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gA;—Closed Sets in Generalized Topological Spaces

P. Jeyanthi, P. Nalayini and T. Noiri

ABSTRACT: In this paper, we introduce some new classes of generalized closed sets
called A, —g—closed, A}, —g;,—closed and 7N —closed sets, which are related to the
classes of g, —closed sets, g — A, —closed sets and A, — g—closed sets. We investigate
their properties as well as the relations among these classes of generalized closed
sets.
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1. Introduction

In 1997, A.Csaszar [2] introduced the concept of a generalization of topological
spaces, which is called a generalized topological space. A subset u of exp(X) is
called a generalized topology [4] on X if ) € u and p is closed under arbitrary
union. Elements of u are called u—open sets. The complement of a y—open set is
said to be p—closed. A set X with a GT p on it is called a generalized topological
space (briefly GTS) and is denoted by (X, u). For a subset A of X, we denote by
cu (A) the intersection of all p—closed sets containing A and by ¢, (A) the union of
all p—open sets contained in A. Then ¢, (A) is the smallest y—closed set containing
A and i, (A) is the largest p—open set contained in A. A point z € X is called a
p—cluster point of A if for every U € p with € U we have ANU # 0. ¢, (4) is
the set of all p—cluster points of A [4]. A GTS (X, i) is called a quasi-topological
space [3] if p is closed under finite intersections. A subset A of X is said to be
m—regular [5] (resp. o—regular) if A =1i,c,(A) (resp. A = c,i,(A)).

Definition 1.1. [6] If (X, u) is a GTS and A C X, then the set N, (A) is defined
as follows:

N{G:ACG,Gep}t ifthere exists G € p such that A C G}
AulA) = { X otherwise
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Definition 1.2. [6] In a GTS (X, n), a subset B is called a N\, —set if B = N\, (B).

Definition 1.3. [1] A subset A of a GTS (X,p) is called a A,—closed set if
A=TnNC, where T is a N\,—set and C is a p—closed set. The complement of a
A —closed set is called a A\, —open set. We set A\, O(X,u) ={U : U is A\,—open in

(X, 1)}

Definition 1.4. [10] Let (X, ) be a GTS. A subset A of X is called a * N, —set
if A=" A, (A), where * N\, (A) =n{U : ACUUeNOX,pn)}

Definition 1.5. [9] Let (X, u) be a GTS. A subset A of X is called a A, —set if
Nu(A) =" Ay (A).

Definition 1.6. [9] A subset of a GTS (X, ) is called a A}, —closed set if A =
T NF, where T is a Ay—set and F' is a p—-closed set. The complement of a
A7, —closed set is said to be Aj,—open.

Definition 1.7. A subset A of GTS (X, ) is said to be g,—closed [11] (resp.
g—Au—closed [S], N\, —g—closed [8]) if ¢, (A) CU (resp. cx,(A) CU, cu(A) CU)
whenever A C U and U is p—open (resp. U is p—open, U is \,—open) in (X, ).

Lemma 1.1. [7] For a GTS (X,u) and S,T C X, the following properties hold:
(1) 1u(S N T) C i () N i(T).
(1) cu(S)Ucu(T) C e (SUT).

Remark 1.8. [7] In general, for subsets S and T of a GTS (X, p), i,(SNT) D
1,(S) Ny (T) is not true.

Lemma 1.2. [5] Let (X, ) be a quasi-topological space. Then c,(AUB) = ¢, (A)U
cu(B) for every A and B of X.

Lemma 1.3. [1,6,9] For a subset of a GTS (X, 1), the following implication hold:
p—open = N,—set = A,—set
\ 4

p—closed = \,—closed = A}, —closed

For A C X, we denote by ca: (A) [9] (resp. cx,(A4) [1]) the intersection of all

A7, —closed (resp. A, —closed) subsets of X containing A. Then we have

eas (A) Cen, (4) C ey (A)

for every A C X.

The purpose of this present paper is to define some new classes of gener-
alized closed sets called A}, — g—closed, A}, — g,—closed and gAz—closed and to
obtain some basic properties of these closed sets. Further, we establish the relation
between these classes of sets.
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2. A}, — g—closed sets

In this section, we introduce the notion of A}, — g—closed sets and discuss its
properties.

