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Characterization of the w−Tempered Ultradistributions
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abstract: We use a previously obtained characterization of test functions of
w−Tempered Ultradistributions to characterize the space w−Tempered Ultradistri-
butions using Riesz representation theorem.
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1. Introduction

The Schwartz space S, as defined by Laurent Schwartz ( see [10]), consists
of all C∞(Rn) functions ϕ such that

∥∥xα∂βϕ
∥∥
∞

< ∞ for all α, β ∈ Nn. The
topological dual space of S, is a space of generalized functions, called tempered
distributions. Tempered distributions have essential connections with the Fourier
transform and partial differential equations. Moreover, they fit in many ways
to provide a satisfactory framework of mathematical analysis and mathematical
physics.

In 1963, A. Beurling presented his generalization of tempered distributions.
The aim of this generalization was to find an appropriate context for his work on
pseudo-analytic extensions (see [2]).

In 1967 (see [3]), G. Björck studied and expanded the theory of Beurling on
ultra distributions to extend the work of Hörmander on existence, nonexistence,
and regularity of solutions of differential equations with constant coefficient and
also consider equations which have no solutions. The Beurling-Björck space Sw, as
defined by G. Björck, consists all C∞(Rn) functions ϕ such that

∥∥ekw(x)∂βϕ
∥∥
∞
<

∞ and
∥∥ekw(x)∂βϕ̂

∥∥
∞
< ∞ for all α, β ∈ Nn, where w is a subadditive weight

function satisfying the classical Beurling conditions. The topological dual S′w of Sw
is a space of generalized functions, called w−tempered ultra distributions. When
w(x) = log(1 + |x|) the Beurling- Björck space Sw becomes the Schwartz space S

(see [1]).

2010 Mathematics Subject Classification: 46F05, 46F10, 46F20.

Submitted November 02, 2017. Published January 07, 2018

133
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.40302


134 I. Abu-Falahah and H. M. Obiedat

In this paper, We use the characterization of the space Sw of test functions
of w−tempered ultradistribution in terms of their short-time Fourier transform to
characterize w−tempered ultradistribution using Riesz representation theorem.

The symbols C∞, C∞
0 , Lp, etc., denote the usual spaces of functions defined

on Rn, with complex values. We denote |·| the Euclidean norm on Rn, while ‖·‖p
indicates the p-norm in the space Lp, where 1 ≤ p ≤ ∞. In general, we work on
the Euclidean space Rn unless we indicate other than that as appropriate. Partial
derivatives will be denoted ∂α, where α is a multi-index (α1, ..., αn) in Nn

0 . We will
use the standard abbreviations |α| = α1 + ... + αn, x

α = xα1
1 ...xαn

n . The Fourier

transform of a function f will be denoted F (f) or f̂ and it will be defined as∫
Rn e

−2πixξf (x) dx. With C0 we denote the Banach space of continuous functions
vanishing at infinity with supremum norm. The letter C will indicate a positive
constant, that may be different at different occurrences.

2. Preliminary definitions and results

In this section, we start with the definition of the space of admissible functions
Mc as they introduced by Björck.

Definition 2.1. ( [3])With Mc we indicate the space of functions w : Rn → R of
the form w (x) = Ω (|x|), where

1. Ω : [0,∞) → [0,∞) is increasing, continuous and concave,

2. Ω (0) = 0,

3.
∫
R

Ω(t)
(1+t2)dt <∞,

4. Ω (t) ≥ a+ b ln (1 + t) for some a ∈ R and some b > 0.

Standard classes of functions w in Mc are given by

w(x) = |x|
d
for 0 < d < 1, and w(x) = p ln(1 + |x|) for p > 0.

Theorem 2.2. ( [4]) The space Sw can be described as a set as well as topologically
by

Sw =

{
ϕ : Rn → C : ϕ is continuous and for all
k = 0, 1, 2, ..., pk,0 (ϕ) <∞, πk,0 (ϕ) <∞

}
,

where pk,0 (ϕ) =
∥∥ekw(x)ϕ

∥∥
∞
, πk,0 (ϕ) =

∥∥ekw(ξ)ϕ̂
∥∥
∞
. The space Sw, equipped with

the family of semi-norms

N = {pk,0, πk,0 : k ∈ N0},

is a Fréchet space.
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Remark 2.3. Let us observe for future use that if we take N > n
b
is an integer,

then

CN =

∫

Rn

e−Nw(x)dx <∞, for all w ∈ Mc,

where b is the constant in Condition 4 of Definition 2.1. Moreover, property 1
in Definition 2.1 implies that w(·) is subaddative.

