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A New Partial Differential Equation for Image Inpainting ∗

M. Benseghir, F.Z. Nouri and P.C. Tauber

abstract: A considerable interest in the inpainting problem have attracted many
researchers in applied mathematics community. In fact in the last decade, nonlinear
high order partial differential equations have payed a central role in high quality
inpainting developments. In this paper, we propose a technique for inpainting that
combines an anisotropic diffusion process with an edge-corner enhancing shock fil-
tering. This technique makes use of a partial differential equation that is based
on a nonlinear structure tensor which increases the accuracy and robustness of the
coupled diffusion and shock filtering. A methodology of partition and adjustment is
used to estimate the contrast parameters that control the strength of the diffusivity
functions. We focus on restoring large missing regions in grey scale images contain-
ing complex geometries parts. Our model is extended to a three dimensional case,
where numerical experimentations were carried out on filling brain multiple sclerosis
lesions in medical images. The efficiency and the competitiveness of the proposed
algorithm is numerically compared to other approaches on both synthetic and real
images.
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1. Introduction

Inpainting is the technique of reconstructing or restoring a damaged part of an
image by using available information to filling-in the target region. It is widely
used for digital image processing in different applications (e.g. recovering lost
pixels, restoring old film, object and text removal, red-eye correction, super res-
olution reconstruction, etc.). Nowadays, there are three categories of inpainting
approaches: methods based on the synthesis of textures [12], [13], [14], [16],
[17], [24] and [32], geometric methods [3], [5], [9], [10], [19], [20], [27] and
[28] and hybrid methods [4], [15] and [23] . The first are based on searching
and copying similar patches in the neighborhood of the damaged region, where the
reconstruction is done from the outside to the inside edge of the target area; for
example, Criminisi et al. [12] adopt an order to fill in the missing region where
the patches of the high gradient zones are processed first. These methods give very
effective solutions for the reconstruction of textures but do not handle very effec-
tively edges and boundaries. The second family artificially synthesizes an image
compatible with the human visual system. The main idea of these approaches is to
restore photometric and structural information such as edges, corners, curvatures
and junctions. In these approaches, the target region is filled by diffusing the in-
formation from their surroundings using partial differential equations (PDEs). It
is very common in such models to use functions to control the diffusion strength.
These functions are however very sensitive to the choice of the so-called contrast
threshold parameters that are specific to each image due to their sensitivity to the
local change of brightness. Finally, the last category of approaches, namely ”the
hybrid methods”, try to take the advantages of the first two classes of methods to
ensure the reconstruction of both the geometric and the textured components.

In this paper, we propose an inpainting technique based on the non-linear
structure tensor (NLST) estimations in order to evaluate more precisely the lo-
cal anisotropy of the image data and the orientation of the diffusion. To preserve
the image geometric properties, an oriented diffusion process is coupled with edge-
and-corner shock filtering, for reconstructing (or restoring) large missing regions in
grayscale images containing complex geometries. The contrast parameters of the
different terms are estimated. A numerical scheme supported by a new algorithm
is presented along with numerical results confirming the efficiency and competi-
tiveness of the method in terms of Peak Signal to Noise Ratio (PSNR), Structural
Similarity Measure (SSIM) and visual quality, compared to several other inpainting
approaches [9], [26] and [33].

Furthermore, a 3D version of our model applied to volumetric data is presented.
It is well known that in medical imaging, a presence of multiple sclerosis (MS)
lesions in brain affect magnetic resonance imaging (MRI) processing, such as reg-
istration, brain volume measurements, automated tissue classification tools etc...
Multiple patch-based image inpainting techniques have been proposed to filling le-
sions that considerably reduce the impact of MS in many MRI analysis protocols
(see for example [1], [11], [18] and [25]). Here, we are interested to analyse and
experiment numerically the proposed PDE-based model for this application.
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This paper is organized as follows: in section 2, we present some related works
from the inpainting domain, outlining their advantages and limitations and high-
lighting our contribution. Section 3 is devoted to the presentation of the proposed
model in 2D and extended to a three dimensional case. The numerical analysis
and implementation are summarized in section 4, and the results and comments
are detailed in section 5. We finish with concluding remarks.

