

(3s.) **v. 39** 3 (2021): 9–16. ISSN-00378712 in press doi:10.5269/bspm.39495

$g_{\Delta_{\mu}^{*}}$ -Closed Sets in Generalized Topological Spaces

P. Jeyanthi, P. Nalayini and T. Noiri

ABSTRACT: In this paper, we introduce some new classes of generalized closed sets called $\Delta^*_{\mu} - g_{-}$ closed, $\Delta^*_{\mu} - g_{\mu}$ -closed and $g_{\Delta^*_{\mu}}$ -closed sets, which are related to the classes of g_{μ} -closed sets, $g - \lambda_{\mu}$ -closed sets and $\lambda_{\mu} - g$ -closed sets. We investigate their properties as well as the relations among these classes of generalized closed sets.

Key Words: Generalized topology, λ_{μ} -closed, Δ^*_{μ} -closed, Δ^*_{μ} -g-closed, Δ^*_{μ} -g-closed, $g_{\Delta^*_{\mu}}$ -closed sets.

Contents

1	Introduction	9
2	$\Delta^*_{\mu} - g$ -closed sets	11
3	$\Delta^*_{\mu} - g_{\mu} - $ closed sets	13
4	$g_{\Delta^*_\mu}-$ closed sets	14

1. Introduction

In 1997, A.Császár [2] introduced the concept of a generalization of topological spaces, which is called a generalized topological space. A subset μ of exp(X) is called a generalized topology [4] on X if $\emptyset \in \mu$ and μ is closed under arbitrary union. Elements of μ are called μ -open sets. The complement of a μ -open set is said to be μ -closed. A set X with a GT μ on it is called a generalized topological space (briefly GTS) and is denoted by (X, μ) . For a subset A of X, we denote by $c_{\mu}(A)$ the intersection of all μ -closed sets containing A and by $i_{\mu}(A)$ the union of all μ -open sets contained in A. Then $c_{\mu}(A)$ is the smallest μ -closed set containing A and $i_{\mu}(A)$ is the largest μ -open set contained in A. A point $x \in X$ is called a μ -cluster point of A if for every $U \in \mu$ with $x \in U$ we have $A \cap U \neq \emptyset$. $c_{\mu}(A)$ is the set of all μ -cluster points of A [4]. A GTS (X, μ) is called a quasi-topological space [3] if μ is closed under finite intersections. A subset A of X is said to be π -regular [5] (resp. σ -regular) if $A = i_{\mu}c_{\mu}(A)$ (resp. $A = c_{\mu}i_{\mu}(A)$).

Definition 1.1. [6] If (X, μ) is a GTS and $A \subseteq X$, then the set $\wedge_{\mu}(A)$ is defined as follows: $(\cap \{G : A \subseteq G, G \in \mu\})$ if there exists $G \in \mu$ such that $A \subseteq G$;

 $\bigwedge_{\mu}(A) = \begin{cases} \cap \{G : A \subseteq G, G \in \mu\} \\ X & otherwise. \end{cases}$ if there exists $G \in \mu$ such that $A \subseteq G$; 2010 Mathematics Subject Classification: 54A05.

Submitted September 15, 2017. Published March 21, 2018

Typeset by $\mathcal{B}^{s}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. de Mat. **Definition 1.2.** [6] In a GTS (X, μ) , a subset B is called $a \wedge_{\mu}$ -set if $B = \wedge_{\mu}(B)$.

Definition 1.3. [1] A subset A of a GTS (X, μ) is called a λ_{μ} -closed set if $A = T \cap C$, where T is a \wedge_{μ} -set and C is a μ -closed set. The complement of a λ_{μ} -closed set is called a λ_{μ} -open set. We set $\lambda_{\mu}O(X, \mu) = \{U : U \text{ is } \lambda_{\mu} \text{-open in } (X, \mu)\}$

Definition 1.4. [10] Let (X, μ) be a GTS. A subset A of X is called a \wedge_{μ} -set if $A = \wedge_{\mu} (A)$, where $\wedge_{\mu} (A) = \cap \{U : A \subset U, U \in \lambda_{\mu} O(X, \mu)\}.$

Definition 1.5. [9] Let (X, μ) be a GTS. A subset A of X is called a Δ_{μ} -set if $\wedge_{\mu}(A) =^* \wedge_{\mu}(A)$.

