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abstract:Let G be a group. In this paper, we prove that G is isomorphic to
PSL(3, q) if and only if |G| = |PSL(3, q)| and m(G) = m(PSL(3, q)), where q is a
prime power and m(G) is the maximal order of elements in G.
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1. Introduction

Let n be an integer. We denote by π(n) the set of all prime divisors of n. If G is
a finite group, then π(|G|) is denoted by π(G). We construct the prime graph of G
which is denoted by Γ(G) as follows: the vertex set is π(G) and two distinct primes
p and q are joined by an edge if and only if G contains an element of order pq (we
write p ∼ q). Let t(G) be the number of connected components of Γ(G) and let
π1, π2, ..., πt(G) be the connected components of Γ(G). If 2 ∈ π(G), then we always
suppose that 2 ∈ π1(G). |G| can be expressed as a product of co-prime positive
integers OCi, i = 1, 2, . . . , t(G), where π(OCi) = πi. These OCi’s are called the
order components of G and the set of order components of G will be denoted by
OC(G). Also we call OC2, ..., OCt(G) the odd order components of G. Let n be a
positive integer and p be a prime number. Then |n|p denotes the p-part of n.

The set of element orders of G is denoted by πe(G). Obviously, πe(G) is par-
tially ordered by divisibility. Therefore, it is uniquely determined by µ(G), the
subset of its maximal elements. We denoted by m(G) the maximal order of el-
ements in G. In [15], authors consider the characterization of simple K3-groups
and some L2(p) by using the group order and maximal element order. In [11],
it is proved that PGL(2, q) is characterizable by the group order and maximum
element order. Also, in [10], it is shown that the simple K4-groups of type L2(q)
can be characterized by their largest element orders together with their orders. In
this paper, we are going to study the characterization of projective special linear
group PSL(3, q) by using the group order and maximal element order. In fact, we
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prove the following theorem:

Main Theorem. Let G be a group. Then G ∼= PSL(3, q) if and only if |G| =
|PSL(3, q)| and m(G) = m(PSL(3, q)).

2. Preliminaries

Definition 2.1. [6]. Let a and n be integers greater than 1. Then a Zsigmondy

prime of an− 1 is a prime l such that l | (an− 1) but l ∤ (ai− 1) for 1 ≤ i < n. Put

Zn(a) = {l : l is a Zsigmondy prime of an − 1}.

Lemma 2.2. [4] Let G be a Frobenius group of even order with kernel K and

complement H. Then t(G) = 2, the prime graph components of G are π(H) and

π(K) and the following assertions hold:

(1) K is nilpotent;

(2) |K| ≡ 1 (mod |H |).

Lemma 2.3. [4] Let G be a 2-Frobenius group, i.e., G is a finite group and has

a normal series 1 ✂H ✂K ✂G such that K and G/H are Frobenius groups with

kernels H and K/H, respectively. Then:

(a) t(G) = 2, π1 = π(G/K) ∪ π(H) and π2 = π(K/H);
(b) G/K and K/H are cyclic, |G/K| | (|K/H | − 1) and G/K ≤ Aut(K/H).

Lemma 2.4. [13] If G is a finite group such that t(G) ≥ 2, then G has one of the

following structures:

(a) G is a Frobenius group or 2-Frobenius group;

(b) G has a normal series 1✂H✂K✂G such that π(H)∪π(G/K) ⊆ π1 and K/H
is a non-abelian simple group. In particular, H is nilpotent, G/K . Out(K/H)
and the odd order components of G are the odd order components of K/H.

Lemma 2.5. [9] If n ≥ 6 is a natural number, then there are at least s(n) prime

numbers pi such that (n+ 1)/2 < pi < n. Here

s(n) = 1, for 6 ≤ n ≤ 13;

s(n) = 2, for 14 ≤ n ≤ 17;

s(n) = 3, for 18 ≤ n ≤ 37;

s(n) = 4, for 38 ≤ n ≤ 41;

s(n) = 5, for 42 ≤ n ≤ 47;

s(n) = 6, for n ≥ 48.

Lemma 2.6. [7,8] Let S = PSL(3, q) and OC2 = q2+q+1
d

, where d = (3, q − 1).
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(i) Let q be an odd prime power. If x ∈ π1(S),

xα | |S|

and

xα − 1 ≡ 0 (mod (OC2)),

then xα = q3 or q = 5 and xα = 25.