2. Related works

Since the work of Perona-Malik [21], the anisotropic diffusion PDEs were
largely developed for multiple applications in image processing. Their principle
is based on the application of successive locally oriented diffusion of the image pix-
els intensity, which is controlled to preserve important structures. Diffusion based
inpainting was the first digital inpainting approach [3]. This technique mainly
uses nonlinear PDEs and variational approaches to propagate the information in
direction of level lines, by minimizing an energy functional. For example, the pop-
ular total variation (TV) model, proposed by chan et al. [9], is based on the
minimization of the TV norm with the efficiency to restore degraded and noised
images for only small missing regions, however it fails to realize the connectivity
principle in visual perception. Most of PDE-based inpainting techniques use the
gradient vector to estimate edges orientation, unfortunately it can never provide a
truly accurate estimation in features with complex geometries, as it does not allow
us to distinguish between corners and straight edges. Recently, the most popular
estimator is the structure tensor, also known as second moment matrix; that is fre-
quently used in oriented diffusion filtering [22], [26], [28], [30] and [31], with
the performance to give an accurate estimation of image structure orientations,
particularly when edges are oriented uniformly.

2.1. Linear structure tensor

Feature extraction and orientation estimation are very important for image
processing and computer vision communities. The most popular estimator is the
linear structure tensor (LST), given by

L = Gρ ∗
(

∇U∇UT
)

=

(

Gρ ∗ (Ux)
2

Gρ ∗ (UxUy)

Gρ ∗ (UxUy) Gρ ∗ (Uy)
2

)

(2.1)

where U is the image and ρ is a scale factor of the Gaussian kernel. The convolu-
tion (∇U∇UT ) with the Gaussian kernel G(0, ρ2) does not only reduce the noise
level, but also introduces a spatial coherence through the scale factor ρ and makes
structure analysis insensitive to textures. Sometimes, U is also smoothed by an-
other Gaussian kernel G(0, σ2), with σ the variance, to make the tensor even more
robust to noise. The matrix L is symmetric and positive semi-definite with max-
imum and minimum eigenvalues λ+ and λ−, respectively, and the corresponding
orthonormal eigenvectors V and V ⊥. The vector V represents the orientation with
the highest gray value fluctuation (V//∇U) and V ⊥ gives the best local orientation
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(V ⊥//∇U
⊥
), i.e. the coherence direction. The analysis of eigenvalues and eigen-

vectors of L provides useful information about the complexity of local structures
in a neighborhood of each pixel in U , for more details see [2].

2.2. Inpainting methods based on the LST

By taking into account the advantages of the LST, new methods of inpainting
have been developed. For instance, in order to better protect the edge and corner
structures during the restoration process, Zhang and al. [33] have proposed the
following anisotropic PDE that exploits the amplitude information contained in
the LST:

∂U

∂t
= f(c).f(|∇U |)Uηη + αUξξ, (2.2)

where Uηη = D2U(η, η) and Uξξ = D2U(ξ, ξ) are second-order directional deriva-

tives in the gradient (η = ∇U
||∇U|| ) and tangential direction (ξ = ∇⊥U

||∇U|| ) respectively,

and α > 0 is set to be a large diffusion coefficient. The functions that control
the diffusion strength along the gradient direction are, the corner protection func-
tion f(c) = 1

1+( c
K )

2 , and the edge stopping function f(|∇U |) = 1

1+( |∇U|
K )

2 , where

c = |(∇ · (V ⊥V ⊥T ))T · ∇U | is the corner intensity at each pixel and K an adaptive
contrast parameter. Note that (η, ξ) are the characteristics parameters.

It has to be pointed out that equation (2.2) can preserve corner and edge fea-
tures during an inpainting procedure, however it does not restore corners in large
missing regions. In addition, this approach does not consider the orientation infor-
mation contained in the LST.

