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Solution to Linear KdV and Nonlinear Space Fractional PDEs

A. Aghili

abstract: In this work, the author will briefly discuss applications of the Fourier
and Laplace transforms in the solution of certain singular integral equations and
evaluation of integrals. By combining integral transforms and operational methods
we get more powerful analytical tool for solving a wide class of linear or even non-
linear fractional differential or fractional partial differential equation. Numerous
examples and exercises occur throughout the paper.
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Introduction

The integral transform technique is one of the most useful tools of applied
mathematics employed in many branches of science and engineering. The Fourier
and Laplace transformations receive a special attention in the literature because of
their importance in various applications and therefore, is considered as a standard
technique in solving linear differential equations, integral equations, the solution of
difference equations.
Definition 1 The Laplace transform of a given function f(t) is defined as follows

L{f(t)} =

∫ ∞

0

e−stf(t)dt = F (s). (1.1)

If L{f(t)} = F (s), then L−1{F (s)} is given by

f(t) =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds, (1.2)

where F (s) is analytic in the region Re(s) > c.
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Example 1 By using an appropriate integral representation for the modified
Bessel’s functions of the second kind of order ν, Kν(s), show that

L
−1{Kν(s)

sν
} =

√
π

Γ(ν + 0.5)2ν
(t2 − 1)ν−

1
2 . (1.3)

Solution. Upon taking the inverse Laplace transform of the givenKν(s), we obtain

f(t) =
1

2πi

∫ c+i∞

c−i∞
est(

Kν(s)

sν
)ds, (1.4)

at this point, using the following integral representation for Kν(s)

Kν(s)
sν

=
√
π

Γ(ν+0.5)2ν

∫∞
0

e−s cosh t sinh2ν tdt. (1.5)

By setting relation (1.5) in (1.4) , we arrive at

f(t) =
1

2πi

∫ c+i∞

c−i∞
est(

√
π

Γ(ν + 0.5)2ν

∫ ∞

0

e−s cosh r sinh2ν rdr)ds, (1.6)

let us change the order of integration in relation (1.6), we get

f(t) =

√
π

Γ(ν + 0.5)2ν

∫ ∞

0

sinh2ν r(
1

2πi

∫ c+i∞

c−i∞
es(t−cosh rds)dr, (1.7)

the value of the inner integral is δ(t− cosh r), therefore

f(t) =

√
π

Γ(ν + 0.5)2ν

∫ ∞

0

δ(t− cosh r) sinh2ν rdr, (1.8)

after making a change of variable t − cosh r = u, and considerable algebra and
elimination process, we obtain

f(t) =

√
π

Γ(ν + 0.5)2ν

∫ t−1

−∞
δ(u)

((t− u)2 − 1)ν
√

(t− u)2 − 1
du =

√
π

Γ(ν + 0.5)2ν
(t2 − 1)ν−

1
2 .

(1.9)
Note. Let us consider the special case ν = 0, we get the following relations

L
−1{K0(s)} = (t2 − 1)−

1
2 ,

L
−1{K1(s)} = L

−1{−K ′
0(s)} = t(t2 − 1)−

1
2 .

The above example has been merely a new approach to a result with which we
were already familiar. However, in more difficult applications the use of complex
inversion formula and contour integration is often either the only or, at least, the
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best way of finding an inverse Laplace transform of a given function.

Definition 2 The error function is defined by the following integral

Erf(t) =
2√
π

∫ t

0

exp−ξ2dξ.

The error function is encountered in probability theory, the theory of errors, the
theory of heat conduction and various branches of applied mathematics and math-
ematical physics. In some applications, it is useful to introduce the complementary
error function

Erfc(t) =
2√
π

∫ ∞

t

exp−ξ2dξ.

Using elementary properties of integrals, it follows that

Erf(t) = 1− Erfc(t)

Corollary 1 Let L(φ(t)) = Φ(s) then the following identity holds true.

L(

∫ ∞

0

Erfc(
ξ

2
√
t
)φ(ξ)dξ) =

1

s
Φ(

√
s). (1.10)

Proof. See [6].