Definition 1.6. [9] A subset of a GTS (X, μ) is called a Δ^*_{μ} -closed set if $A = T \cap F$, where T is a Δ_{μ} -set and F is a μ -closed set. The complement of a Δ^*_{μ} -closed set is said to be Δ^*_{μ} -open.

Definition 1.7. A subset A of GTS (X, μ) is said to be g_{μ} -closed [11] (resp. $g - \lambda_{\mu}$ -closed [8], $\lambda_{\mu} - g$ -closed [8]) if $c_{\mu}(A) \subseteq U$ (resp. $c_{\lambda_{\mu}}(A) \subseteq U$, $c_{\mu}(A) \subseteq U$) whenever $A \subseteq U$ and U is μ -open (resp. U is μ -open, U is λ_{μ} -open) in (X, μ) .

Lemma 1.1. [7] For a GTS (X, μ) and $S, T \subset X$, the following properties hold: (i) $i_{\mu}(S \cap T) \subseteq i_{\mu}(S) \cap i_{\mu}(T)$. (ii) $c_{\mu}(S) \cup c_{\mu}(T) \subseteq c_{\mu}(S \cup T)$.

Remark 1.8. [7] In general, for subsets S and T of a GTS (X, μ) , $i_{\mu}(S \cap T) \supseteq i_{\mu}(S) \cap i_{\mu}(T)$ is not true.

Lemma 1.2. [5] Let (X, μ) be a quasi-topological space. Then $c_{\mu}(A \cup B) = c_{\mu}(A) \cup c_{\mu}(B)$ for every A and B of X.

Lemma 1.3. [1,6,9] For a subset of a GTS (X, μ) , the following implication hold: μ -open $\Rightarrow \wedge_{\mu}$ -set $\Rightarrow \Delta_{\mu}$ -set

For $A \subseteq X$, we denote by $c_{\Delta_{\mu}^{*}}(A)$ [9] (resp. $c_{\lambda_{\mu}}(A)$ [1]) the intersection of all Δ_{μ}^{*} -closed (resp. λ_{μ} -closed) subsets of X containing A. Then we have

$$c_{\Delta_{\mu}^{*}}\left(A\right)\subseteq c_{\lambda_{\mu}}\left(A\right)\subseteq c_{\mu}\left(A\right)$$

for every $A \subseteq X$.

The purpose of this present paper is to define some new classes of generalized closed sets called $\Delta^*_{\mu} - g$ -closed, $\Delta^*_{\mu} - g_{\mu}$ -closed and $g_{\Delta^*_{\mu}}$ -closed and to obtain some basic properties of these closed sets. Further, we establish the relation between these classes of sets.

2. $\Delta_{\mu}^* - g$ -closed sets

In this section, we introduce the notion of $\Delta^*_{\mu} - g$ -closed sets and discuss its properties.

Definition 2.1. Let (X, μ) be a GTS. A subset A of X is called a $\Delta^*_{\mu} - g$ -closed set if $c_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is a Δ^*_{μ} -open set in X. The complement of a $\Delta^*_{\mu} - g$ -closed set is called a $\Delta^*_{\mu} - g$ -open set.

Theorem 2.2. Every μ -closed set is a Δ^*_{μ} - g-closed set.

Proof: Let A be a μ -closed set and U be any Δ^*_{μ} -open set containing A. Since A is μ -closed, we have $c_{\mu}(A) = A$. Therefore $c_{\mu}(A) \subseteq U$. Thus A is $\Delta^*_{\mu} - g$ -closed.

Example 2.3 shows that the converse of the above theorem is not true.

Example 2.3. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\{c\}$ is $\Delta^*_{\mu} - g$ -closed but not μ -closed.

Theorem 2.4 shows that every $\Delta^*_{\mu} - g$ -closed set is a g_{μ} -closed set (a $g - \lambda_{\mu}$ -closed set, a $\lambda_{\mu} - g$ -closed set) and Example 2.5 shows that converses are not true.