To overcome some of these limitations, Shao et al. [26] proposed the following
PDE:

∂U
∂t

= fV .UV V +fV ⊥.UV ⊥V ⊥−γ.sign(UV V ).||∇Uσ||
−(fV ⊥ − fV )((∇ · (V ⊥V ⊥T ))T · ∇Uσ)

(2.3)

The robust orientation diffusion PDE (2.3) is the generalization of the directional
diffusion of Perona-Malik, used for many applications, such as denoising, inpainting,
super-resolution reconstruction, etc.. The eigenvectors of (2.3), V and V ⊥ are the
robust orientations derived from LST, substituted for the gradient and tangential
directions, respectively. The functions fV and fV ⊥ are the edge stopping functions,
chosen as fV = fV (|λ+−λ−|) = 1

1+|λ+−λ−| and fV = fV ⊥(|λ+−λ−|) = 1
1+|λ+−λ−|a ,

where λ+ and λ− are the maximum and minimum eigenvalues of (2.1) and 0 <
a ≤ 1. Note that Tschumperlé [28] presented a similar PDE, with only the first
two terms in (2.3) that is not able to preserve corner structures. The third term
in (2.3) is an edge shock filter, where γ is a small positive control parameter. This
term is added to favor both the smoothness and the sharpness of edge structures.
The last term is a corner shock filter.

While it was shown that this model can better preserve the corner structures,
as well as allows to restrain the rounding artifacts, its performances fall when
dealing with large areas covering sharp or curved edges. Furthermore, the Gaus-
sian smoothing used in the LST induces dislocation of discontinuities and blurring
effects.
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3. Proposed Model

To overcome the disadvantages of the previous models, we propose an inpainting
technique based on a NLST, a more adaptive structure estimator that gives a better
estimation of image structure orientations than their linear counterpart LST. In
the proposed approach, an edge and corner shock filters based on the NLST are
used to enhance and protect structures during filling-in process. The strength
of diffusion is controlled through several stopping functions carefully selected to
ensure a good compromise between the robust orientation diffusion and the shock
filtering. Furthermore, to avoid the inconvenient choice of several constants in an
adaptive manner, a partition and an adjustment methodologies are proposed to
estimate the contrast parameters that control the force of the diffusivity functions.

3.1. Nonlinear structure orientation

In this subsection we present the principle of NLST, as initially proposed by
Weickert et al. [8], and study the advantages of the NLST compared to the LST
model (2.1). We recall that the estimation of the linear structure tensor in (2.1)
can be modeled by the diffusion equation

{ ∂sp,q
∂t

= ∆sp,q,

S0 = ∇U∇UT = (s0p,q), i, j = 1, 2,
(3.1)

where the diffusion time t is related to the standard deviation ρ of the Gaussian

in (2.1) via t = ρ2

2 . The NLST replaces the diffusion equation (3.1) by an anisotropic
diffusion to reduce smoothing in the presence of edges and enhance the image
structure. This process is given by

∂sp,q
∂t

= div[g(|λmax − λmin|)∇sp,q], p, q = 1, 2, (3.2)

where g(r) = 1√
ε2+( r

k
)2

is the diffusivity function, with ε > 0 a small fixed pa-

rameter used to avoid singularities, k > 0 and the measure r = |λmax − λmin|
determines the coherence in the image data (λmax, λmin are the maximum and
minimum eigenvalues of S). When applying a diffusion process to the matrix-
valued data S = (sij)i,j=1,2, the positive semi-definiteness of the original data S0

is preserved and the maximum-minimum principle for the field of the eigenvalues
associated with a matrix field is guaranteed (for more details the reader is referred
to [8]). By using the eigenvalue decomposition, the NLST S can be expressed as
follows:

S =
(

V1 V2

)

(

λmax 0
0 λmin

)(

V T
1

V T
2

)

(3.3)

The eigenvector V1, corresponding to λmax, represents the direction of the maxi-
mum signal variation while the eigenvector V2, associated to λmin, gives the struc-
ture orientation. By analyzing the eigenvalues of the NLST, the measure r =
|λmax − λmin| gives very good information about the local image anisotropy so
that in the homogeneous regions |λmax − λmin| ≈ 0, in neighbourhood of straight
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edges |λmax − λmin| ≫ 0, but in the presence of junctions, corners or a curves
|λmax − λmin| > 0. Compared with the conventional structure tensor (2.1), the
NLST (3.3) has been highlighted as being able to more accurately estimate the
structure orientation. It has several advantages, such as directional smoothing,
edge enhancing and it avoids the dislocation of discontinuities. Considering these
advantages, we make use of the NLST to build a novel inpainting approach that is
suitable for images with both simple and complex geometries.

