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A New Construction on the Energy of Space Curves in Unit Vector

Fields in Minkowski Space E
4
2
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abstract: In this paper, we firstly introduce kinematics properties of a moving
particle lying in Minkowski space E

4

2
. We assume that the particle corresponds to

different type of space curves such that they are characterized by Frenet frame
equations. Guided by these, we present geometrical understanding of an energy and
pseudo angle of the particle in each Frenet vector fields depending on the particle
corresponds to a spacelike, timelike or lightlike curve in E

4

2
. Then we also determine

the bending elastic energy functional for the same particle in E
4

2
by assuming the

particle has a bending feature of elastica. Finally, we prove that bending energy
formula can be represented by the energy of the particle in each Frenet vector field.
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1. Introduction

Minkowski 4-space with index 2; E4
2 is an extended version of Minkowski space-

time E
4
1. Minkowski spacetime is significant to understand general relativity.

Minkowski spacetime E
4
1 introduces Lorentzian geometry, which is a space form

having a constant sectional curvature. Thus, scientists are able to develop some
up-to-date physical concepts by studying on E

4
1 such as gravitational dilation of

time, length contraction, cosmology, black holes, string theory. The innovation that
emerged with Minkowski 4-space with index 2 is that it allows us to use tools of
hyperbolic geometry. Thus, not only computations on the Lorentizan geometry
become simpler but new investigations become available. For instance, complete
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solutions of field equations of Einstein for the empty universe with negative cosmo-
logical constant can be solved in Anti de Sitter space. It is a maximally symmetric
and hyperquadric semi Euclidean space with index 2. Furthermore, current cos-
mological observations show that our expanding universe is an asymptotic. In this
case, positive cosmological constant is used for the computation of Einstein equa-
tions in De-Sitter space. Therefore, it is meaningful to study in E

4
2 since it has a

key role to comprehend related concepts about general relativity, cosmology, and
geometry [1].

A search of literature indicates that there is almost no concrete computations of
entropy, laws of horizon dynamics and energy in the case of Minkowski spacetime
E
4
2. Various attempts are being made to describe the concept of the energy using

quasi-local or local concepts. However, these definitions of energy do not agree with
each other all the time and they are not applicable to the universes of De-Sitter and
Anti De-Sitter type [2 − 4]. Therefore, we believe that we should start with using
local approach to make any progress on the notion of energy in this spacetime.
Thus, we consider that one of the most effective way to make this approach is to
use intrinsic geometrical features of the moving particle in the Minkowski spacetime
E
4
2. To obtain these data and facts focusing on kinematics and dynamical aspect

of the structure on the corresponding spacetime is crucial.
Motion of a particle in space is important due to wide range application of

the subject. Motion of the particle in absolute space and time was defined firstly
by Newtonian dynamics [5, 6]. Then, geometric generalization of the action, which
includes terms belonging to curvature of the moving particle’s trajectory in different
space times are investigated [7].

The equations of the moving particle in the particular vector field are obtained
by considering its generalized acceleration, velocity, and coordinate. Based on this,
unit vector field’s energy on a Riemannian manifold M is described to be equal
to the energy of the mapping M → T1M, where T1M is defined as unit tangent
bundle equipped with Sasaki metric [8]. By similar argument volume of a unit
vector field X is described as the volume of the submanifold in the unit tangent
bundle defined by X(M) [9]. It is also investigated that computation of the energy
of a particular particle in many spacetimes has various applications [10− 15].

This study organizes as follows. We firstly present fundamental definitions of
Frenet frame equations for different type of space curves in Minkowski spacetime
E
4
2. Then we give geometrical interpretation of the energy for unit vector fields. In

the following section, we set a connection between physical and geometrical under-
standing of the energy for a moving particle in Minkowski spacetime E4

2 considering
dynamics of different type of space curves. Finally, we give some energy variation
sketches for different cases.

2. Metric and Frenet Field in Minkowski Space E
4
2

Let y = (y1,y2, y3, y4) , z =(z1,z2, z3, z4) be two vectors in a 4-dimensional real
vector space R

4.