(ii) Let q be an odd prime power. If x ∈ π1(S), xα | |S|, then xα + 1 6≡
0 (mod (OC2)), for every positive integer α.

(iii) Let q = 2m, where m ≥ 1. If x ∈ π1(S), x
α | |S| and xα−1 ≡ 0 (mod (OC2)),

then x = 2 and α = 3m, hence xα = q3.

(iv) Let q = 2m, where m ≥ 1. If 3 | q − 1 and q2+q−2
6 | (q − 1)2(q + 1), then

q = 16.

3. Proof of the main theorem

Let G be a group such that |G| = |PSL(3, q)| and m(G) = m(PSL(3, q)), where
q is a prime power. By [14], we can see that

µ(PSL(3, q)) =











{q − 1,
p(q − 1)

3
,
q2 − 1

3
,
q2 + q + 1

3
}, if d=3;

{p(q − 1), q2 − 1, q2 + q + 1}, if d=1,

where q = pα is odd and d = (3, q − 1). Also,

µ(PSL(3, 2m)) =











{4, 2m − 1,
2(2m − 1)

3
,
22m − 1

3
,
22m + 2m + 1

3
}, if d=3;

{4, 2(2m − 1), 22m − 1, 22m + 2m + 1}, if d=1,

where d = (3, 2m − 1).

Since |G| = |PSL(3, q)| and m(G) = m(PSL(3, q)) = q2+q+1
d

, we can conclude

that q2+q+1
d

is an odd order component of G. Also, for convenience let r = q2+q+1
d

and q′ = p′α, where p′ is prime and α is positive integer.
Proof of the main theorem. If G ∼= PSL(3, q), then the conclusion is evident.
Now we assume that |G| = |PSL(3, q)| and m(G) = m(PSL(3, q)). We are going
to prove the main theorem in the following steps:
Step 1. G is neither a Frobenius group nor a 2-Frobenius group.
Proof. Suppose on the contrary, G is a Frobenius group with kernel K and comple-
mentH . Since r is an odd order component ofG, by Lemma 2.2, r ∈ {π(H), π(K)}.
If 2 | |H |, then |H | = q3(q − 1)2(q + 1) and |K| = r. Now, by Lemma 2.2, |H |
divides |K| − 1, which is a contradiction. If 2 | |K|, then |K| = q3(q − 1)2(q + 1)
and |H | = r. Let t be a prime dividing |K|, t ∤ q and Kt be a Sylow t-subgroup
of K. Then t divides either (q − 1)2 or q + 1. Let t divides q + 1 . Since Kt ⋊H



30 S. Asgary

is a Frobenius group with kernel Kt and complement H , thus |H | | |Kt| − 1 and
hence, r | |Kt| − 1 = |q + 1|t − 1, which is a contradiction. If t divides (q − 1)2,
then similar to the above, r | |Kt| − 1 = |(q − 1)2|t − 1, which is impossible.

If G is a 2-Frobenius group, Lemma 2.3 implies that there exists a normal series
1 ✂H ✂K ✂ G such that π(K/H) = r and |G/K| | (|K/H | − 1). Now, applying
the previous argument for the Frobenius group K with kernel H and complement
K/H leads us to get a contradiction. ✷

Step 2. There exists a normal series 1 ✂H ✂K ✂ G such that K/H is a simple
group and r is an odd order component of K/H .
Proof. It follows immediately from Lemma 2.4 and Step 1. ✷

Step 3. K/H is not a sporadic simple group.
Proof. Suppose that K/H is a sporadic simple group. Thus

r =
q2 + q + 1

d
∈ {5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 59, 67, 71}.