Definition 2.1. Let (X, ) be a GTS. A subset A of X is called a A}, — g—closed
set if ¢, (A) C U whenever AC U and U is a A7, —open set in X. The complement
of a A}, — g—closed set is called a A}, — g—open set.

Theorem 2.2. Every u—closed set is a A}, — g—closed set.

Proof: Let A be a pu-closed set and U be any A} —open set containing A. Since
A'is p-closed, we have ¢, (A) = A. Therefore c,(A) C U. Thus A is A}, — g—closed.

Example 2.3 shows that the converse of the above theorem is not true.

Example 2.3. Let X = {a,b,c,d} and p = {0,{a},{b},{a,b}, X}. Then {c} is
A7, — g—closed but not p—closed.

Theorem 2.4 shows that every A; — g—closed set is a g, —closed set (a g —
Ap—closed set, a A, — g—closed set) and Example 2.5 shows that converses are not
true.

Theorem 2.4. Let(X, ) be a GTS. Then the following hold:
(i) Bvery A}, — g—closed set is a g,—closed set.

(i1) Every g,—closed set is a g — \,—closed set.

(iii) Every A}, — g—closed set is a A\, — g—closed set.

() Every X\, — g—-closed set is g — \,—closed.

Proof: (i) Let A be a A} — g—closed set and U be any p—open set containing A
in(X, p). Since every p—open set is A¥ —open, we have U is A% —open. Since A is
Ay — g—closed, ¢, (A) C U. Therefore A is g, —closed.

(i) Let A be a g,—closed set and U be any p—open set containing A in(X, p).
Since A is g,—closed, ¢, (A) C U. Since ¢y, (A) C c,(A), ex,(A) € U and hence A
is g — Ay —closed.

(iii) Let A be a Ay, — g—closed set and U be a A\, —open set containing A in(X, u1).
Since every \,—open set is A7 —open and A is A} — g—closed, then c¢,(A4) C U.
Therefore A is A, — g—closed.

(iv) Suppose that A is a A\, — g—closed set. Let A C U and U be p—open.
Then U is A,—open and A is A\, — g—closed. Therefore, ¢, (A) C Uand hence
cx, (A) Ccu(A) CU. Hence A is g — A, —closed.

Form Theorem 2.4, we have the following diagram:

DIAGRAM I
Aj, — g—closed = g,-closed
I I

Ay — g—closed = g — A\, —closed
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Example 2.5. Let X = {a,b,c} and p = {0,{a,b},{b,c}, X}. Then {a,c} is both
gu—closed and A\, — g—closed but not A}, —g—closed. Further {b, c} is g— A —closed
but neither A\, — g—closed nor g, —closed.

Theorem 2.6 gives a characterization of A}, — g—closed sets.

Theorem 2.6. Let (X,p) be a GTS. A subset A of X is a Ay — g—closed set if
and only if F' C c,(A)\A and F is Aj—closed implies that I' is empty.

Proof: Let A be A}, — g—closed. Suppose that F' is a subset of cu(A)\A and F
is A —closed. Then A C X\ F and X\F is Aj—open. Since A is A}, — g—closed,
we have ¢, (A) € X\F. Consequently F' C X\c,(A). Hence F is empty.

Conversely, Suppose A C U, where U is A}, —open. If ¢,(A) € U, then ¢, (A)N(X —
U) is a non-empty A} —closed subset of c,(A4)\A. Therefore A is A}, — g—closed.

Theorem 2.7. If A is a A}, — g—closed set in a GTS (X,p), then c,(A)\A does
not contain any non-empty \,—closed (u—open / p—closed) subset of X.

Proof: Suppose ¢, (A)\A contains a non-empty A, —closed (u—open /u—closed)

subset of X. Since every A, —closed (u—open /u—closed) set is A}, —closed, a non-

empty A7 —closed set is contained in ¢, (A4)\A, which is contrary to Theorem 2.6.
Example 2.8 shows that the converse of the above theorem is not true.

Example 2.8. Let X = {a,b,c,d} and p = {0,{a},{a,d,c},{b,c,d},X}. If A=
{a,b,d}, then c,(A)\A = {c}, which does not contain any nonempty \,—closed (
p—open / p— closed ) sets but A is not a A}, — g—closed set.

Theorem 2.9. Let (X, u) be a quasi-topological space. Then AU B is a AY —
g—closed set whenever A and B are A}, — g—closed sets.