R
4 = {y = (y1,y2, y3, y4) : yi ∈ R (i = 1, 2, 3, 4)} .
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Then pseudo scalar multiplication of y and z is defined as

π(y, z) = −y1z1 − y2z2 + y3z3 + y4z4.

In this case, it is said that real vector space R
4 with the above metric π defines a

new geometrical structure named as Minkowski 4-space with index 2. It is denoted
by E

4
2.

Let y be a vector in E
4
2−{0} . Then it has different characteristics with respect

to the value of the given metric. That is,







y is spacelike, if π(y,y) is positive,
y is timelike, if π(y,y) is negative,
y is lightlike, if π(y,y) is zero.

We can also describe new type of lightlike vectors such as pseudo lightlike vector,
Cartan lightlike vector, and partially lightlike vector in case necessary conditions
are held. These definitions can be extended to curves in E

4
2, naturally. That is,

let Γ be a particle moving in a space E
4
2 such that the precise location of the

particle is specified by Γ = Γ (t) , where t is a time parameter. Changing time
parameter describes the motion. Hence, the trajectory of the particle corresponds
to a curve K in the space for a moving particle. It is convenient to remind the
arc-length parameter s is used to compute the distance traveled by a particle along
its trajectory. It is defined by

ds

dt
= ‖v‖ ,

where v = v (t)= dζ
dt

is the velocity vector and dζ
dt

6= 0. In particle dynamics, the
arc-length parameter s is considered as a function of t. Thanks to the arc-length, it
is also described Serret-Frenet frame, which allows us determining characterization
of the intrinsic geometrical features of the regular curve. This coordinate system is
constructed by four pseudo-orthonormal vectors assuming the curve is sufficiently
smooth at each point. Frenet equations for different type of curves can be given as
the following.
Case 1. Let K be a unit speed spacelike or timelike curve in E

4
2, then Frenet

equations are stated as the following [16].

∇TT = σ2k1N,

∇TN = −σ1k1T+σ3k2B1, (2.1)

∇TB1 = −σ2k2N+σ1σ2σ3k3B2,

∇TB2 = σ3k3B1,

where σ1σ2σ3σ4 = 1 and only two of the σi = 1 (i = 1, 2, 3, 4). Moreover, we have

π (T,T) = σ1, π (N,N) = σ2, π (B1,B1) = σ3, π (B2,B2) = σ4,

π (T,N) = π (T,B1) = π (T,B2) = π (N,B1) = π (N,B2) = π (B1,B2) = 0.
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Case 2. Let K be a unit speed pseudo lightlike curve, then Frenet equations are
stated as the following [17].

∇TT = k1N,

∇TN = k2B1, (2.2)

∇TB1 = k3N−σ2k2B2,

∇TB2 = −σ1k1T−σ2k3B1,

where σ1σ2 = −σ1, σ2 ∈ {−1, 1} . Here we also have
{

k1 = 0, if K is straight line,
k1 = 1, otherwise.

Moreover, we have

π (T,T) = σ1, π (B1,B1) = σ2, π (N,B2) = 1,

π (T,N) = π (T,B1) = π (T,B2) = π (N,B1) = π (B1,B2) = 0.

Case 3. Let K be a unit speed Cartan lightlike curve, then Frenet equations are
stated as the following [18, 19].

∇TT = k1N,

∇TN = −σ1k2T−σ1k1B1, (2.3)

∇TB1 = k2N+k3B2,

∇TB2 = −σ2k3T,

where σ1σ2 = −σ1, σ2 ∈ {−1, 1} . Here we also have
{

k1 = 0, if K is straight line,
k1 = 1, otherwise.

Moreover, we have

π (N,N) = σ1, π (B2,B2) = σ2, π (T,B1) = 1,

π (T,N) = π (T,B2) = π (N,B1) = π (N,B2) = π (B1,B2) = 0.