Example 2.4. From Theorem 2.2, it is clear that the Gaussian f(x) = e−π|x|2

belongs to Sw for all w in Mc.

It is well known that Fourier series are a good tool to represent periodic func-
tions. However, they fail to represent non-periodic functions accurately. To solve
this problem, the short-time Fourier transform was introduced by D. Gabor [5].
The short-time Fourier transform works by first cutting off the function by mul-
tiplying it by another function called window then apply the Fourier transform.
This technique maps a function of time x into a function of time x and frequency
ξ .

Definition 2.5. ( [6], [7])The short-time Fourier transform (STFT) of a function
or distribution f on Rn with respect to a non-zero window function g is formally
defined as

νgf(x, ξ) =

∫

Rn

f(t)g(t− x)e−2πit.ξdt = ̂(fTxg)(ξ) =< f,MξTxg > .

where Txg(t) = g(t− x) is the translation operator and Mξg(t) = e2πit.ξg(t) is
the modulation operator.

The composition of Tx and Mξ is the time-frequency shift

(MξTxg)(t) = e2πix.ξg(t− x),

and its Fourier transform is given by

M̂ξTxg = e2πix.ξM−xTξĝ.

The main properties of the short-time Fourier transform is given in the following
lemma.

Lemma 2.6. ( [6], [7])For f, g ∈ Sw, the STFT has the following properties.

1. (Inversion formula)

∫ ∫

Rn×Rn

νgf(x, ξ)(MξTxg)(t)dxdξ = ‖g‖
2
2 f . (2.1)

2. (STFT of the Fourier transforms)

ν ĝf̂(x, ξ) = e−2πix.ξνgf(−ξ, x).
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3. (Fourier transform of the STFT)

ν̂gf(x, ξ) = e2πix.ξf(−ξ)ĝ(x). (2.2)

Remark 2.7. The space νg(Sw) = {νgf : f ∈ Sw} has no functions with compact
support.

Now we will introduce two auxiliary results that we will use in the proof of the
topological characterization of the space Sw via the short-time Fourier transform.

Lemma 2.8. ( [7])Let f and g be two nonnegative measurable functions. If N > n,
there exists C > 0 such that∥∥∥ekw(·)(f ∗ g)

∥∥∥
∞

≤ C
∥∥∥e2(N+k)w(·)f

∥∥∥
∞

∥∥∥e2(N+k)w(·)g
∥∥∥
∞
,

for all k = 0, 1, 2, .... The constant C does not depend on k.

In the following lemma, we include a proof using the topological characterization
of Sw given in Theorem 2.2 which imposes no conditions on the derivative. Our
proof is an adaptation of the proof of (Proposition 2.6 stated in [7]).

Lemma 2.9. Let w ∈ Mc and g ∈ Sw be fixed and assume that F : R2n → C

is a measurable function that has a subexponential decay, i.e. such that for each
k = 0, 1, 2, ..., there is a constant C = Ck > 0 satisfying

|F (x, ξ)| ≤ Ce−k(w(x)+w(ξ)).

Then the integral

f(t) =

∫ ∫

R2n

F (x, ξ)(MξTxg)(t)dxdξ

defines a function in Sw.

Proof: To prove that f ∈ Sw, we start with
∣∣∣(ekw(t)f)(t)

∣∣∣ ≤

∫ ∫

R2n

(F (x, ξ)ekw(t)(MξTxg)(t))dxdξ

≤

∫ ∫

R2n

|F (x, ξ)|
∣∣∣MξTx(e

kw(t+x)g))(t)
∣∣∣ dxdξ

≤

∫ ∫

R2n

|F (x, ξ)|
∣∣∣Tx(ekw(t+x)g))(t)