Definition 3 The Fourier transform of function f(t) is defined as follows

F{f(t)} = ( 1√
2π

)
∫ +∞
−∞ eiωtf(t)dt := F (ω). (1.11)

If F{f(t)} = F (ω), then F−1{F (ω)} is given by

F−1{F (ω)} = ( 1√
2π

)
∫ +∞
−∞ e−itωF (ω)dω = f(t). (1.12)

Definition 4 If the function φ(x) belongs to C[a, b] and a < x < b,
then the left Riemann-Liouville fractional integral of order α > 0 is defined as [8]

IRL,α
a {φ(x)} =

1

Γ(α)

∫ x

a

φ(ξ)

(x− ξ)1−α
dξ. (1.13)

The left Riemann-Liouville fractional derivative of order α > 0 is defined as
follows [4,8]

DRL,α
a φ(x) = 1

Γ(1−α)
d
dx

∫ x

a

Φ(ξ)
(x−ξ)α dξ. (1.14)
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It follows that DRL,α
a φ(x) exists for all φ(x) belongs to C[a, b] and a < x < b .

Note: It is well-known that, the R - L operators is that they satisfy semi group
properties of fractional integrals.The special case of fractional derivative when α =
0.5 is called semi - derivative.
Definition 5 The left Caputo fractional derivative of order α (0 < α < 1) of φ(x)
is as follows[3,8]

DC,α
a φ(x) = 1

Γ(1−α)

∫ x

a
1

(x−ξ)αφ
′(ξ)dξ. (1.15)

Corollary 2 Let F{f(t)} = F (ω) then the following identities hold true.

1. F(DC,α
−∞,tφ(x)) = (−iω)αF (ω),

2. F(DRL,α
−∞,tφ(x)) = (−iω)αF (ω).

Proof. See [ 5, 10].

Lemma 1 Let F{f(t)} = F (ω) then the following identities hold true.

1. F−1(
√

2
π

sinω
ω

) = U(1− |t|),

2. F−1(
√

2
π

i
ω
) = sgn(t),

3. F−1(−
√

2
π

1
ω2 ) = tsgn(t),

4. F−1(−
√

2
π

Γ(1−α)

|ω|1−α sin(πα2 )) = |t|−α
.

Note. U(t) and sgn(t) stand for the Heaviside unit step function and signum func-
tion respectively.
Proof. See [9].
Example 2 Let us solve the following fractional Fredholm singular integral equa-
tion of convolution type. The Fourier transform provides a useful technique for the
solution of such fractional singular integro- differential equations.

1√
2π

∫ +∞
−∞ Dαφ(ξ)Dβφ(t− ξ)dξ = sgn(t), α, β > 0, α+ β = 1. (1.16)

Solution. Upon taking the Fourier transform of the given integral equation, yields

(−iω)αΦ(ω)(−iω)βΦ(ω) = −iωΦ2(ω) =
√

2
π

i
ω
, (1.17)

solving the above equation, leads to

Φ(ω) =
√

2
π

1
ω
, (1.18)



Solution to Linear KdV and Nonlinear Space Fractional PDEs. 67

taking the inverse Fourier transform and using part four of Lemma 1, on the right
hand side, after simplifying we get the following result

φ(t) = 6

√

2
π

√

1
t
. (1.19)

Theorem 1 Let F(φ(x)) = Φ(ω) then the following identity holds true.

F(

∫ ξ=ax−b

ξ=ax+b

φ(
ξ + λ

µ
)dξ) =

√

2

π

µ

ω
sin(

ωb

a
)e

−iωλ
a Φ(

µω

a
). (1.20)

Proof.