Case 4. Let K be a unit speed partially lightlike curve K, then Frenet equations
are stated as the following [17].

∇TT = k1N,

∇TN = k1T+k2B1, (2.4)

∇TB1 = k3B1,

∇TB2 = −σ2k2N− k3B2,

where σ1σ2 = −σ1, σ2 ∈ {−1, 1} . Here we also have k3 = 0, for every case.
Moreover, we have

π (T,T) = σ1, π (N,N) = σ2, π (B1,B2) = 1,

π (T,N) = π (T,B1) = π (T,B2) = π (N,B1) = π (N,B2) = 0.
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3. Energy and Pseudo Angle of Unit Vector Fields

Definition 3.1. Let (M,ρ) and (N, h) be two Riemannian manifolds. Then energy

of a differentiable map f : (M,ρ) → (N, h) can be defined as

εnergy (f) =
1

2

∫

M

n
∑

a=1

h (df (ea) , df (ea)) v, (3.1)

where {ea} is a local basis of the tangent space and v is the canonical volume form

in M, [8].

Proposition 3.2. Let Q : T
(

T 1M
)

→ T 1M be the connection map. Then follow-

ing two conditions hold:

i) ω ◦Q = ω ◦ dω and ω ◦Q = ω ◦ ω̃, where ω̃ : T
(

T 1M
)

→ T 1M is the tangent

bundle projection;

ii) for ̺ ∈ TxM and a section ξ : M → T 1M ; we have

Q (dξ (̺)) = ∇̺ξ, (3.2)

where ∇ is the Levi-Civita covariant derivative, [8].

Definition 3.3. Let ς1, ς2 ∈ Tξ

(

T 1M
)

, then we define

ρS (ς1, ς2) = ρ (dω (ς1) , dω (ς2)) + ρ (Q (ς1) , Q (ς2)) . (3.3)

This yields a Riemannian metric on TM . As we know ρS is called the Sasaki

metric that also makes the projection ω : T 1M → M a Riemannian submersion.

Definition 3.4. Pseudo angle is known as the angle between arbitrary Frenet vec-

tors for any given curve K. For an initial point the pseudo angle between Frenet

vectors can be stated with the help of the curvature function of the curve K thanks

to the following formula

Ai =

∫ s

ϑ

∥

∥

∥

∥

dVi

du

∥

∥

∥

∥

du. (3.4)

where Vi represents Frenet vector, [20].

4. Energy of a Particle in Frenent Vector Fields in the Space E
4
2

In the theory of relativity, all the energy moving through an object contributes
to the total mass of the body that measures how much it can resist to acceleration.
Each kinetic and potential energy makes a highly proportional contribution to the
mass [21]. In this study not only we compute the energy and pseudo angle of
Frenet vectors but we also investigate its close correlation with bending energy
of elastica which is a variational problem proposed firstly by Daniel Bernoulli to
Leonard Euler in 1744. Euler elastica of bending energy formula for an elastic
curve in Minkowski Space E

4
2 is given by Frenet curvature along the curve

HB =
1

2

∫

‖∇TT‖
2
ds, (4.1)
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where s is an arclength and κ2 = ‖∇TT‖
2
[22].

Case 1. Let K be a spacelike or timelike curve in E
4
2.

Theorem 4.1. Let Γ be a moving particle such that it corresponds to a spacelike

or timelike curve K in E4
2 . Then energy on the particle in tangent, normal, first

binormal, and second binormal vector field is stated by using Sasaki metric as the

following, respectively.

εnergy (T) =
1

2
(sσ1 +

∫ s

0

σ2k
2
1ds),

εnergy (N) =
1

2
(sσ1 +

∫ s

0

(

σ1k
2
1 + σ3k

2
2

)

ds), (4.2)

εnergy (B1) =
1

2
(sσ1 +

∫ s

0

(

σ2k
2
2 + σ4k

2
3

)

ds),

εnergy (B2) =
1

2
(sσ1 +

∫ s

0

σ3k
2
3ds).