∣∣∣ dxdξ

≤

∫ ∫

R2n

ekw(x)eNw(ξ)e−Nw(ξ) |F (x, ξ)|
∥∥∥ekw(·)g

∥∥∥
∞
dxdξ

≤

∫ ∫

R2n

e(k+N)(w(x)+w(ξ))e−N(w(x)+w(ξ)) |F (x, ξ)|
∥∥∥ekw(·)g

∥∥∥
∞
dxdξ

≤
∥∥∥ekw(·)g

∥∥∥
∞

∥∥∥e(N+k)(w(x)+w(ξ))F
∥∥∥
∞

∫ ∫

R2n

e−N(w(x)+w(ξ))dxdξ

≤ C
∥∥∥e(N+k)(w(x)+w(ξ))F

∥∥∥
∞
.
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So, ∥∥∥ekw(·)f
∥∥∥
∞

≤ C
∥∥∥e(N+k)(w(x)+w(ξ))F

∥∥∥
∞
. (2.3)

This implies that
∥∥ekw(·)f

∥∥
∞
<∞.

To show that
∥∥∥ekw(·)f̂

∥∥∥
∞
<∞, we write

f̂(τ ) =

∫ ∫

R2n

(F (x, ξ)(M−xTξĝ)(τ ))e
2πix.ξdxdξ,

using
̂(MξTxg)(τ ) = (M−xTξĝ)(τ )e

2πix.ξ.

Using an argument similar to the one leading to the proof of (2.3), we have
∣∣∣ekw(t)f̂(τ )

∣∣∣ ≤ C
∥∥∥e(N+k)(w(x)+w(ξ))F

∥∥∥
∞
.

This completes the proof of Lemma 2.9.

Remark 2.10. For the Gaussian g(x) = e−π|x|2 and f with e−kw(x)f ∈ L1 for
some k ∈ N0, then νgf is well-defined and continuous. In fact,

|νgf(x, ξ)| =

∣∣∣∣
∫

Rn

f(t)g(t− x)e−2πit.ξdt

∣∣∣∣

≤

∫

Rn

∣∣∣f(t)g(t− x)e−2πit.ξ
∣∣∣ dt

=

∫

Rn

e−kw(x) |f(t)| ekw(t)
∣∣∣g(t− x)

∣∣∣ dt

≤

∫

Rn

e−kw(x) |f(t)| ekw(t−x)
∣∣∣g(t− x)

∣∣∣ ekw(x)dt

=
∣∣∣
∣∣∣e−kw(x)f

∣∣∣
∣∣∣
1

∣∣∣
∣∣∣ekw(x)g

∣∣∣
∣∣∣
∞
ekw(x).

This shows that νgf is well-defined. Moreover, if we fix (x0, ξ0) ∈ R2n and let
(xj , ξj) be any sequence in R2n converging to (x0, ξ0) as j → ∞, the function

f(t)g(t− xj)e
−2πit.ξj converges to f(t)g(t− x0)e

−2πit.ξ0 pointwise as j → ∞ and
∣∣∣f(t)g(t− xj)e

−2πit.ξj

∣∣∣ ≤
∣∣∣e−kw(t)f(t)ekw(t)g(t− xj)e

−2πit.ξj

∣∣∣

≤
∣∣∣e−kw(t)f(t)ekw(t−x)g(t− xj)e

kw(xj)

∣∣∣

≤ C
∣∣∣e−kw(t)f(t)

∣∣∣
∣∣∣
∣∣∣ekw(·)g

∣∣∣
∣∣∣
∞

≤ C
∣∣∣e−kw(t)f(t)

∣∣∣ .

Since the function
∣∣e−kw(t)f(t)

∣∣ ∈ L1, we can apply Lebesgue Dominated Conver-
gence Theorem to obtain

νgf(xj , ξj) → νgf(x0, ξ0)
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as j → ∞. This shows the continuity of νgf.

✷

3. Characterization of the dual space S
′
w

The following topological characterization as stated in ( [8]) imposes no condi-
tions on the derivatives.

Theorem 3.1. Let g(x) = e−π|x|2 be the Gaussian. Then the Beurling-Björck
space Sw can be described as a set as well as topologically by

Sw =

{
f : Rn → C: e−mw(x)f ∈ L1 for some m ∈ N0 and πk(f) <∞

for all k ∈ N0

}
, (3.1)

where πk(f) =
∥∥ek(w(x)+w(ξ))νgf

∥∥
∞
.

Theorem 3.2. ( [9])Given a functional L in the topological dual of the space C0,
there exists a unique regular complex Borel measure µ so that

L (ϕ) =

∫

Rn

ϕdµ.