By definition of the Fourier transforms we have

F(

∫ ξ=ax−b

ξ=ax+b

φ(
ξ + λ

µ
)dξ) =

√

1

2π

∫ +∞

−∞
eiωx(

∫ ξ=ax−b

ξ=ax+b

φ(
ξ + λ

µ
)dξ)dx, (1.21)

changing the order of integration leads to

F(

∫ ξ=ax−b

ξ=ax+b

φ(
ξ + λ

µ
)dξ) =

√

1

2π

∫ +∞

−∞
φ(

ξ + λ

µ
)(

∫ x= ξ+b
a

x= ξ−b
a

eiωxdx)dξ, (1.22)

after calculation of the inner integral we arrive at

F(

∫ ξ=ax−b

ξ=ax+b

φ(
ξ + λ

µ
)dξ) =

√

1

2π

∫ +∞

−∞
φ(

ξ + λ

µ
)
1

iω
(eiω( ξ+b

a
) − eiω( ξ−b

a
))dξ, (1.23)

after simplifying we get the following

F(

∫ ξ=ax−b

ξ=ax+b

φ(
ξ + λ

µ
)dξ) =

√

2

π

sin(ωb
a
)

ω

∫ +∞

−∞
e

iωξ
a φ(

ξ + λ

µ
)dξ, (1.24)

Let us introduce a change of variable ξ+λ
µ

= z, after performing easy calculation,
we obtain

F(

∫ ξ=ax−b

ξ=ax+b

φ(
ξ + λ

µ
)dξ) =

√

2

π

µsin(ωb
a
)

ω
e

−iωλ
a Φ(

µω

a
), (1.25)

Lemma 2 Let L{f(t)} = F (s) then the following identities hold true.

1. e−a
√
s = k

(2
√
π)

∫∞
0

e−sξ− a2

4ξ ξ−
3
2 dξ,

2. L−1(F (sα)) = 1
π

∫∞
0 f(u)

∫∞
0 e−tr−urαcosαπsin(urαsinαπ)drdu,

3. L−1(F (
√
s) = 1

2t
√
πt

∫∞
0

ue−
u2

4t f(u)du,
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4. L−1( 1
s(
√
s+a2)

) = 1
a
Erf(a

√
t).

Proof. See [1, 2, 6].
The Laplace transform is useful tool in applied mathematics, for instance for solving
singular integral equations, partial differential equations, and in automatic control,
where it defines a transfer function.

Example 3 Let us solve the following singular integral equation.The Laplace trans-
form provides a useful technique for the solution of such singular integral equations.

∫ +∞
0 Erfc( ξ

2
√
t
)φ(ξ)dξ = 1

a
Erf(a

√
t). (1.26)

Solution. Upon taking the Laplace transform of the given integral equation, yields

1
s
Φ(

√
s) = 1

s
√
s+a2

, (1.27)

solving the above equation, leads to

Φ(
√
s) = 1√

s+a2
, (1.28)

or

Φ(s) = 1√
s2+a2

, (1.29)

so that upon taking the inverse Laplace transform, we arrive at the solution

φ(t) = L
−1 1√

s2+a2
= J0(at). (1.30)

Lastly, the substitution of the obtained solution into the integral equation (1.26)
yields the following integral identity

∫ +∞
0 Erfc( ξ

2
√
t
)J0(aξ)dξ = 1

a
Erf(a

√
t). (1.31)

Lemma 3 The following exponential identities hold true.

1. exp(±λ d
dt
)Φ(t) = Φ(t±λ),

2. exp(±λt d
dt
)Φ(t) = Φ(te±λ),

3. exp(λq(t) d
dt
)Φ(t) = Φ(Q(F (t) + λ)),

4. exp(λ(t2 − a2) d
dt
)Φ(t) = Φ(a( (t+a)+(t−a)e2aλ

(t+a)−(t−a)e2aλ )),

5. exp(k
2

2t
d
dt
)Φ(t) = Φ(

√
t2 + k2).
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where F (t) is the primitive function of (q(t))−1 and Q(t) is the inverse function of
F (t).
Proof. See[7, 8].
Corollary 3 Let us consider the following PDE with non - canstant coefficients

ut + (x2 − a2)ux = bνtν−1u, u(x, 0) = φ(x). ν > 0.

In view of the Lemma 3, the above boundary value problem has the following
formal solution

u(x, t) = ebt
ν

φ(a(
(x+ a) + (x− a)e−2at

(x+ a)− (x− a)e−2at
)).