Theorem 2.4. Let(X, μ) be a GTS. Then the following hold:

(i) Every $\Delta^*_{\mu} - g - closed$ set is a $g_{\mu} - closed$ set.

(ii) Every g_{μ} -closed set is a $g - \lambda_{\mu}$ -closed set.

(iii) Every $\Delta^*_{\mu} - g$ -closed set is a $\lambda_{\mu} - g$ -closed set.

(iv) Every $\lambda_{\mu} - g$ -closed set is $g - \lambda_{\mu}$ -closed.

Proof: (i) Let A be a $\Delta^*_{\mu} - g$ -closed set and U be any μ -open set containing A in (X, μ) . Since every μ -open set is Δ^*_{μ} -open, we have U is Δ^*_{μ} -open. Since A is $\Delta^*_{\mu} - g$ -closed, $c_{\mu}(A) \subseteq U$. Therefore A is g_{μ} -closed.

(ii) Let A be a g_{μ} -closed set and U be any μ -open set containing A in (X, μ) . Since A is g_{μ} -closed, $c_{\mu}(A) \subseteq U$. Since $c_{\lambda_{\mu}}(A) \subseteq c_{\mu}(A)$, $c_{\lambda_{\mu}}(A) \subseteq U$ and hence A is $g - \lambda_{\mu}$ -closed.

(iii) Let A be a $\Delta^*_{\mu} - g$ -closed set and U be a λ_{μ} -open set containing A in (X, μ) . Since every λ_{μ} -open set is Δ^*_{μ} -open and A is $\Delta^*_{\mu} - g$ -closed, then $c_{\mu}(A) \subseteq U$. Therefore A is $\lambda_{\mu} - g$ -closed.

(iv) Suppose that A is a $\lambda_{\mu} - g$ -closed set. Let $A \subseteq U$ and U be μ -open. Then U is λ_{μ} -open and A is $\lambda_{\mu} - g$ -closed. Therefore, $c_{\mu}(A) \subseteq U$ and hence $c_{\lambda_{\mu}}(A) \subseteq c_{\mu}(A) \subseteq U$. Hence A is $g - \lambda_{\mu}$ -closed.

Form Theorem 2.4, we have the following diagram:

Example 2.5. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\}, \{b, c\}, X\}$. Then $\{a, c\}$ is both g_{μ} -closed and λ_{μ} -g-closed but not Δ^*_{μ} -g-closed. Further $\{b, c\}$ is $g - \lambda_{\mu}$ -closed but neither λ_{μ} -g-closed nor g_{μ} -closed.

Theorem 2.6 gives a characterization of $\Delta^*_{\mu} - g$ -closed sets.

Theorem 2.6. Let (X, μ) be a GTS. A subset A of X is a $\Delta^*_{\mu} - g$ -closed set if and only if $F \subseteq c_{\mu}(A) \setminus A$ and F is Δ^*_{μ} -closed implies that F is empty.

Proof: Let A be $\Delta^*_{\mu} - g$ -closed. Suppose that F is a subset of $c_{\mu}(A) \setminus A$ and F is Δ^*_{μ} -closed. Then $A \subseteq X \setminus F$ and $X \setminus F$ is Δ^*_{μ} -open. Since A is $\Delta^*_{\mu} - g$ -closed, we have $c_{\mu}(A) \subseteq X \setminus F$. Consequently $F \subseteq X \setminus c_{\mu}(A)$. Hence F is empty.

Conversely, Suppose $A \subseteq U$, where U is Δ^*_{μ} -open. If $c_{\mu}(A) \not\subseteq U$, then $c_{\mu}(A) \cap (X - U)$ is a non-empty Δ^*_{μ} -closed subset of $c_{\mu}(A) \setminus A$. Therefore A is $\Delta^*_{\mu} - g$ -closed.

Theorem 2.7. If A is a $\Delta^*_{\mu} - g$ -closed set in a GTS (X, μ) , then $c_{\mu}(A) \setminus A$ does not contain any non-empty λ_{μ} -closed (μ -open / μ -closed) subset of X.