Proof: Let U be a A;—open set such that AUB CU. Then AC U and B C U.
Since A and B are A}, — g—closed, we have c¢,(A) C U and ¢, (B) C U. Hence by
Lemmal.2 ¢, (AU B) = ¢, (A) Ucu(B) C U and the proof follows.

Example 2.10. Let X = {a,b,c} and p = {0, {a,b},{b,c},X}. Then p is a GT
but not a quasi-topology. If A= {a} and B = {c}, then A and B are A}, — g—closed
sets but their union is not a AZ — g—-closed set.

Example 2.11. Let X = {a,b,c,d} and p = {0,{a},{c},{a,c}, X}. If A={b,d}
and B = {a,c,d}, then A and B are A}, — g—closed sets but AN B = {d} is not a
A, — g—closed set.

Theorem 2.12. Let (X,p) be a GTS. If A is Aj,—open and A}, — g—closed, then
A is p—-closed.

Proof:  Since A is Aj—open and A} — g—closed, ¢,(A) C A and hence A is
p—closed.
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3. Aj, —g,— closed sets

In this section, we introduce the concept of A;‘; — gu—closed sets and study its
properties.

Definition 3.1. Let (X, pu) be a GTS. A subset A of X is called a A}, — gu—closed
setif cx, (A) C U whenever AC U and U is a A7, —open set in X. The complement
of a A}, — gu—closed set is called a A}, — g,—open set.

Theorem 3.2. For a GTS (X, u), every A, —closed set is Ay — g,,—closed.

Proof: Let A be a A\,—closed set and U be any Aj—open set containing A.
Since A is A, —closed, we have ¢y, (A) = A. Therefore ¢, (A) € Uand hence A is
A7, — gu—closed.

Corollary 3.3. For a GTS (X, ), the following hold:
(i) Bvery p—closed set is A}, — g,,—closed.
(ii) Every p—open set is Ay, — g,—closed.

Example 3.4 shows that the converse of the above theorem is not true.

Example 3.4. Let X = {a,b,c,d} and p = {0,{a},{b},{a,b},X}. If A = {c},
then A is A}, — g, —closed but not A\, —closed (u—closed, ji—open,).

Theorem 3.5. Let (X,p) be a GTS and A C X. If Ais a A%, — gu—closed set,
then A is a g — A\, —closed set.

Proof: Let U be a u—open set containing A in (X, u). Since every u- open set is
Ay —open and A is A}, — g, —closed, ¢y, (A) C U. Therefore A is g — A, —closed.

Theorem 3.6 shows that the relation between A} — g—closed set and A}, —
gu—closed set.

Theorem 3.6. In a GTS (X, ), every Ay, — g—closed set 1s Aj, — g,,—closed.

Proof: Let A be a A}, — g—closed set and U be a A}, —open set containing A in
(X,p). Then ¢, (A) € U. Since cy,(A) C c,(A), we have cy,(A) C U. Therefore
Ais A}, — g,—closed.

Remark 3.7. AZ — gu—-closed sets and g, —closed (resp. A\, — g—closed )sets are
independent of each other.

Example 3.8. Let X ={a,b,c,d} and p = {0,{a,b},{b,c},{a,b,c}, {b,c,d}, X}.
Then {a,b,d} is g,—closed but not Ay, — g,—closed and {c} is A}, — g, —closed but
not g, —closed.

Example 3.9. Let X = {a,b,c} and p = {0,{a}}. Then {b} is X\, — g—closed but

not Ay — g,—closed and {a} is A}, — g,,—closed but not A, — g—closed.

Remark 3.10. By Theorems 3.5 and 3.0, the following diagram holds:
DIAGRAM IT

A}, — g—closed = A}, — g,—closed = g — \,—closed
The converses of all implications in DIAGRAM II are not true.
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Theorem 3.11 gives a characterization of Aj, — g,,—closed sets.

Theorem 3.11. Let (X, p) be a GTS. A subset A of X is a A}, — g,—closed set if
and only if F' C ¢y, (A)\A and I is A} —closed implies that F is empty.

Proof: The proof is similar to Theorem 2.6.

Theorem 3.12. If A is a A}, — g,— closed set in a GTS (X, p), then cy,(A)\A
does not contain any non-empty A, —closed (u—open / pu—-closed) subset of X.

Proof: The proof is similar to Theorem 2.7.
Example 3.13 shows that the converse of Theorem 3.12 is not true.