Proof: We prove only energy on the particle in tangent vector field. The rest of
the proof can be completed by using the similar argument. From Eqs. 3.1 and 3.2,
we know

εnergy (T) =
1

2

∫ s

0

ρS (dT(T), dT(T)) ds.

Using the Eq. 3.3, we have

ρS (dT(T), dT(T)) = ρ(dω(T(T)), dω(T(T)))+ρ(Q(T(T)), Q(T(T))).

Since T is a section, we get

d(ω) ◦ d(T) = d(ω ◦T) =d(idC) = idTC .

We also know

Q(T(T)) = ▽TT =σ2k1N.

Thus, we find from the Eq. 2.1

ρS (dT(T), dT(T)) = ρ (T,T) + ρ (∇TT,∇TT)

= σ1 + k21σ2.

So we can easily obtain

εnergy (T) =
1

2
(sσ1 +

∫ s

0

σ2k
2
1ds).

This completes the proof. ✷
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Corollary 4.2. Let energy on the particle Γ in each tangent, normal, first bi-

normal, and second binormal vector fields given above be constant, then we have

following relations, respectively.

k21 = −σ1σ2,
k2

2

1+k2

1

= −σ1σ3, σ2k
2
2 + σ4k

2
3 = −σ1, k23 = −σ1σ3.

Proof: Let εnergy (T) be a constant. Then we have (εnergy (T))′ = 0. Using the
equality given at the Eq. 4.2, we obtain

σ1 + σ2k
2
1 = 0.

Thus, we get k21 = −σ1σ2. The rest of the proof can be done similarly. ✷

Theorem 4.3. Pseudo angle between tangent, normal, first binormal, and second

binormal vector fields can be given as the following, respectively.

A1 =

∫ s

0

|σ2k1 (γ (u))| du,

A2 =

∫ s

0

√

|σ1k
2
1 (γ (u)) + σ3k

2
2 (γ (u))|du, (4.3)

A3 =

∫ s

0

√

|σ2k
2
2 (γ (u)) + σ4k

2
3 (γ (u))|du,

A4 =

∫ s

0

|σ3k3 (γ (u))| du.

Proof: If we use Eqs. 2.1 and 3.4, it is obvious. ✷

Corollary 4.4. Let pseudo angle of each tangent, normal, first binormal, and sec-

ond binormal vector fields given above be constant, then we have following relations,

respectively.

k1 = 0,
k2

2

k2

1

= −σ1σ3,
k2

3

k2

2

= −σ2σ4, k3 = 0.

Proof: Let A1 be a constant. Then we have (A1)
′ = 0. Using the equality given

at the Eq. 4.3, we obtain
|σ2k1| = 0.

Thus, we get k1 = 0. The rest of the proof can be done similarly. ✷

Remark 4.5. Let K be a spacelike or timelike curve in E4
2 such that it has a

bending feature of elastica.Then we have following relations between energy on the

particle in Frenet vector fields and bending energy functional of elastica in E4
2 .

HB = εnergy (T)−
1

2
sσ1,

HB = εnergy (N)−
1

2

(

sσ1 +

∫ s

0

σ3k
2
2ds

)

.
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Proof: It is obvious from Eqs. 4.1 and 4.2. ✷

Case 2. Let K be a pseudo lightlike curve in E
4
2.

Theorem 4.6. Let Γ be a moving particle such that it corresponds to a pseudo

lightlike curve K in E4
2 . Then energy on the particle in tangent, normal, first bi-

normal, and second binormal vector field is stated by using Sasaki metric as the

following, respectively.

εnergy (T) =
σ1

2
s,

εnergy (N) =
1

2
(σ1s+

∫ s

0

σ2k
2
2ds), (4.4)

εnergy (B1) =
1

2
(σ1s− 2

∫ s

0

σ2k2k3ds),

εnergy (B2) =
1

2
(σ1s+

∫ s

0

(

σ1k
2
1 + σ2k

2
3

)

ds).