3.2. Proposed inpainting PDE

In this paper, we propose a coupled oriented diffusion and shock filtering PDE
to fill in missing or damaged region. It is based on the estimations provided by
(3.3) to determine the strength and direction of the diffusion. For simplicity, we
first consider an analysis in two dimensional. This process is set as follows: we
write

∂U
∂t

= f1.UV1V1
+ f2.UV2V2

−f3.sign(UV1V1
).||∇U || − f4.((∇ · (V2V

T
2 ))T · ∇U)

(3.4)

where UV1V1
= D2U(V1, V1) and UV2V2

= D2U(V2, V2) are the second derivatives
in the directions V1 and V2 and the stopping functions are given by

f1(r, k1) =

{

1
2 [1− ( r

k1

√
2
)2] if r ≤ k1

√
2

0 else
(3.5)

and

f2(r, k2) =
1

(1 + r
k2
)a
, with r = |λmax − λmin| (3.6)

where a is a constant that was empirically set to 0.3 and (ki)i=1,2 are parameters
that are semi-automatically estimated, as described hereafter. Note that f1 gives a
weak diffusion in the orthogonal direction to the contour, as long as the variation
of the image intensity is small enough to avoid the effect of scaling and thus gives
a natural effect to a restoration result (see for example [6]). The function f2
used in [26], encourages strong diffusion along the contours. This guarantees the
reconstruction of geometric structures and ensures the continuity of the level lines.
The last two terms in (3.1) are the shock filters for contours and angles, given by

f3(r, k3) = e
−|λmax−λmin|2

k2
3 (3.7)

and

f4(C, k4) = e
− C

k2
4 (3.8)

where C = |∇ · (V2V
T
2 ))T · ∇U | is the intensity of the angle, the parameters k3

and k4 will be specified later. The functions f1, f2, f3 and f4 are monotonically
decreasing in [0, 1], such that f3 and f4decrease faster than f1 and f2. Thus, this
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adopted shock filtering decreases the diffusion in presence of significant discontinu-
ities, with the possibility of preserving and enhancing the image structures in the
following way:

(a) In homogeneous regions, only the first two terms in (3.4) are significant and
we obtain an isotropic diffusion.

(b) In the neighborhood of a straight contour, the diffusion becomes anisotropic
(strong in the most coherent direction) and the shock filter in the third term of
(3.4) preserves the contours.

(c) In the presence of a corner, the diffusion is strong along the structures and
the shock filter of the last two terms in (3.4) enhances the structure.

3.3. Extension to 3D

To validate these results, it would be more interesting if we extend our study
to a three dimensional case by writing (3.4) as

∂U
∂t

= fV1
.UV1V1

+ fV2
.UV2V2

+ fV3
.UV3V3

−fE.sign(UV1V1
).||∇U || − fc.((∇ · (V3V

T
3 ))T · ∇U)

(3.9)

Note that we have three eigenvectors V1, V2 and V3 associated to the eigenvalues
λ1, λ2 and λ3 such that λ1 ≥ λ2 ≥ λ3, leading to an extra term fV3

UV3V3
. Here the

edges will be surfaces, so by taking into account the highest grey value fluctuations
given by V1, we choose

fV1
= f1(|λ1 − λ3|, k1) (3.10)

in order to stop diffusion across the surface structures (|λ1 − λ3| ≫ 0). Hence we
can point out that as long as the iso-surfaces are homogeneous (|λ2 −λ3| ≈ 0,) the
diffusion will be isotropic in the tangent plane. However when the surface is not
isotropic, diffusion should be performed primarily along the best local orientation
V3. These goals are fulfilled by taking

fV2
= f2(|λ1 − λ2|, k2), (3.11)

fV3
= f2(|λ2 − λ3|, k3) (3.12)

Finally, the shock filters in the two last terms in (3.9), are controlled by

fE = f3(|λ1 − λ3|, k4) (3.13)

and

fC = f4(|∇ · (V3V
T
3 ))T · ∇U |, k5), (3.14)

prevent blurring effect near the geometric structures, where (fi)
4
i=1 are given by

(3.5), (3.6), (3.7) and (3.8), respectively and (ki)
5
i=1 are the contrast parameters.
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3.4. Contrast parameter approximation

Inspired by the work of Borroto-Fernández et al. [7], here we use a methodology
of partition based on K-means algorithm and a least-square fit (KMLS) to approxi-
mate the contrast parameters in accordance with the local anisotropy measure and
the corner intensity given by the NLST.