Lemma 4 The following exponential identity holds true.

exp(13 (
k2

2t
d
dt
)3)φ(t) =

∫ +∞
−∞ Ai(ξ)φ(

√

t2 + k2ξ)dξ, (1.32)

Proof. It is well known that

F{Ai(t)} = 1√
2π

exp(i (ω)3

3 ), (1.33)

in other words, we have the following relation

F{Ai(t)} = ( 1√
2π

)
∫ +∞
−∞ eiωtAi(t)dt := 1√

2π
exp(i (ω)3

3 ). (1.34)

Let us introduce a change of parameter as follows

( 3
√
3λ)β = iw, (1.35)

after substitution of (1.35) in (1.34) and simplifying, we arrive at

F{Ai(ξ)} = ( 1√
2π

)
∫ +∞
−∞ e

3
√
3λβξAi(ξ)dξ := 1√

2π
exp(λβ3), (1.36)

if we set β = k2

2t
d
dt
, and λ = 1

3 in relation (1.36), we get the following operational
identity,

( 1√
2π

)
∫ +∞
−∞ Ai(ξ)dξeξ

k2

2t
d
dt = 1√

2π
exp(13 (

k2

2t
d
dt
)3). (1.37)

In view of first part of the Lemma 1, we obtain

1√
2π

exp(13 (
k2

2t
d
dt
)3)φ(t) = ( 1√

2π
)
∫ +∞
−∞ Ai(ξ)dξeξ

k2

2t
d
dtφ(t)

= ( 1√
2π

)
∫ +∞
−∞ Ai(ξ)φ(

√

t2 + k2ξ)dξ,
(1.38)

after simplifying the above relation, we get

exp(13 (
k2

2t
d
dt
)3)φ(t) =

∫ +∞
−∞ Ai(ξ)φ(

√

t2 + k2ξ)dξ. (1.39)
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Note: In the above identity, Ai(.) stands for the Airy function [11].
Example 4 By using an appropriate integral representation for the Bessel’s func-
tions of the first kind of order zero, J0(s), show that

L
−1{J0(

1
s
)

s
} =

2

π

∫ π
2

0

ber(2
√

t sinφ)dφ. (1.40)

Note: In the above relation ber(t) = R(J0(i
√
it), stands for Kelvin’s function of

order zero.
Solution. Let us consider the following well - known integral identity for J0(s)

J0(s) =
2

π

∫ 1

0

cos sξ
√

1− ξ2
dξ.

In view of the above identity and upon taking the inverse Laplace transform of the
given 1

s
J0(

1
s
), we obtain

L
−1{J0(

1
s
)

s
} =

2

π

∫ π
2

0

L
−1(

1

s
cos(

ξ

s
))

dξ
√

1− ξ2
. (1.41)

but, the value of the inverse Laplace transform under the integral sign is as below

L
−1(

1

s
cos(

ξ

s
)) = ber(2

√

tξ).

therefore, we we get the following

L
−1{J0(

1
s
)

s
} =

2

π

∫ π
2

0

ber(2
√
tξ)

√

1− ξ2
dξ. (1.42)

At this stage, let us introduce a change of variable ξ = sinφ, after simplifying, we
get

L
−1{J0(

1
s
)

s
} =

2

π

∫ π
2

0

ber(2
√

t sinφ)dφ. (1.43)

1. Linearized KdV with Variable Coefficients

The KdV equations are attracting many researchers, and a great deal of research
work has been done in some of these equations. Linearized KdV with variable
coefficients often provide more powerful and realistic model than their constant
coefficient counterparts when the non-homogeneities of media are considered. In
this section, we will implement the exponential operator method to construct an
exact solution for a variety of the linearized KdV equation with non - constant
coefficients.
Problem 1 Let us solve the following linearized KdV with non-constant coefficients

1

t2
∂u(x, t)

∂t
+

1

8x3

∂3u

∂x3
= −3λu(x, t), (1.1)
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subject to the boundary conditions and the initial condition

u(x, 0) = φ(x),−∞ < x < ∞, t > 0.