Proof: Suppose $c_{\mu}(A) \setminus A$ contains a non-empty λ_{μ} -closed (μ -open / μ -closed) subset of X. Since every λ_{μ} -closed (μ -open / μ -closed) set is Δ_{μ}^{*} -closed, a nonempty Δ_{μ}^{*} -closed set is contained in $c_{\mu}(A) \setminus A$, which is contrary to Theorem 2.6. Example 2.8 shows that the converse of the above theorem is not true.

Example 2.8. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a\}, \{a, d, c\}, \{b, c, d\}, X\}$. If $A = \{a, b, d\}$, then $c_{\mu}(A) \setminus A = \{c\}$, which does not contain any nonempty λ_{μ} -closed (μ -open / μ - closed) sets but A is not a $\Delta^*_{\mu} - g$ -closed set.

Theorem 2.9. Let (X, μ) be a quasi-topological space. Then $A \cup B$ is a $\Delta^*_{\mu} - g$ -closed set whenever A and B are $\Delta^*_{\mu} - g$ -closed sets.

Proof: Let U be a Δ^*_{μ} -open set such that $A \cup B \subseteq U$. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are $\Delta^*_{\mu} - g$ -closed, we have $c_{\mu}(A) \subseteq U$ and $c_{\mu}(B) \subseteq U$. Hence by Lemma1.2 $c_{\mu}(A \cup B) = c_{\mu}(A) \cup c_{\mu}(B) \subseteq U$ and the proof follows.

Example 2.10. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\}, \{b, c\}, X\}$. Then μ is a GT but not a quasi-topology. If $A = \{a\}$ and $B = \{c\}$, then A and B are $\Delta_{\mu}^* - g$ -closed sets but their union is not a $\Delta_{\mu}^* - g$ -closed set.

Example 2.11. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$. If $A = \{b, d\}$ and $B = \{a, c, d\}$, then A and B are $\Delta^*_{\mu} - g$ -closed sets but $A \cap B = \{d\}$ is not a $\Delta^*_{\mu} - g$ -closed set.

Theorem 2.12. Let (X, μ) be a GTS. If A is Δ^*_{μ} -open and Δ^*_{μ} -g-closed, then A is μ -closed.

Proof: Since A is Δ^*_{μ} -open and $\Delta^*_{\mu} - g$ -closed, $c_{\mu}(A) \subseteq A$ and hence A is μ -closed.

3. $\Delta^*_{\mu} - g_{\mu} -$ closed sets

In this section, we introduce the concept of $\Delta^*_{\mu} - g_{\mu}$ -closed sets and study its properties.

Definition 3.1. Let (X, μ) be a GTS. A subset A of X is called a $\Delta^*_{\mu} - g_{\mu}$ -closed set if $c_{\lambda_{\mu}}(A) \subseteq U$ whenever $A \subseteq U$ and U is a Δ_{μ}^* -open set in X. The complement of $a \Delta^*_{\mu} - g_{\mu} - closed$ set is called $a \Delta^*_{\mu} - g_{\mu} - open$ set.

Theorem 3.2. For a GTS (X, μ) , every λ_{μ} -closed set is $\Delta^*_{\mu} - g_{\mu}$ -closed.

Let A be a λ_{μ} -closed set and U be any Δ_{μ}^* -open set containing A. Proof: Since A is λ_{μ} -closed, we have $c_{\lambda_{\mu}}(A) = A$. Therefore $c_{\lambda_{\mu}}(A) \subseteq U$ and hence A is $\Delta^*_{\mu} - g_{\mu}$ -closed.

Corollary 3.3. For a GTS (X, μ) , the following hold: (i) Every μ -closed set is $\Delta^*_{\mu} - g_{\mu}$ -closed. (ii) Every μ -open set is $\Delta^*_{\mu} - g_{\mu}$ -closed.

Example 3.4 shows that the converse of the above theorem is not true.

Example 3.4. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. If $A = \{c\}$, then A is $\Delta^*_{\mu} - g_{\mu} - closed$ but not $\lambda_{\mu} - closed$ ($\mu - closed$, $\mu - open$).

Theorem 3.5. Let (X, μ) be a GTS and $A \subseteq X$. If A is a $\Delta^*_{\mu} - g_{\mu}$ -closed set, then A is a $g - \lambda_{\mu}$ -closed set.