The diffusion coefficients f(r, k) are monotonically decreasing functions ∈ [0, 1],
and are very sensitive to the choice of the contrast parameters such that in the
neighborhood of edges (r > k) the smoothing effect is lower and the structures are
preserved, but near homogeneous regions (r < k) the smoothing effect is stronger.
This means that these parameters interfere in one way or another with the diffusion
process and are chosen according to the variation of the image photometric data,
which differs from one image to another.

In order to approximate the contrast parameters at each iteration, we give a
technique for a good constant selection. This process is based on a partitioning
and adjustment methodologies which are carried out in the following two steps:

Step 1 : Partition
Let f(r, k) be a diffusion function

• The set of pixels of the image P is partitioned into three clusters: P1 for the
pixels (x, y) in the homogeneous regions, P3 for those in the neighborhood of
edges and P2 = P\(P1 ∪ P3).

(a) Selection of initial means:

m1 = min{r(x, y), (x, y) ∈ P} for P1,
m3 = max{r(x, y), (x, y) ∈ P} for P3,
m2 = m1+m3

2 for P2.
(3.15)

(b) Pixels affectation:

(x, y) ∈ Pi if d(r(x, y),mi)
3
i=1 = min |r(x, y) −mi|. (3.16)

(c) Compute the new means to be the centroids of clusters.

mi =
∑

(x,y)∈Pi

r(x, y)

ni

, i = 1, 2, 3 (3.17)

where ni is the number of pixels of each cluster Pi (i = 1, 2, 3).
Operations (b) and (c) are repeated up to an equilibrium state.

(d) Selection of final means:

m1 = max{r(x, y), (x, y) ∈ P1}
m3 = min{r(x, y), (x, y) ∈ P3} (3.18)
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Step 2 : adjustment
The least squares fit method is applied to the diffusion functions f with the

values m1,m3 given by (3.18) and the values sep a strong edge preserving threshold
and wep a weak edge preserving threshold. This is equivalent to estimate the
parameters ki by minimizing, the following function:

S(ki) = [sep− fi(m1, ki)]
2 + [wep− fi(m3, ki)]

2 (3.19)

using the gradient descent method.
Note that, for the 3D case, we consider r(x, y, z) and voxels instead of pixels.

4. Discretization and implementation

To solve equation (3.4) in accordance with the new contrast parameters ki(t),i =
1, 2, 3 and 4, we propose a finite difference numerical method based on a time-
forward and space-centred scheme, satisfying an appropriate numerical stability
condition (CFL condition). We write

Un+1
i,j = Un

i,j + τ [fn
1 .U

n
V n
1
V n
1
+ fn

2 .U
n
V n
2
V n
2

−fn
3 · sign(Un

V n
1
V n
1
).||∇Un||

−fn
4 ((∇ · (V n

2 V
nT
2 ))T · ∇Un)]i,j

(4.1)

with Un
i,j = U(tn, xi, yj) and τ = ∆t the time step.

In the 3D case Un
i,j,l = U(tn, xi, yj , zl) and (4.1) becomes

Un+1
i,j,l = Un

i,j,l + τ [fn
V1
.Un

V n
1
V n
1
+ fn

V2
.Un

V n
2
V n
2
+ fn

V3
.Un

V n
3
V n
3

−fn
E · sign(Un

V n
1
V n
1
).||∇Un||

−fn
C((∇ · (V n

3 V
nT
3 ))T · ∇Un)]i,j,l

(4.2)

First, we derive a stability condition to ensure the convergence properties of the
proposed scheme, then we outline the associated resolution algorithm.

4.1. Numerical stability

In this subsection, we derive the stability conditions for our numerical scheme.

Proposition 4.1. The numerical scheme (4.1) satisfy the following stability con-

dition τ = ∆t ≤ 1
2 (f1+f2+P ) with P = v1.v2.(f1−f2)

2(v2
1
+ v2

2
)

, according to a choice of space

steps h = 1.