Proof: Here, we prove only energy on the particle in tangent vector field. The
rest of the proof can be completed by using similar argument. From Eqs. 3.1 and
3.2 we know that

εnergy (T) =
1

2

∫ s

0

ρS (dT(T), dT(T)) ds.

Then using the Eq. 3.3 and knowing T is a section, we obtain

ρS (dT(T), dT(T)) = ρ(dω(T(T)), dω(T(T)))+ρ(Q(T(T)), Q(T(T))),

and
d(ω) ◦ d(T) = d(ω ◦T) =d(idC) = idTC .

It is also true that
Q(T(T)) = ▽TT =k1N.

Moreover, we find from the Eq. 2.2

ρS (dT(T), dT(T)) = ρ (T,T) + ρ (∇TT,∇TT)

= σ1.

Thus, we can easily obtain

εnergy (T) =
σ1

2
s.

✷

Corollary 4.7. Let energy on the particle Γ in each tangent, normal, first bi-

normal, and second binormal vector fields given above be constant, then we have

following relations, respectively.

k2 = k3 = σ1 = 0.
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Proof: Let εnergy (T) be a constant. Then we have (εnergy (T))′ = 0. Using the
equality given at the Eq. 4.4, we obtain

σ1

2
= 0.

Thus, we get 0 = σ1. Also we know from the assumption (εnergy (N))′ = 0. Then
we have

0 = σ1 + σ2k
2
2 .

From the Eq. 2.2, we know that σ2 ∈ {−1, 1} . Thus k2 = 0. Similarly,

(εnergy (B1))
′ = 0

implies that
σ1 + σ1k

2
1 + σ2k

2
3 = 0.

Hence, k3 = 0. This completes the proof. ✷

Theorem 4.8. Pseudo angle between tangent, normal, first binormal, and second

binormal vector fields can be given as the following, respectively.

A1 = 0,

A2 =

∫ s

0

|σ2k2 (γ (u))| du, (4.5)

A3 =

∫ s

0

√

|2σ2k2k3 (γ (u))|du,

A4 =

∫ s

0

√

|(σ1k
2
1 (γ (u)) + σ2k

2
3 (γ (u)))|du.

Proof: If we use Eqs. 2.2 and 3.4, then it is obvious. ✷

Corollary 4.9. Let pseudo angle of each tangent, normal, first binormal, and sec-

ond binormal vector fields given above be constant, then we have following relations,

respectively.

k2 = 0,
k2

3

k2

1

= σ1.

Proof: Let A2 be a constant. Then we have (A2)
′ = 0. Using the equality given

at the Eq. 4.5, we obtain
σ2k2 = 0.

Thus, we get k2 = 0. Similarly, we know that (A4)
′ = 0. Thus, it implies that

∣

∣

(

σ1k
2
1 + σ2k

2
3

)
∣

∣ = 0.

Here, if we also use the Eq. 2.2 we obtain
k2

3

k2

1

= σ1. ✷

Case 3. Let K be a Cartan lightlike curve in E
4
2.
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Theorem 4.10. Let Γ be a moving particle such that it corresponds to a Cartan

lightlike curve K in E4
2 . Then energy on the particle in tangent, normal, first bi-

normal, and second binormal vector field is stated by using Sasaki metric as the

following, respectively.

εnergy (T) =
1

2

∫ s

0

σ1k
2
1ds,

εnergy (N) =

∫ s

0

k1k2ds, (4.6)

εnergy (B1) =
1

2

∫ s

0

(

σ1k
2
2 + σ1k

2
3

)

ds,

εnergy (B2) = 0.

Proof: Here, we prove only energy on the particle in tangent vector field. The
rest of the proof can be completed by using similar argument. From Eqs. 3.1 and
3.2 we know

εnergy (T) =
1

2

∫ s

0

ρS (dT(T), dT(T)) ds.

By using the Eq. 3.3, we have

ρS (dT(T), dT(T)) = ρ(dω(T(T)), dω(T(T)))+ρ(Q(T(T)), Q(T(T))).