Example 3.13. Let X = {a,b,c} and p = {0,{a,b},X}. If A= {b,c}, cx,(A)\A =
{a}, which does not contain any non-empty \,—closed (resp. p—-closed, p—open)
sets but A is not A}, — g,—closed.

Theorem 3.14. Let (X, pu) be a GTS and A and B be subsets of X. If AC B C
cx,(A) and A is a Ay, — g,,—closed set, then B is A}, — g,—closed.

Proof: If F'is a Aj —closed set such that F' C ¢ (B)\B, then F' C ¢, (4)\A.
By Theorem 3.11, F' = () and so B is A}, — g, —closed.

Theorem 3.15. Let A be a A}, — g, —closed set in a quasi-topological space (X, ).
Then the following hold:

(i) If A is a m—regular set, then ir(A) and c,(A) are A}, — g, —closed sets.

(i) If A is a o—regular set, then c;(A) and i,(A) are A}, — g,,—closed sets.

Proof: (i) Since A is a m—regular set, c,(A) = AU i,c,(A) = A and i-(A) =
ANiye,(A) = A. Thus ir(A) and ¢, (A) are A}, — g, —closed sets.

(ii) Since A is a o—regular set, cz(A) = A and i,(A) = A. Thus ¢;(A) and i,(A)
are A}, — g, —closed sets.

Remark 3.16. The union ( resp. intersection ) of two AJ, — gu—closed sets need
not be a A}, — g,—closed set.

Example 3.17. Let X = {a,b,c,d} and u = {0,{c},{a,b,c},{b,c,d}, X}. Then
{a} and {c} are A}, — g, —closed sets but their union is not a A% — g,—closed set.
Further {a,b,c} and {a,c,d} are A}, — g, —closed sets but their intersection is not
a A}, — g, —closed set.

4. gax— closed sets

In this section, we introduce the notion of gAz—closed sets and discuss its
properties.

Definition 4.1. Let (X, u) be a GTS. A subset A of X is called a gar —closed set
if car (A) C U whenever A C U and U is a A:‘L—open set in X. The complement
of a g«», —closed set is called a gar—open set.

Theorem 4.2. For a GTS (X, u), every Ay —closed set is gar —closed.
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Proof: Let A be a A} —closed set and U be any A}, —open set containing A. Since
Ais A} —closed, cax(A) = A. Therefore cax(A) C U and hence A is ga~ —closed.

Corollary 4.3. For a GTS (X, p), the following hold:
(i) Every A, —closed set is ga-—closed.
(it) Every p—closed set is ga- —closed.
(iii) Every p— open set is gAZ—closed.

Example 4.4 shows that the converses of Theorem 4.2 and Corollary 4.3
are not true.

Example 4.4. Let X = {a,b,c,d} and p = {0,{c},{a,b,c},{b,c,d},X}. Then
{b.c}t is a ga;—closed set but it is not Aj,— closed (resp. A,—closed, p—-closed,
1—open).

Remark 4.5. gAE—closed sets and N, — g—closed (resp. g,—closed) sets are in-
dependent of each other.

Example 4.6. Let X = {a,b,c} and p = {0,{a}}. Then {b,c} is \,—g—-closed but
not gAZ—closed and {a} is gAchlosed but neither A\, — g—closed not g, —closed.

Example 4.7. Let X = {a,b,c,d} and p = {0,{a,b},{c,d}, {b,c,d}, X}. Then
{a, c} is g —closed but not ga~—closed.

Theorem 4.8 shows the relation between gAz—closed set and A}, — g, —closed
set.

Theorem 4.8. For a GTS (X, p), every A}, — g,—closed set is ga—closed.

Proof: Let A be a A}, — g, —closed set and U be a Aj,—open set containing
A in(X, p). Then ¢y, (A) € U. Since cax(A4) C cx,(A), we have cax(A4) C U.
Therefore A is gAEfclosed.

Example 4.9 shows that the converse of Theorem 4.8 is not true.

Example 4.9. Let X = {a,b,c} and p = {0,{a,b}, X}. Then {a} is ga-—closed
but not A}, — g,—closed.

Remark 4.10. By Theorems 3.6 and 4.8, the following diagram holds:
DIAGRAM III
A}, — g—closed = A}, — g,—closed = gAchlosed
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