Proof: Let U be a μ -open set containing A in (X, μ) . Since every μ - open set is Δ^*_{μ} -open and A is $\Delta^*_{\mu} - g_{\mu}$ -closed, $c_{\lambda_{\mu}}(A) \subseteq U$. Therefore A is $g - \lambda_{\mu}$ -closed.

Theorem 3.6 shows that the relation between $\Delta^*_{\mu} - g$ -closed set and $\Delta^*_{\mu} - g$ g_{μ} -closed set.

Theorem 3.6. In a GTS (X, μ) , every $\Delta^*_{\mu} - g$ -closed set is $\Delta^*_{\mu} - g_{\mu}$ -closed.

Proof: Let A be a $\Delta^*_{\mu} - g$ -closed set and U be a Δ^*_{μ} -open set containing A in (X,μ) . Then $c_{\mu}(A) \subseteq U$. Since $c_{\lambda_{\mu}}(A) \subseteq c_{\mu}(A)$, we have $c_{\lambda_{\mu}}(A) \subseteq U$. Therefore A is $\Delta^*_{\mu} - g_{\mu}$ -closed.

Remark 3.7. $\Delta^*_{\mu} - g_{\mu} - closed sets and g_{\mu} - closed (resp. \lambda_{\mu} - g - closed) sets are$ independent of each other.

Example 3.8. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X\}$. Then $\{a, b, d\}$ is g_{μ} -closed but not $\Delta_{\mu}^* - g_{\mu}$ -closed and $\{c\}$ is $\Delta_{\mu}^* - g_{\mu}$ -closed but not g_{μ} -closed.

Example 3.9. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}\}$. Then $\{b\}$ is $\lambda_{\mu} - g$ -closed but not $\Delta^*_{\mu} - g_{\mu} - closed$ and $\{a\}$ is $\Delta^*_{\mu} - g_{\mu} - closed$ but not $\lambda_{\mu} - g - closed$.

Remark 3.10. By Theorems 3.5 and 3.6, the following diagram holds: DIAGRAM II

 $\Delta^*_{\mu} - g - closed \Rightarrow \Delta^*_{\mu} - g_{\mu} - closed \Rightarrow g - \lambda_{\mu} - closed$ The converses of all implications in DIAGRAM II are not true.

Theorem 3.11 gives a characterization of $\Delta^*_{\mu} - g_{\mu}$ -closed sets.

Theorem 3.11. Let (X, μ) be a GTS. A subset A of X is a $\Delta^*_{\mu} - g_{\mu}$ -closed set if and only if $F \subseteq c_{\lambda_{\mu}}(A) \setminus A$ and F is Δ^*_{μ} -closed implies that F is empty.

Proof: The proof is similar to Theorem 2.6.

Theorem 3.12. If A is a $\Delta^*_{\mu} - g_{\mu} - closed$ set in a GTS (X, μ) , then $c_{\lambda_{\mu}}(A) \setminus A$ does not contain any non-empty $\lambda_{\mu} - closed$ ($\mu - open / \mu - closed$) subset of X.

Proof: The proof is similar to Theorem 2.7. Example 3.13 shows that the converse of Theorem 3.12 is not true.

Example 3.13. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\}, X\}$. If $A = \{b, c\}, c_{\lambda_{\mu}}(A) \setminus A = \{a\}$, which does not contain any non-empty λ_{μ} -closed (resp. μ -closed, μ -open) sets but A is not $\Delta_{\mu}^* - g_{\mu}$ -closed.

Theorem 3.14. Let (X, μ) be a GTS and A and B be subsets of X. If $A \subseteq B \subseteq c_{\lambda_{\mu}}(A)$ and A is a $\Delta_{\mu}^* - g_{\mu} - closed$ set, then B is $\Delta_{\mu}^* - g_{\mu} - closed$.

Proof: If F is a Δ^*_{μ} -closed set such that $F \subseteq c_{\lambda_{\mu}}(B) \setminus B$, then $F \subseteq c_{\lambda_{\mu}}(A) \setminus A$. By Theorem 3.11, $F = \emptyset$ and so B is $\Delta^*_{\mu} - g_{\mu}$ -closed.