Since T is a section, we also get

d(ω) ◦ d(T) = d(ω ◦T) =d(idC) = idTC .

Moreover, it is clear that

Q(T(T)) = ▽TT =k1N.

Thus, we find from the Eq. 2.3

ρS (dT(T), dT(T)) = ρ (T,T) + ρ (∇TT,∇TT)

= k21σ1.

and finally

εnergy (T) =
1

2

∫ s

0

σ1k
2
1ds.

✷

Corollary 4.11. Let energy on the particle Γ in each tangent, normal, first bi-

normal, and second binormal vector fields given above be constant, then we have

following relations, respectively.

σ1k
2
1 = 0, k1k2 = 0, σ1(k

2
2 + k23) = 0.
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Proof: It is obvious from Eqs. 4.6 and 2.3. ✷

Theorem 4.12. Pseudo angle between tangent, normal, first binormal, and second

binormal vector fields can be given as the following, respectively.

A1 =

∫ s

0

|σ1k1 (γ (u))| du,

A2 =

∫ s

0

√

|k1k2 (γ (u))|du, (4.7)

A3 =

∫ s

0

√

|(σ1k
2
2 (γ (u)) + σ1k

2
3 (γ (u)))|du,

A4 = 0.

Proof: If we use Eqs. 2.3 and 4.1, then it is obvious. ✷

Corollary 4.13. Let pseudo angle of each tangent, normal, first binormal, and

second binormal vector fields given above be constant, then we have following rela-

tions, respectively.

σ1k1 = 0, k1k2 = 0, σ1(k
2
2 + k23) = 0.

Proof: If we use the Eq. 4.7, then it is obvious. ✷

Remark 4.14. Let K be a Cartan lightlike curve in E4
2 such that it has a bending

feature of elastica.Then we have following relations between energy on the particle

in Frenet vector fields and bending energy functional of elastica in E4
2 .

HB = εnergy (T) ,

HB = εnergy (B1)−
1

2

∫ s

0

σ1k
2
3ds.

Proof: It is obvious from Eqs. 4.1 and 4.6. ✷

Case 4. Let K be a partially lightlike curve in E
4
2.

Theorem 4.15. Let Γ be a moving particle such that it corresponds to a partially

lightlike curve K in E4
2 . Then energy on the particle in tangent, normal, first bi-

normal, and second binormal vector field is stated by using Sasaki metric as the

following, respectively.

εnergy (T) =
1

2
(σ1s+

∫ s

0

σ2k
2
1ds),

εnergy (N) =
1

2
(σ1s+

∫ s

0

σ1k
2
1ds), (4.8)

εnergy (B1) =
σ1

2
s,

εnergy (B2) =
1

2
(σ1s+

∫ s

0

σ2k
2
2ds).
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Proof: We prove only energy of tangent vector, here. Energy of other vectors can
be computed if the same method is followed. From Eqs. 3.1 and 3.2 we get

εnergy (T) =
1

2

∫ s

0

ρS (dT(T), dT(T)) ds.

By using the Eq. 3.3 we have

ρS (dT(T), dT(T)) = ρ(dω(T(T)), dω(T(T)))+ρ(Q(T(T)), Q(T(T))).

Since T is a section, we also get

d(ω) ◦ d(T) = d(ω ◦T) =d(idC) = idTC .

Moreover, it is clear that

Q(T(T)) = ▽TT =k1N.

Thus, we find from the Eq. 2.4

ρS (dT(T), dT(T)) = ρ (T,T) + ρ (∇TT,∇TT)

= σ1 + k21σ2.

and finally

εnergy (T) =
1

2
(σ1s+

∫ s

0

σ2k
2
1ds).

✷

Corollary 4.16. Let energy on the particle Γ in each tangent, normal, first bi-

normal, and second binormal vector fields given above be constant, then we have

following relations, respectively.

k1 = k2 = 0.

Proof: Let εnergy (B1) be a constant. Then we have (εnergy (B1))
′ = 0. Using

the equality given at the Eq. 4.8 we obtain

σ1

2
= 0.

