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abstract: New definition for traveling wave transformation and using of new con-
formable fractional derivative for converting fractional nonlinear evolution equations
into the ordinary differential equation are presented in this study. For this aim we
consider the time and space fractional derivatives cubic nonlinear Schrodinger equa-
tion. Then by using of the efficient and powerful method the exact traveling wave
solutions of this equation are obtained. The new definition introduces a promising
tool for solving many space-time fractional partial differential equations.
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1. Introduction

The examinations of exact solutions of fractional nonlinear evolution equations
have a very important place in the enquiry of some physical phenomena. The
types of solutions of FNLEEs, that are combined utilizing variety mathematical
techniques, are very significant various sciences such as chemistry, technology of
space, control engineering problems, physics, applied mathematics and computer
engineering.
In this paper, we will use the (G’/G)-expansion method [1-2] to solve nonlinear
fractional partial differential equations in the sense of new conformable fractional
derivative.

The (G’/G)-expansion method was introduced, by Wang et al. [3], to find the
travelling wave solutions of nonlinear evolution equations. This method was further
extended [4-5] to find the solutions of fractional order differential equations, the
Jacobi elliptic function expansion method [6], the tanh-function method for finding
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solitary wave solutions [7], the homotopy perturbation method [8], the first integral
method [9], the solitary wave ansatz [10] and etc[11-13].

The conformable fractional derivative of order α defined by the following ex-
pression and theorems.

Definition 1. Let fα (t) stands forTα (f) (t). Hence

fα (t) = lim
ξ→0

f
(

t+ ξt1−α
)

− f (t)

ξ

If f is α-differentiable in some(0, a), a > 0, and lim
t→0+

fα (t)exists, then by definition

fα (0) = lim
t→0+

fα (t)

We should remark that Tα (t
µ) = µtµ−α. Further, this definition coincides with

the classical definitions of R-L and of Caputo on polynomials (up to a constant
multiple).
One can easily show that Tα satisfies all the properties in the theorem [14-15].
Theorem 1. Let α ∈ [0, 1) and f, g beα-differentiable at a point t, Then:

(i)Tα (af + bg) = aTα (f) + bTα (g) , for all a, b ∈ R.
(ii)Tα (t

µ) = µtµ−α, for all µ ∈ R
(iii)Tα (fg) = fTα (g) + gTα (f)

(iν)Tα

(

f
g

)

= fTα(g)−gTα(f)
g2

If, in addition, f is differentiable, then Tα (f) (t) = t1−α df
dt
.

Theorem 2. Let f : [0, ∞) → Rbe a function such that f is differentiable and also
differentiable. Let g be a function defined in the range of fand also differentiable;
then, one has the following rule:

Tα (fog) (t) = t1−αg′ (t) f ′ (g (t)) .

Definition 2. (Fractional Integral) Let a ≥ 0 and t ≥ a. Also, let f be a function
defined on (a, t] and α ∈ f . Then the α−fractional integral of f is defined by,

Iαa (f) (t) =

t
∫

a

f (x)

x1−α
dx

if the Riemann improper integral exists. It is interesting to observe that the α
-fractional derivative and the α−fractional integral are inverse of each other as
given in [14-15].

Now we consider the following general nonlinear fractional differential equation:

G
(

u,Dα
t u,D

β
xu,D

ψ
y u,D

α
t D

α
t u,D

α
t D

β
xu,D

β
xD

β
xu, ....

)

= 0, 0 < α, β, ψ < 1. (1.1)

Where u is an unknown function, and G is a polynomial of u. In this equation,
the partial fractional derivatives involving the highest order derivatives and the
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nonlinear terms are included. Next by using the new definition for traveling wave
variable

u (x, t) = U (ξ) e
i
(

k xβ

β
+c tα

α

)

, ξ = l
xβ

β
+ ω

tα

α
(1.2)

Where k, c, l and ω are non-zero arbitrary constants, we can rewrite Eq. (1.1) as
the following nonlinear ODE:

Q (U,U ′, U ′′, U ′′′, ...) = 0. (1.3)