Theorem 3.15. Let A be a $\Delta^*_{\mu} - g_{\mu}$ -closed set in a quasi-topological space (X, μ) . Then the following hold:

(i) If A is a π -regular set, then $i_{\pi}(A)$ and $c_{\sigma}(A)$ are $\Delta^*_{\mu} - g_{\mu}$ -closed sets. (ii) If A is a σ -regular set, then $c_{\pi}(A)$ and $i_{\sigma}(A)$ are $\Delta^*_{\mu} - g_{\mu}$ -closed sets.

Proof: (i) Since A is a π -regular set, $c_{\sigma}(A) = A \cup i_{\mu}c_{\mu}(A) = A$ and $i_{\pi}(A) = A \cap i_{\mu}c_{\mu}(A) = A$. Thus $i_{\pi}(A)$ and $c_{\sigma}(A)$ are $\Delta_{\mu}^{*} - g_{\mu}$ -closed sets. (ii) Since A is a σ -regular set, $c_{\pi}(A) = A$ and $i_{\sigma}(A) = A$. Thus $c_{\pi}(A)$ and $i_{\sigma}(A)$ are $\Delta_{\mu}^{*} - g_{\mu}$ -closed sets.

Remark 3.16. The union (resp. intersection) of two $\Delta^*_{\mu} - g_{\mu}$ -closed sets need not be a $\Delta^*_{\mu} - g_{\mu}$ -closed set.

Example 3.17. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{c\}, \{a, b, c\}, \{b, c, d\}, X\}$. Then $\{a\}$ and $\{c\}$ are $\Delta_{\mu}^{*} - g_{\mu}$ -closed sets but their union is not a $\Delta_{\mu}^{*} - g_{\mu}$ -closed set. Further $\{a, b, c\}$ and $\{a, c, d\}$ are $\Delta_{\mu}^{*} - g_{\mu}$ -closed sets but their intersection is not a $\Delta_{\mu}^{*} - g_{\mu}$ -closed set.

4. $g_{\Delta_{\mu}^*}$ - closed sets

In this section, we introduce the notion of $g_{\Delta_{\mu}^{*}}$ -closed sets and discuss its properties.

Definition 4.1. Let (X, μ) be a GTS. A subset A of X is called a $g_{\Delta_{\mu}^*}$ -closed set if $c_{\Delta_{\mu}^*}(A) \subseteq U$ whenever $A \subseteq U$ and U is a Δ_{μ}^* -open set in X. The complement of a $g_{*\lambda_{\mu}}$ -closed set is called a $g_{\Delta_{\mu}^*}$ -open set.

Theorem 4.2. For a GTS (X, μ) , every Δ^*_{μ} -closed set is $g_{\Delta^*_{\mu}}$ -closed.

Proof: Let A be a Δ^*_{μ} -closed set and U be any Δ^*_{μ} -open set containing A. Since A is Δ^*_{μ} -closed, $c_{\Delta^*_{\mu}}(A) = A$. Therefore $c_{\Delta^*_{\mu}}(A) \subseteq U$ and hence A is $g_{\Delta^*_{\mu}}$ -closed.

Corollary 4.3. For a GTS (X, μ) , the following hold:

(i) Every λ_{μ} -closed set is $g_{\Delta_{\mu}^{*}}$ -closed.

(ii) Every μ -closed set is $g_{\Delta_{\mu}}$ -closed.

(iii) Every μ - open set is $g_{\Delta_{\mu}^*}$ -closed.

Example 4.4 shows that the converses of Theorem 4.2 and Corollary 4.3 are not true.

Example 4.4. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{c\}, \{a, b, c\}, \{b, c, d\}, X\}$. Then $\{b, c\}$ is a $g_{\Delta_{\mu}^*}$ -closed set but it is not Δ_{μ}^* - closed (resp. λ_{μ} -closed, μ

Remark 4.5. $g_{\Delta_{\mu}^{*}}$ -closed sets and λ_{μ} -g-closed (resp. g_{μ} -closed) sets are independent of each other.