Moreover, the norm of the functional L is equal to the total variation |µ| of the
measure µ. Conversely, any such measure µ defines a continuous linear functional
on C0.

Theorem 3.3. Let w ∈ Mc and g(x) = e−π|x|2be the Gaussian. Then if L : Sw →
C, the following statements are equivalent: (i) L ∈ S

′
w (ii) There exist a regular

complex Borel measure µ of finite total variation and k ∈ N0 so that

L = ek(w(x)+w(ξ))νgdµ,

in the sense of S′w.

Proof: (i) ⇒ (ii). Given L ∈ S
′
w, there exist k, C so that

L (ϕ) ≤ C
∥∥∥ek(w(x)+w(ξ))νgϕ

∥∥∥
∞

for all ϕ ∈ Sw. Moreover, the map

sw(R
n
) → C0(R

2n)

ϕ→ ek(w(x)+w(ξ))νgϕ

is well-defined, linear, continuous and injective. Let R be the range of this map.
We define on R the map

l1

(
ek(w(x)+w(ξ))νgϕ

)
= L (ϕ) ,
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for a unique ϕ ∈ Sw. The map l1 : R →C is linear and continuous. By the Hahn-
Banach theorem, there exists a functional L1 in the topological dual C′

0(R
2n) of

C0(R
2n) such that ‖L1‖ = ‖l1‖ and the restriction of L1 to R is l1. Using Theorem

3.2, there exist a regular complex Borel measure µ of finite total variation so that

L1 (f) =

∫

R2n

fdµ

for all f ∈ C0(R
2n). If f ∈ R, we conclude

L (ϕ) =

∫

R2n

ek(w(x)+w(ξ))νgϕdµ

for all ϕ ∈ Sw. In the sense of S′w,

L = ek(w(x)+w(ξ))νgdµ.

(ii) ⇒ (i). If µ is a regular complex Borel measure satisfying (ii) and ϕ ∈ Sw, then

L (ϕ) =

∫

R2n

ek(w(x)+w(ξ))νgϕdµ.

This implies that

|L (ϕ)| ≤

∣∣∣∣
∫

R2n

ek(w(x)+w(ξ))νgϕdµ

∣∣∣∣

≤ |µ| (R2n)
∥∥∥ek(w(x)+w(ξ))νgϕ

∥∥∥
∞

≤ C(
∥∥∥ek(w(x)+w(ξ))νgϕ

∥∥∥
∞
).

It may be noted that µ, employed to obtain the above inequality, is of finite total
variation. This completes the proof of Theorem 3.3. ✷

Corollary 3.4. If L ∈ S′w and ϕ ∈ Sw, then the classical definition of the convo-
lution L ∗ ϕ is defined by

(L ∗ ϕ, ψ) = (Lx, (ϕz, ψ(x+ y)))

for all ψ ∈ Sw. Moreover, the functional L ∗ ϕ coincides with the functional given
by the integration against the function

f(y) = (L,ϕ(y − ·)).

Proof: The inequality

|f(y)| =

∣∣∣∣
∫

R2n

ek(w(x)+w(ξ))νgϕ(y − x, ξ)dµ

∣∣∣∣

≤

∣∣∣∣
∫

R2n

ek(w(y−x)+w2(ξ))ekw(y)νgϕ(y − x, ξ)dµ

∣∣∣∣

≤ C
∥∥∥ek(w(x)+w(ξ))νgϕ

∥∥∥
∞
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implies the boundedness of f(y) = (L,ϕ(y − ·)). Then

(L ∗ ϕ, ψ) = (Lx, (ϕz , ψ(x+ y)))

=

∫

R2n

ek(w(x)+w(ξ))νg(

∫

Rn

ϕ(y − x)ψ(y)dy)dxdξ

=

∫

R2n

ek(w(x)+w(ξ))νg(ψ ∗ ϕ(x))dxdξ

= (ek(w(x)+w(ξ))νg, ψ ∗ ϕ(x))

= (ek(w(x)+w(ξ))νgϕ(y − x, ξ), ψ(y))

= ((ek(w(x)+w(ξ))νg, ϕ(y − x)), ψ(y))

= ((ek(w(x)+w(ξ))νg, (ϕ(y − x), ψ(y))

= (Lx, (ϕ(y − x), ψ(y))).

✷
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