Proof: To prove this result we proceed by Fourier analysis. Let us consider

∂U

∂t
= f1.D

2U(V1, V1) + f2.D
2U(V2, V2) (4.3)

where V1 = V ⊥
2 =

(

v1
v2

)

are eigenvectors of the NLS. Thus, we can write:

∂U

∂t
= f1.

v21Uxx + 2v1v2Uxy + v22Uyy

v21 + v22
+ f2.

v22Uxx − 2v1v2Uxy + v21Uyy

v21 + v22
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=
(f1v

2
1 + f2v

2
2).Uxx + (f1v

2
2 + f2v

2
1).Uyy + 2v1v2(f1 − f2).Uxy

v21 + v22
. (4.4)

If we choose ∆x = ∆y = 1, the discrete scheme of (4.4) is written as

Un+1
i,j = Un

i,j +∆t
[

A1.(U
n
i+1,j − 2Un

i,j + Un
i−1,j)

+A2.(U
n
i,j+1 − 2Un

i,j + Un
i,j−1.

+A3.(U
n
i+1,j+1 + Un

i−1,j−1 − Un
i+1,j−1 − Un

i−1,j+1)
]

, (4.5)

where

A1 =
f1v

2
1 + f2v

2
2

v21 + v22
,

A2 =
f1v

2
2 + f2v

2
1

v21 + v22

and

A3 =
1

4

2v1v2(f1 − f2)

v21 + v22
.

By Fourier analysis, we substitute a solution of the form Un
i,j = ÛneIπh(ki+mj) with

k and m are fixed modes and I2 = −1, in quation (4.5) to get

Ûn+1eIπh(ki+mj) = ÛneIπh(ki+mj)

+∆t.
[

A1.(Û
neIπh(k(i+1)+mj)

−2ÛneIπh(ki+mj) + ÛneIπh(k(i−1)+mj))

+A2.(Û
neIπh(ki+m(j+1))

−2ÛneIπh(ki+mj) + ÛneIπh(ki+m(j−1)))

+A3.(Û
neIπh(k(i+1)+m(j+1)) + ÛneIπh(k(i−1)+m(j−1))

−ÛneIπh(k(i+1)+m(j−1)) − ÛneIπh(k(i−1)+m(j+1)))
]

. (4.6)

By dividing by eIπh(ki+mj), and put kπh = ak and mπh = bm,we get

Ûn+1 = Ûn[1 + ∆t(A1.(2 cos(ak)− 2) +A2.(2 cos(bk)− 2)
+A3.(2 cos(ak + bk)− 2 cos(ak − bk)],

(4.7)

leading to

Ûn+1 = Ûn
[

1 + ∆t [A1.(−4 sin2(
ak
2
)) +A2.(−4 sin2(

bk
2
)) (4.8)

+A3.(−4 sin(ak) sin(bk))]
]

. (4.9)

The scheme is stable if | Ûn+1

Ûn
| ≤ 1. Thus we obtain

∣

∣

∣

∣

1− 4∆t

[

A1.(sin
2(
ak
2
)) +A2.(sin

2(
bk
2
)) +A3.(sin(ak) sin(bk))

]
∣

∣

∣

∣

≤ 1 (4.10)
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This implies that

∣

∣

∣

∣

∣

Ûn+1

Ûn

∣

∣

∣

∣

∣

≤ |1− 4∆t [A1 +A2 +A3]| ≤ 1 =⇒ 0 ≤ ∆t ≤ 1

2[A1 +A2 +A3]
(4.11)

where A1 +A2 +A3 =
f1v

2
1+f2v

2
2

v2
1
+v2

2

+
f1v

2
2+f2v

2
1

v2
1
+v2

2

+ v1v2(f1−f2)
2(v2

1
+v2

2
)

= f1 + f2 +
v1v2(f1−f2)
2(v2

1
+v2

2
)
,

i.e we get the required result.This yields to a choice for the temporal discretisation
parameter satisfying △t ≤ 2

9 . In a similar way, we can derive a stability condition
for the 3D case. ✷

4.2. Implementation

For numerical investigations, we propose the following algorithms:

Algorithm 4.2. Estimation of the orientation and local structure measures
1 - Initialisation : input time step ∆t, the number of iterations T1 and the

contrast parameter k.

2 - Approximate the space partial derivatives ∂Un

∂x
, ∂Un

∂y
, ∂2Un

∂x2 , ∂
2Un

∂y2 and ∂2Un

∂x∂y
,

using a central finite difference scheme.
3 - Compute the structure tensor Sn

0 from (3.2).
4 - Compute the initial eigenvalues λn

max, and λn
min

5 - Compute the elements of the NLST by:

sn+1
p,q − snp,q

∆t
= div[g(|λn

max − λn
min|)∇snp,q]

6 - If the number of iterations is less than T1, repeat step 5.
7 - Compute λn

max, λ
n
min; V1 and V2 from (3.3).

