ress(x, t) = 0 for

s = 1, 2, · · · , k, for t = 0.
Now, to determine f1(x), we compute Res1(x, t) supposing that k = 1 in (2.5)

to get

Res1(x, t) = (u1)t − (u1)xx − u1(u1)x − u1 + u2
1, (2.6)

where

u1(x, t) = f0(x) + f1(x) t, (2.7)

with

u0(x, t) = f0(x) = u(x, 0) = 1 + ex.

Substituting equation (2.7) into equation (2.6) and using the fact that Res1(x, t) =
0 for t = 0. Yields,

f1(x) = ex. (2.8)

Therefore, the first residual power series (RPS) approximate solution is

u1(x, t) = 1 + ex + ex t. (2.9)

Similarly, to find the second unknown function f2(x), we write

u2(x, t) = f0(x) + f1(x) t+ f2(x) t
2,

then we substitute u2(x, t) in Res2(x, t), with the condition ∂Res2(x, t)/∂t = 0 for
t = 0, we get

f2(x) =
ex

2
. (2.10)

Therefore, the second term of RPS approximate solution is

u2(x, t) = 1 + ex + ex t+
ex

2
t2. (2.11)

Proceeding to the third iteration u3(x, t), to find f3(x), we write

u3(x, t) = f0(x) + f1(x) t+ f2(x) t
2 + f3(x) t

3,
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next, we substitute u3(x, t) in Res3(x, t), with the condition ∂2Res3(x, t)/∂t
2 = 0

for t = 0, we obtain that

f3(x) =
ex

6
, (2.12)

and the third term of RPS approximate solution is

u3(x, t) = 1 + ex + ex t+
ex

2
t2 +

ex

6
t3. (2.13)

To compute the fourth iteration we set

u4(x, t) = f0(x) + f1(x) t+ f2(x) t
2 + f3(x) t

3 + f4(x) t
4,

then we substitute u4(x, t) in Res4(x, t), with the condition ∂3Res4(x, t)/∂t
3 = 0

for t = 0, to get

f4(x) =
ex

24
, (2.14)

hence, the fourth term of RPS approximate solution is

u4(x, t) = 1 + ex + ex t+
ex

2
t2 +

ex

6
t3 +

ex

24
t4

= 1+ ex
[

1 + t+
t2

2!
+

t3

3!
+

t4

4!

]

.
(2.15)

Therefore, the kth iteration can be written as follows:

uk(x, t) = 1 + ex
k
∑

m=0

tm

m!
. (2.16)

Since, u(x, t) = limk→∞ uk(x, t), then we conclude that

u(x, t) = 1 + ex+t, (2.17)

which is the exact solution.

Example 2.2. Consider the IVP

{

ut = (uux)x + 3uux + 2(u− u2),

u(x, 0) = 2
√
ex − e−4x, −∞ ≤ x ≤ ∞,

(2.18)

such that the exact solution for (2.18) is u(x, t) = 2e2t
√
ex − e−4x.

We define the residual function Res(x, t), for equation (2.18), as follows:

Res(x, t) = ut − (uux)x − 3uux − 2(u− u2),

while, we define the kth residual function Resk(x, t), as follows:

Resk(x, t) = (uk)t−(uk(uk)x)x−3uk(uk)x−2(uk−u2
k
), k = 1, 2, 3, · · · . (2.19)
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To determine f1(x), we compute Res1(x, t) by letting k = 1 in (2.5) to get

Res1(x, t) = (u1)t − (u1(u1)x)x − 3u1(u1)x − 2(u1 − u2
1), (2.20)

where
u1(x, t) = f0(x) + f1(x) t, (2.21)

such that
u0(x, t) = f0(x) = u(x, 0) = 2

√

ex − e−4x.

Substituting equation (2.21) into equation (2.20) and using the fact thatRes1(x, t) =
0 for t = 0. Yields

f1(x) = 4
√

ex − e−4x. (2.22)

Therefore, the first residual power series (RPS) approximate solution is

u1(x, t) = 2
√

ex − e−4x + 4
√

ex − e−4x t. (2.23)

Similarly, to find the second unknown function f2(x), we write

u2(x, t) = f0(x) + f1(x) t+ f2(x) t
2,

then we substitute u2(x, t) in Res2(x, t), with the condition ∂Res2(x, t)/∂t = 0 for
t = 0, we get

f2(x) = 4
√

ex − e−4x. (2.24)

Therefore, the second term of RPS approximate solution is

u2(x, t) = 2
√

ex − e−4x + 4
√

ex − e−4x t+ 4
√

ex − e−4x t2. (2.25)

Proceeding to the third iteration u3(x, t), to find f3(x) we write

u3(x, t) = f0(x) + f1(x) t+ f2(x) t
2 + f3(x) t

3,

next, we substitute u3 in Res3(x, t), with the condition ∂2Res3(x, t)/∂t
2 = 0 for

t = 0, we obtain that

f3(x) = 8
√

ex − e−4x, (2.26)

and the third term of RPS approximate solution is

u3(x, t) = 2
√

ex − e−4x + 4
√

ex − e−4x t+ 4
√

ex − e−4x t2 +
8

3

√

ex − e−4x t3.