Where the prime denotes the derivation with respect to ξ . If possible, we should
integrate Eq. (1.3) term by term one or more times.
Suppose that the solution of ODE (1.3) can be expressed by a polynomial in (G′/G)
as follows

u(ξ) =
m
∑

i=0

ai

(

G′

G

)i

, am 6= 0. (1.4)

Where G = G(ξ) satisfies the second order LODE in the form

G′′ + λG′ + µG = 0 (1.5)

am, λand µ are constants to be determined later.
The positive integer m can be determined by considering the homogeneous bal-
ance between the highest order derivatives and the nonlinear terms appearing
in Eq. (1.3). By substituting Eq. (1.4) into Eq. (1.3) and using Eq. (1.5),
we collect all terms with the same order of (G’/G). By equating each coefficient
of the resulting polynomial to zero, we obtain a set of algebraic equations for
ai (i = 0,±1,±2, ...) , λ, µ, k, c, l and ω. By solving the equation system and substi-
tuting the general solutions of Eq. (1.5) into Eq. (1.4), we can obtain a variety of
exact solutions of Eq. (1.1).
The rest of this paper is organized as follows. In Sections 2, we use this method
to obtain the exact solutions for the time and space fractional derivatives cubic
nonlinear Schrodinger equation. Discussion and some conclusions are given in the
last section.

2. Outcomes

We consider the following time and space fractional derivatives cubic nonlinear
Schrodinger

i
∂αu

∂tα
+
∂2βu

∂x2β
+ 2 |u|2 u = 0, t > 0, 0 < α, β ≤ 1, i =

√
−1. (2.1)

Where α is a parameter describing the order of the fractional time derivative. For
our purpose, we introduce the following new wave transformations:

u (x, t) = U (ξ) e
i
(

k xβ

β
+c tα

α

)

,

ξ = l x
β

β
+ ω t

α

α

(2.2)
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Where k, c, l and ω are non-zero arbitrary constants. So

i
∂αu

∂tα
= iωU ′e

i
(

k xβ

β
+c tα

α

)

− cUe
i
(

k xβ

β
+c tα

α

)

(2.3)

∂2βu

∂x2β
= l2U ′′e

i
(

k xβ

β
+c tα

α

)

+ 2iklU ′e
i
(

k xβ

β
+c tα

α

)

− k2Ue
i
(

k xβ

β
+c tα

α

)

(2.4)

By substituting Eqs. (2.2)-(2.4) into Eq. (2.1), Eq. (2.1) is reduced into an ODE
l2U ′′ + i (2kl + ω)U ′ −

(

c+ k2
)

U + 2U3 = 0, (2.5)

WhereU ′ = dU
dξ

. By using the ansatz (2.5), for the linear term of highest order

U ′′with the highest order and the nonlinear term U3, balancing U ′′ with U3 in Eq.
(2.5)

3m = m+ 2

Som = 1. Suppose that the solutions of Eq. (2.5) can be expressed by a polynomial
in (G’/G) as follows:

U(ξ) = a1

(

G′

G

)

+ a0, a1 6= 0, (2.6)

By using Eq. (1.5), from Eq. (2.6) we have

U ′′ = 2a1(
G′

G
)3 + 3a1λ(

G′

G
)2 + (a1λ

2 + 2a1µ)(
G′

G
) + a1λµ

U ′ = −a1(G
′

G
)2 − a1λ(

G′

G
)− a1µ

(2.7)

By substituting Eqs. (2.6)–(2.7) into Eq. (2.5), collecting the coefficients of

(G′/G)
i
(i = 0, . . . , 2), and setting them to be zero, and solving this system we

have
a1 = i

√
l,

a0 = i(2kl+ω)−3l2λ

6i
√
l

,
(2.8)

ω = −i
[

(

108l4λµ+ 6
√
P
)

1
3 − 6cl− 36l2µ+ 6k2l

108l4λµ+ 6
√
P

− 2ikl+ 3l2λ

]

, (2.9)

c =
q

6l
(2.10)