8 - Compute the local contrast rn = |λn
max − λn

min| and the corner intensity

Cn = |(∇ · (V n
2 V nT

2 ))T · ∇Un|.

Algorithm 4.3. Computation of the contrast parameters
Step 1: Partition

1- Initialisation: selection of initial means
2- Affectation of pixels from (3.10) and compute the new means by (3.11), this

is repeated up to an equilibrium state,
3- Selection of final means via (3.12),
Step 2: adjustment Compute the contrast parameters ki from (3.13),

Algorithm 4.4. Computation of the inpainted image
1- Initialisation :Input a masked image U0, time step τ and the number of

iterations T .
3- Estimate the orientation and local structure measures by Algorithm 2.
4- Compute fn

1
, fn

2
, fn

3 and fn
4 using the contrast parameters k1, k2, k3 and k4

estimated by Algorithm 3.
5- Compute Un

V n
1
V n
1

and Un
V n
2
V n
2
defined in (4.1).
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6- Compute the shock filters :

−sign(Un
V n
1
V n
1
)||∇Un

σ |, −((∇.(V n
2 V n

2
T ))T .∇Un

σ ).

7- Compute Un+1 from (4.1).

8- While the number of iterations is < T stop, else repeat steps 3 to 7.

For the 3D case, we adapt the above algoritms as follows:
In Algorithm 2:

Step 2: approximate ∂Un

∂z
, ∂2Un

∂z2 , ∂2Un

∂x∂z
and ∂2Un

∂y∂z
.

Step 4: compute the initial eigenvalues λn
1 , λ

n
2 and λn

3 .
Step 5: compute the elements of the NLST with |λn

1 − λn
3 |.

Step 7: compute (λn
i )

3
i=1 and the corresponding eigenvectors (V n

i )3i=1.
Step 8: store the measures |λn

1 −λn
2 |, |λn

1 −λn
2 |, |λn

1 −λn
2 | and |∇·(V n

3 V
nT
3 ))T ·∇Un|.

In Algorithm 4:
Step 4: compute fn

V1
, fn

V2
, fn

V3
, fn

E and fn
C using the contrast parameters (kni )

5
i=1

estimated by Algorithm 3.
Step 6: compute Un

V n
3
V n
3

and −∇ · (V n
2 V

nT
2 ))T · ∇Un.

Step 7: Compute Un+1 from (4.2).

5. Results and comments

In this section, the results obtained are compared with the ones resulted from
Zhang et al. [33] (ZH), Shao et al. [26] (SH) and Chan et al. [9] (TV) algorithms.
These results are analyzed using different approaches visual quality, peak signal
noise ratio (PSNR) and structural similarity measure (SSIM) [29].

All computations are carried out on synthetic and real images using Matlab
(R2012a) on a personal computer with 4 Core 2.40GHz CPU and 4GO of RAM.

According to [26] and [33] since we did not experienced any significant sen-
sitivity to experimental results, some parameters are chosen to be fixed constants:
for (ZH) approach we take σ = 1.5, ρ = 2, α = 1 and k = 5., while for (SH)
σ = 1.5, ρ = 2, γ = 0.01 and a = 0.3. The time step is chosen to be τ = 0.2 for all
methods.

For the NLST algorithm the parameters are set as: the time step τ = 0.1, k =
4 and a number of iteration T1 = 10 is sufficient to get a satisfactory result.
The strong and weak edge preserving thresholds are chosen to be sep = 0.01 and
wep = 0.5. The principle of determining the number of iterations T is based on
our perceptual quality of the inpainted images and the values of PSNR and SSIM.

The obtained numerical results are summarized as follows:
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Models Measures Figure 1 Figure 2 Figure 3 Figure 4
TV PSNR 24.55 20.05 30.11 25.51

SSIM 0.7757 0.8302 0.9489 0.9311
ZH PSNR 32.17 24.08 28.82 25.24

SSIM 0.7858 0.8711 0.9466 0.9305
SH PSNR 30.66 24.17 30.62 25.49

SSIM 0.8220 0.8862 0.9538 0.9281
Our model PSNR 35.65 26.99 31.01 27.18

SSIM 0.8636 0.9155 0.9475 0.9455

Table 1: PSNR and SSIM values of inpainted images using the different approaches.