(2.27)
To compute the fourth iteration we set

u4(x, t) = f0(x) + f1(x) t+ f2(x) t
2 + f3(x) t

3 + f4(x) t
4,

then we substitute u4(x, t) in Res4(x, t), with the condition ∂3Res4(x, t)/∂t
3 = 0

for t = 0, to get

f4(x) =
4

3

√

ex − e−4x, (2.28)
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hence, the fourth term of RPS approximate solution is

u4(x, t) =2
√

ex − e−4x + 4
√

ex − e−4x t+ 4
√

ex − e−4x t2

+
8

3

√

ex − e−4x t3 +
4

3

√

ex − e−4x t4

=2
√

ex − e−4x

[

1 + 2t+
(2t)2

2!
+

(2t)3

3!
+

(2t)4

4!

]

.

(2.29)

Therefore the kth iteration can be written as follows:

uk(x, t) = 2
√

ex − e−4x

k
∑

m=0

(2t)m

m!
. (2.30)

Since, u(x, t) = limk→∞ uk(x, t), then we conclude that

u(x, t) = 2
√

ex − e−4x

∞
∑

m=0

(2t)m

m!

= 2e2t
√

ex − e−4x,

(2.31)

which is the exact solution. Table (1) is used to compare the absolute error of
HAM with our findings using RPSM. The latter is more accurate due to the fact
that we obtained the exact solution.

Table 1: Comparison of the absolute errors for Example 2.2 with values of HAM
taken from [21]

t x RPSM HAM
0.1 0.5 0 0

1.0 0 8.88178 ×10−16

1.5 0 1.77636×10−15

2.0 0 1.77636×10−15

4.0 0 3.55271×10−15

6.0 0 1.42109×10−11

0.5 0.5 0 1.25233 ×10−13

1.0 0 1.68754 ×10−13

1.5 0 2.18492×10−13

2.0 0 2.75335×10−13

4.0 0 7.46070×10−13

6.0 0 2.06057×10−12

0.5 0.5 0 8.72582 ×10−9

1.0 0 1.16550 ×10−8

1.5 0 1.50118×10−8

2.0 0 1.92804×10−8

4.0 0 5.24108×10−8

6.0 0 1.42467×10−7
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3. Discussion and Numerical Simulations

In this section the numerical results for both Examples 2.1 and 2.2 are pre-
sented. In table 1 we compare the absolute error only for Example 2.2 using both
methods the residual power series method (RPSM) and the homotopy perturbation
method (HAM) in which we found that the RPSM gives better estimates than the
HAM. In figure 1 and 3 the comparison between the approximate and the exact
solution for both examples 2.1 and 2.2 is presented, in which we found out that
both are fairly similar in both examples. While, in figure 2 and 4 we compare the
approximate solution u4(x, t) for different values of t, and also, the comparison for
the approximate solutions ui(x, t) for i = 1, 2, 3, 4 when t is fixed.
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Figure 1: The 3D plot of the fourth approximate solution of Example 2.1 as a
function of x and t (Left). The 3D plot of the exact solution of Example 2.1 as a
function of x and t (Right).
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Figure 2: The Plot of the fourth approximate solution u4(x, t) for Example 2.1 as a
function of x with t = 0.5 solid line, t = 0.7 dotted line, t = 1 × and t = 1.2 •(Left).
The plot of the four approximate solutions of Example 2.1, u1 dotted line, u2 �,
u3 ◦ and u4 solid line, as functions of x and t = 1 (Right).
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Figure 3: The 3D plot of the fourth approximate solution of Example 2.2 as a
function of x and t (Left). The 3D plot of the exact solution of Example 2.2 as a
function of x and t (Right).
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Figure 4: The Plot of the fourth approximate solution u4(x, t) for Example 2.2 as a
function of x with t = 0.5 dotted line, t = 0.7 solid line, t = 1 • and t = 1.2 ×(Left).
The plot of the four approximate solutions of Example 2.2, u1 ×, u2 dotted line,
u3 solid line and u4 • as functions of x and t = 1 (Right).

4. Conclusion

The RPSM is applied to find the approximate solution for nonlinear reaction-
diffusion-convection equations, the problems were already studied using the HAM
method [21]. The results show that the RPSM is an efficient technique for solving
nonlinear problems and gives better estimates than the HAM.
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