Where

P = 1296l6µ3 + 648l5µ2k2 + 648l5µ2c− 108l4µk4 − 216l4µk2c−
108l4µc2 + 6k6l3 + 18k4l3c+ 18k2l3c2 + 6c3l3 + 324l8λ2µ2

q = 6l3λ2 + 12l3µ− 12iλl2k − 6iλlω − 6k2l + 4k2l2+

4klω + 12ikl3λ+ ω2 + 6iωl2λ− 9l4λ2

By using Eqs. (2.8)- (2.10), and substituting the general solutions of Eq. (1.5) into
Eq. (2.6), we have three types of travelling wave solutions of the time and space
fractional derivatives cubic nonlinear Schrodinger as follows.
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1. When λ2 − 4µ > 0,

U(ξ) =
i
√
l
√
λ2−4µ

2

(

C1 cosh 1
2

√
λ2−4µξ+C2 sinh 1

2

√
λ2−4µξ

C1 sinh 1
2

√
λ2−4µξ+C2 cosh 1

2

√
λ2−4µξ

)

−
i
√
lλ
2 + i(2kl+ω)−3l2λ

6i
√
l

,

So

u1 (x, t) =

[

i
√
l
√
λ2−4µ

2 ×
(

C1 cosh 1
2

√
λ2−4µ

(

l x
β

β
+ω tα

α

)

+C2 sinh 1
2

√
λ2−4µ

(

l x
β

β
+ω tα

α

)

C1 sinh 1
2

√
λ2−4µ

(

l x
β

β
+ω tα

α

)

+C2 cosh 1
2

√
λ2−4µ

(

l x
β

β
+ω tα

α

)

)

−

i
√
lλ
2 + i(2kl+ω)−3l2λ

6i
√
l

]

e
i
(

k xβ

β
+ q

6l
tα

α

)

,

Where

ω = −i
[

(

108l4λµ+ 6
√
P
)

1
3 − 6cl− 36l2µ+ 6k2l

108l4λµ+ 6
√
P

− 2ikl+ 3l2λ

]

,

1. When λ2 − 4µ < 0,

u2 (x, t) =

[

i
√
l
√

4µ−λ2

2 ×
(

C1 cos 1
2

√
4µ−λ2

(

l x
β

β
+ω tα

α

)

+C2 sin 1
2

√
4µ−λ2

(

l x
β

β
+ω tα

α

)

C1 sin 1
2

√
4µ−λ2

(

l x
β

β
+ω tα

α

)

+C2 cos 1
2

√
4µ−λ2

(

l x
β

β
+ω tα

α

)

)

−

i
√
lλ
2 + i(2kl+ω)−3l2λ

6i
√
l

]

e
i
(

k xβ

β
+ q

6l
tα

α

)

,

Where

ω = −i
[

(

108l4λµ+ 6
√
P
)

1
3 − 6cl− 36l2µ+ 6k2l

108l4λµ+ 6
√
P

− 2ikl+ 3l2λ

]

,

1. When λ2 − 4µ = 0,

u3 (x, t) =

[

i
√
l
√

4µ−λ2

2

(

C2αβ
C1αβ+C2(lαxβ+ωβtα)

)

−

i
√
lλ
2 + i(2kl+ω)−3l2λ

6i
√
l

]

e
i
(

k xβ

β
+ q

6l
tα

α

)

,

In particular, if C1 6= 0, C2 = 0, λ > 0 , andµ = 0, then u1 and u2becomes

u1 (x, t) =
[

i
√
lλ
2 ×

coth λ
2

(

l x
β

β
− i

[

(

6
√
P
)

1
3 − 6cl+6k2l

6
√
P

− 2ikl+ 3l2λ
]

tα

α

)

−

i
√
lλ
2 + i(2kl+ω)−3l2λ

6i
√
l

]

e
i
(

k xβ

β
+ q

6l
tα

α

)

,
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And

u2 (x, t) =
[

i
√
lλ
2 ×

cot λ2

(

l x
β

β
− i

[

(

6
√
P
)

1
3 − 6cl+6k2l

6
√
P

− 2ikl+ 3l2λ
]

tα

α

)

−

i
√
lλ
2 + i(2kl+ω)−3l2λ

6i
√
l

]

e
i
(

k xβ

β
+ q

6l
tα

α

)

,

3. Figure Caption

Figure 1-1: The complex variation of u1 for l = 1, λ = 1, µ = 0, α = 1, c = 1, k =
0, t = 1, C1 6= 0, C2 = 0, and different values of β = 0.1 (red Curve), β = 0.2 (green
Curve), β = 0.3 (yellow Curve) in regionx = −π...π.