In Figure 1-4, we notice that the visual results are more or less close, but in
our approach, the image is closer to the original one, with less blur and a more
apparent geometric features.

Furthermore, from Table 1, where a comparison of the PSNR and the SSIM;
and Figures 3 & 4 (g)-(l) where we present zoomed images of the ones in (a)-(f),
we deduct that our approach leads to more significant and efficient results compare
to the others. However, we notice a flat effect (see Figure 2 (f)), due to the PDEs
inpainting approaches which is not able to perform texture reconstruction, while a
texture synthesis step will be sometimes necessary.

In Figure 5, some of brain slices are presented to show the performance of our
3D-model in reproducing the fidelity of healthy parts, as shown in Figure 5 (c), (f)
and (i). It should be noted that the artificial lesions of fixed volumes (5 × 5 × 5
voxel spheroids, see Figure 5 (b), (e) and (h)) are added to healthy brain and
placed at multiple locations (infratentorial, periventricular and juxtacortical white
matter locations) which is similar to lesions places seen in different patients with
MS. According to the results in Figure 5 (c), (f) and (i), we can conclude that this
model can give satisfactory results.
Note that the time variable in the PDE serves as an iteration parameter.

6. Conclusion

In this work, we proposed an image inpainting approach combining oriented
diffusion based on the NLST, shock filtering and KMLS algorithm. We conclude
that this approach is not only able to preserve the geometrical structures during
the restoration process, but also eliminates the artifacts along the contours and
in the vicinity/neighbourhood of structures. The contrast parameters estimation,
adapted to the complexity of the structures contained in the image, has overcome
the disadvantage of their adaptive choice. The experimental inpainting results,
obtained in terms of SSIM, PSNR and visual quality, confirm the effectiveness of
the proposed algorithm and is competitively compared to other algorithms (see
Table 1 and Figures 1-5).

Furthermore we have to point out that:
1- The chosen stopping functions depending on the measure of the anisotropy

provided by the NLST and the contrast parameters estimated at each iteration by
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Algorithms 1 and 2 give a good compromise between robust orientation diffusion
and shock filtering.

2- A smaller number of iterations can be used.

3- The incorporation of corner-and-edge-shock filters in (ZH) and (TV) methods
can achieve better results.

4- Due to the estimation of the NLST and the contrast parameters at each
iteration, more computation time is required.

Figure 1: Inpainting results for a corner (T = 290).
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Figure 2: Inpainting results for a curvature (T = 500).

Figure 3: Text removal (T = 400).
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Figure 4: Restoration of 50% of random missing pixels.

Figure 5: Inpainting of MS lesions in MRI image (a)-(d)-(g) : healthy brain slices
for axial, sagittal and coronal section, (b)-(e)-(h) synthetic lesions simulation, (c)-
(f)-(i), results of lesions filling



Mathematics in Image Inpainting 153

Acknowledgments

The authors are grateful to the referees for their valuable remarks and sugges-
tions.

References

1. M. Battaglini, M. Jenkinson, and N. De Stefano, Evaluating and reducing the impact of white
matter lesions on brain volume measurements, Hum. Brain Mapp., 33, pp.12062–2071, 2012.

2. M. Benseghir, F.-Z. Nouri, and P.-C. Tauber, An Inpainting Result by a Nonlinear Structure
Tensor, Proceedings of the 20th International Conference on Information Visualisation (IV),
pp.367– 370, 2016.

3. M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, Proceedings of
the 27th Annual Conference on Computer Graphics and Interactive TechniquesComputer
graphics, SIGGRAPH 2000, pp.417–424, 2000.

4. M. Bertalmio, L. Vese, G. Sapiro, and S. Osher, Simultaneous structure and texture image
inpainting, IEEE transactions on image processing, 12(8), pp.882-889, 2003.

5. M. Bertalmio, Strong-continuation, contrast-invariant inpainting with a third-order optimal
PDE, IEEE Transactions on Image Processing, 15(7), pp.1934-1938, 2006.

6. M. J. Black, G. Sapiro, D. H. Marimont, and D. Heeger, Robust anisotropic diffusion, in
IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 421-432, 1998.
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