Example 4.6. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}\}$. Then $\{b, c\}$ is $\lambda_{\mu} - g$ -closed but not $g_{\Delta_{\mu}^*}$ -closed and $\{a\}$ is $g_{\Delta_{\mu}^*}$ -closed but neither $\lambda_{\mu} - g$ -closed not g_{μ} -closed.

Example 4.7. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b\}, \{c, d\}, \{b, c, d\}, X\}$. Then $\{a, c\}$ is g_{μ} -closed but not $g_{\Delta_{\mu}^*}$ -closed.

Theorem 4.8 shows the relation between $g_{\Delta_{\mu}^*}$ -closed set and $\Delta_{\mu}^* - g_{\mu}$ -closed set.

Theorem 4.8. For a GTS (X, μ) , every $\Delta^*_{\mu} - g_{\mu} - closed$ set is $g_{\Delta^*_{\mu}} - closed$.

Proof: Let A be a $\Delta^*_{\mu} - g_{\mu}$ -closed set and U be a Δ^*_{μ} -open set containing A in (X, μ) . Then $c_{\lambda_{\mu}}(A) \subseteq U$. Since $c_{\Delta^*_{\mu}}(A) \subseteq c_{\lambda_{\mu}}(A)$, we have $c_{\Delta^*_{\mu}}(A) \subseteq U$. Therefore A is $g_{\Delta^*_{\mu}}$ -closed.

Example 4.9 shows that the converse of Theorem 4.8 is not true.

Example 4.9. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\}, X\}$. Then $\{a\}$ is $g_{\Delta_{\mu}^*}$ -closed but not $\Delta_{\mu}^* - g_{\mu}$ -closed.

Remark 4.10. By Theorems 3.6 and 4.8, the following diagram holds: DIAGRAM III $\Delta^*_{\mu} - g - closed \Rightarrow \Delta^*_{\mu} - g_{\mu} - closed \Rightarrow g_{\Delta^*_{\mu}} - closed$

References

- Roy, B. and Ekici, E., On (∧, μ)-closed sets in generalized topological spaces, Methods Funct. Anal. Topology, 17(2), 174-179, (2011).
- 2. Császár, Á., Generalized open sets, Acta Math.Hungar., 75(1-2), 65-87, (1997).
- 3. Császár, Á., Further remark on the formula for γ -interior, Acta Math. Hungar., 113(4) , 325-332, (2006).

- Császár, Á., Generalized open sets in generalized topologies, Acta Math.Hungar., 106, 53-66, (2005).
- 5. Császár, Á., δ and θ -modifications of generalized topologies, Acta Math. Hungar., 120, 275-279, (2008).
- Ekici, E. and Roy, B., New generalized topologies on generalized topological spaces due to Császár, Acta Math.Hungar., 132(1-2), 117-124, (2011).
- 7. Ekici, E., Generalized submaximal spaces, Acta Math. Hungar., 134(1-2), 132-138, (2012).
- 8. Jamunarani, R., Jeyanthi, P. and Velrajan, M., Generalized λ_{μ} -closed sets in generalized topological spaces, J. Adv. Stud. Top., 4(3), 39-46, (2013).
- Jeyanthi, P., Nalayini, P. and Noiri, T., Δ_μ- sets and ∇_μ- sets in generalized topological spaces, Georgian Math. J., 24(3), 403-407,
- Jeyanthi, P., Nalayini, P. and Noiri, T., *∧µ- sets and *∨µ- sets in generalized topological spaces, Bol. Soc. Paran. Mat. (3s), 35(1), 33-41, (2017).
- Maragathavalli, S., Sheiljohn, M. and Sivaraj, D., On g-closed sets in generalized topological spaces, J. Adv. Res. Pure Appl. Math., 2, 57-64 (2010).

P. Jeyanthi, P. Nalayini, Research Centre Department of Mathematics, Govindammal Aditanar College for Women Tiruchendur-628 215, Tamil Nadu, India. E-mail address: jeyajeyanthi@rediffmail.com,nalayini4@gmail.com

and

T. Noiri, Shiokita - cho Hinagu, Yatsushiro-shi Kumamoto - ken, 869-5142 Japan. E-mail address: t.noiri@nifty.com

16