Thus, we get σ1 = 0. Also we know from the assumption (εnergy (T))′ = 0. Then
we have

0 = σ1 + σ2k
2
1 .

From the Eq. 2.4, we know that σ2 ∈ {−1, 1} . Thus k1 = 0. Similarly,

(εnergy (B2))′ = 0

implies that
σ1 + σ2k

2
1 = 0.

Hence, k2 = 0. This completes the proof. Having constant energy in Frenet vector
fields also implies that the particle follow a trajectory of a straight line, since k1 = 0.

✷
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Theorem 4.17. Pseudo angle between tangent, normal, first binormal, and second

binormal vector fields can be given as the following, respectively.

A1 =

∫ s

0

|σ2k1 (γ (u))| du,

A2 =

∫ s

0

|σ1k1 (γ (u))| du, (4.9)

A3 = 0,

A4 =

∫ s

0

|σ2k2 (γ (u))| du.

Proof: If we use Eqs. 2.4 and 3.4, then it is obvious. ✷

Corollary 4.18. Let pseudo angle of each tangent, normal, first binormal, and

second binormal vector fields given above be constant, then we have following rela-

tions, respectively.

k1 = k2 = 0.

Proof: It is obvious from the Eq. 4.9. ✷

5. Application

In this section, we draw energy variation graph for different type of curves given
in E

4
2 spacetime. By doing this practice, we have a chance to observe differentiation

of the energy on the particle with respect to time and different curves. For the
simplicity and convenience, we choose

σ1 = 1, σ2 = −1, σ3 = −1, σ4 = 1

and k1 (s) = s, k2 (s) = sin s, and k3 (s) = sinh s.
Case 1. Let Γ be a moving particle such that it corresponds to a spacelike or

timelike curve in E
4
2 for given values. In this case, we find energy on the particle in

Frenet vector fields {T,N,B1,B2} as follows, respectively.

Figure 1: Energy of a spacelike or a timelike curve in Frenet vector fields
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Case 2. Let Γ be a moving particle such that it corresponds to a pseudo lightlike
curve in E

4
2 for given values. In this case, we find energy on the particle in Frenet

vector fields {T,N,B1,B2} as follows, respectively.

Figure 2: Energy of a pseudo lightlike curve in Frenet vector fields

Case 3. Let Γ be a moving particle such that it corresponds to a Cartan lightlike
curve in E

4
2 for given values. In this case, we find energy on the particle in Frenet

vector fields {T,N,B1,B2} as follows, respectively.

Figure 3: Energy of a Cartan lightlike curve in Frenet vector fields

Case 4. Let Γ be a moving particle such that it corresponds to a partially
lightlike curve in E

4
2 for given values. In this case, we find energy on the particle in

Frenet vector fields {T,N,B1,B2} as follows, respectively.
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Figure 4: Energy of a partially lightlike curve in Frenet vector fields

6. Conclusion

In this study, we studied energy on the particle in the Frenet vector fields in 4-
dimensional Minkowski spacetime with index 2. Furthermore, we set a connection
between energy on the particle in these vector fields and elastica of bending energy
functional. This is important for our future work since a simple characterization
on the energy of a vector field can be described as it is up to constants, in other
words, it is square L2 norm of the vector field’s covariant derivative. Thanks to
this definition, we correlate the concept of the energy with a volume for the moving
particle in these vector fields in space.

As is known, elastic energy may occur by applying different forces besides bend-
ing such as twisting and stretching. In our next studies, we also aim to determine
the correlation between energy on the particle in each Frenet vector fields and
stretching, twisting energy functional.

Computing the energy on the moving particle has a wide range of application
in the theoretical and applied physics. Therefore, it will also be investigated the
energy on the moving particle in different force fields thanks to the dynamics of the
particle in space including work done and force acting on the particle. We believe
that this study will also lead up to further research on the relativistic dynamics of
the particle in different spacetimes in terms of computing the energy on a particle
in different force fields.
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