Fig. 1-1
Figure 1-2: The complex variation of u1 for l = 1, λ = 1, µ = 0, α = 1, c = 1, k =
0, t = 1, C1 6= 0, C2 = 0, and different values of β = 0.4 (red Curve), β = 0.5 (green
Curve), β = 0.6 (yellow Curve) in regionx = −π...π,

Fig. 1-2
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Figure 1-3: The complex variation of u1 for l = 1, λ = 1, µ = 0, α = 1, c = 1, k =
0, t = 1, C1 6= 0, C2 = 0, and different values of β = 0.7 (red Curve), β = 0.8 (green
Curve), β = 0.9 (yellow Curve) in regionx = −π...π,

Fig. 1-3

Figure 1-4: The complex variation of u1 for l = 1, λ = 1, µ = 0, α = 1, c = 1, k =
0, t = 1, C1 6= 0, C2 = 0, and different values of β = 0.9 (red Curve), β = 1 (yellow
Curve), in regionx = −π...π,

Fig. 1-4

Figure 1-5: The complex variation of u1 for l = 1, λ = 1, µ = 0, α = 1, c =
1, k = 0, t = 1, C1 6= 0, C2 = 0, and β = 1; complex curve of general form of cubic
nonlinear Schrodinger equation in regionx = −π...π.
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Fig. 1-5

Figure 2-1: The complex variation of u2 for l = 1, λ = 1, µ = 0, α = 1, c = 1, k =
0, t = 1, C1 6= 0, C2 = 0, and different values of β = 0.1 (red Curve), β = 0.2 (green
Curve), β = 0.3 (yellow Curve) in regionx = −π...π,

Fig. 2-1

Figure 2-2: The complex variation of u2 for l = 1, λ = 1, µ = 0, α = 1, c = 1, k =
0, t = 1, C1 6= 0, C2 = 0, and different values of β = 0.4 (red Curve), β = 0.5 (green
Curve), β = 0.6 (yellow Curve) in regionx = −π...π,
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Fig. 2-2

Figure 2-3: The complex variation of u2 for l = 1, λ = 1, µ = 0, α = 1, c = 1, k =
0, t = 1, C1 6= 0, C2 = 0, and different values of β = 0.7 (red Curve), β = 0.8 (green
Curve), β = 0.9 (yellow Curve) in regionx = −π...π,

Fig. 2-3

Figure 2-4: The complex variation of u2 for l = 1, λ = 1, µ = 0, α = 1, c = 1, k =
0, t = 1, C1 6= 0, C2 = 0, and different values of β = 0.9 (red Curve), β = 1 (yellow
Curve), in regionx = −π...π,
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Fig. 2-4

4. Discussion and conclusion

The graphs of the solutions related to u1 and u2 show that with changing β (if β
tends to one) the graphs of the solutions of fractional cubic nonlinear Schrodinger
equation is near to graph of solution of cubic nonlinear Schrodinger equation in
general form and finally for β = 1 it coincide with the graph of the general form of
cubic nonlinear Schrodinger equation.
Summary, in this paper we successfully introduce new definition for wave trans-
formation and by using this definition the time and space fractional derivatives
cubic nonlinear Schrodinger equation converted to the ordinary differential equa-
tion. Also, we successfully use the (G’/G)-expansion method to solve time and
space fractional derivatives cubic nonlinear Schrodinger with using conformable
fractional derivative. Finally, to our knowledge, the solutions obtained in this
paper have not been reported in the literature so far.
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