Solution: At this point, in order to solve the above linearized KdV, we may rewrite
the equation in the following exponential operator form

1

t2
∂u(x, t)

∂t
= − 1

8x3

∂3u

∂x3
− 3λu(x, t), (1.2)

In order to obtain a solution for equation (1) first by solving the first order PDE
with respect to t, we arrive at

du

u
= (−3λ− 1

8x3

∂3

∂x3
)t2dt, (1.3)

solving the first order PDE with respect to t, and applying the initial condition,
we get the following

u(x, t) = exp(−λt3 − t3

24x3

∂3

∂x3
)φ(x), (1.4)

using (1.34), we obtain the solution as follows

u(x, t) = exp(−λt3)

∫ +∞

−∞
Ai(ξ)dξ(e−

t
2x

∂
∂x )φ(x)

= exp(−λt3)

∫ +∞

−∞
Ai(ξ)φ(

√

x2 − tξ)dξ. (1.5)

It is easy to verify that u(x, 0) = φ(x).

2. Nonlinear Space Fractionl Partial Differential Equations.

In this section, the author implemented the exponential operational method for
solving a nonlinear space fractional partial differential equations with non-constant
coefficients.
Problem 2 Let us solve the following space-fractional PDE with non-constant
coefficients, where fractional derivative is in the Riemann-Liouville sense

t−(ν−1)

ν

∂u(x, t)

∂t
= (η −

√

λ− k2

2x

∂

∂x
)u(x, t), (2.1)

subject to the boundary conditions and the initial condition

u(x, 0) = φ(x),−∞ < x < ∞, t > 0.

Solution: At this point, in order to solve the above linear space fractional PDE,
we may rewrite the equation in the following exponential operator form

∂u(x, t)

∂t
= νtν−1(η −

√

λ− k2

2x

∂

∂x
)u(x, t), (2.2)
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In order to obtain a solution for equation (1) first by solving the first order PDE
with respect to t, and applying the initial condition, we get the following

u(x, t) = exp(tνη − tν

√

λ− k2

2x

∂

∂x
)φ(x), (2.3)

the above equation may be rewritten as follows

u(x, t) = exp ηtν exp(−tν

√

λ− k2

2x

∂

∂x
)φ(x), (2.4)

in order to find the result of the action of exponenetial operator, we may use part

one of Lemma 1.2 by choosing a = tν and s = λ− k2

2x
∂
∂x

, to obtain

u(x, t) =
tν exp(ηtν)

(2
√
π)

∫ ∞

0

e−ξλ− t2ν

4ξ ξ−
3
2 dξ[e−

ξk2

2x
∂
∂xφ(x)], (2.5)

In view of part five of the Lemma 3, we get the following formal solution to non -
linear fractional partial differential equation as below

u(x, t) =
tν exp(ηtν)

(2
√
π)

∫ ∞

0

e−ξλ− t2ν

4ξ ξ−
3
2φ(

√

x2 + k2ξ)dξ. (2.6)

Example 5 Let us consider the following special case

t−(ν−1)

ν

∂u(x, t)

∂t
= (η −

√

λ− k2

2x

∂

∂x
)u(x, t), (2.7)

subject to the initial condition

u(x, 0) = φ(x) = exp(−x2),−∞ < x < ∞, t > 0.

Solution In the solution of problem 2, if we put φ(x) = exp(−x2), after simplifying
we obtain

u(x, t) =
tν exp(ηtν − x2)

(2
√
π)

∫ ∞

0

e−(λ+k2)ξ− t2ν

4ξ ξ−
3
2 dξ. (2.8)

Let us recall the integral representation for the modifed Bessel’s function of the
second kind of order µ as below

2α

β
Kµ(2

√

αβ) =

∫ ∞

0

e−αξ− β
ξ

dξ

ξµ+1 . (2.9)

Finally, in terms of the modified Bessel’s functions of the second kind we obtain
the formal solution as follows

u(x, t) =
exp(ηtν − x2)√

π

(k2 + λ)

tν
K 1

2
(tν

√

k2 + λ) (2.10)
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3. Conclusions

The article is intended for scientists and researchers of different disciplines of
engineering and science dealing with the solutions of fractional integro - differen-
tial and fractional PDEs. The results reveal that the transforms method is very
convenient and effective.
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