Let q2+q+1
d

= 5, since q is a prime power, we get a contradiction. Assume

that q2+q+1
d

= 7 and d = 1. Thus q = 2, |PSL(3, 2)| = 23.3.7 and K/H ∈
{M22, J1, J2, HS}, so 5 | |K/H |, which is a contradiction. If d = 3, then q = 4 and
|PSL(3, 4)| = 26.32.5.7. Now, if K/H ∈ {M22, J1, HS}, then 11 | |K/H |, and for
K/H = J2, 2

7 | |K/H |, which is a contradiction. By the same method, we can
consider the other possibilities for r. ✷

Step 4. K/H can not be an alternating group Am, where m ≥ 5.
Proof. If K/H ∼= Am, then since r ∈ π(K/H), m ≥ r. Also, since q ≥ 2 is a prime
power, r ≥ 7. Thus by Lemma 2.5, there exists a prime number t ∈ π(Am) such

that (r + 1)/2 < t < r and hence, t | q3(q3−1)(q2−1)
d

. Since t ∤ r, t ∤ q and t ∤ q − 1,
so t ∈ Z2(q). It follows that t = r − 2, where r = 7 and q = 4. In this case,
|PSL(3, 4)| = 26.32.5.7. On the other hand, m ≥ 7.

Now if K/H ∼= A7, then |K| = 23.32.5.7, 24.32.5.7, 25.32.5.7 or 26.32.5.7. Let
|K| = 23.32.5.7. Since m(G) = 7, we can conclude that CG(K) = 1. Note that
G/CG(K) . Aut(K) and |Aut(K)| = 23.32.5.7.2, then |G| divides 23.32.5.7.2,
which is a contradiction. If |K| = 24.32.5.7, then |H | = 2. Suppose that P7 be
a Sylow 7-subgroup of G. Since P7 acts fixed-point-freely on H , we can see that
H⋊P7 is a Frobenius group with kernel H and complement P7. Thus, |P7| divides
|H | − 1, namely 7 | 1, which is impossible. If |K| = 25.32.5.7 or 26.32.5.7, similarly
we get a contradiction.

Let K/H ∼= A8. We know that A8
∼= PSL(4, 2), and by [12],

µ(PSL(4, q)) = {(q2 + 1)(q + 1), q3 − 1, 2(q2 − 1), 4(q − 1)},

where q = 2m and m is positive integer. Now, m(K/H) = 15. But K/H ≤ G
and m(G) = 7, which is a impossible. If m ≥ 9, then 34 | |K/H |, which is a
contradiction. ✷
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Step 5. K/H = PSL(3, q).
Proof. By Steps 3 and 4, and the classification theorem of finite simple groups,
K/H is a simple group of Lie type such that t(K/H) ≥ 2 and r ∈ OC(K/H).
Thus K/H is isomorphic to one of the finite simple groups:

Case 1. Let t(K/H) = 2. Then OC2(K/H) = r =
q2 + q + 1

d
. Thus we have:

1.1. Suppose that K/H ∼= As(q
′), where (q′ − 1) | (s + 1) and s is an odd prime,

then r = q′s−1
q′−1 and q′

s(s+1)
2 (q′s+1 − 1)

s−1
∏

i=1

(q′i − 1) | q3(q − 1)2(q + 1). On the

other hand, r5 = (q′s−1)5

(q′−1)5 ≤ q′5s and q′s(s+1)−s < q′
s(s+1)

2 (q′s+1 − 1)
s−1
∏

i=1

(q′i − 1) ≤

q3(q − 1)2(q + 1) < r5 ≤ q′5s, which implies that s < 5. Hence s = 3, so

q′2 + q′ + 1 = q2+q+1
d

. Since (q′ − 1) | (s + 1), q′ ∈ {2, 3, 5}, which implies that
K/H ∼= PSL(4, 2), K/H ∼= PSL(4, 3), K/H ∼= PSL(4, 5). Let K/H ∼= PSL(4, 3),

then q2+q+1
d

= 13. If d = 1, then q = 3 and |PSL(3, 3)| = 24.33.13. On the other
hand, 5 | |K/H |, which is a contradiction. If d = 3, then q(q + 1) = 38, which
is impossible. The same reasoning rules out the case when K/H ∼= PSL(4, 5) or
K/H ∼= PSL(4, 2).
1.2. Suppose that K/H ∼= As−1(q

′), where (s, q′) 6= (3, 2), (3, 4) and s is an odd

prime, then r = q′s−1
(s,q′−1)(q′−1) and q′

s(s−1)
2

s−1
∏

i=1

(q′i − 1) | q3(q − 1)2(q + 1). On the

other hand, r5 = (q′s−1)5

(s,q′−1)5(q′−1)5 ≤ q′5s and q′s(s−1)−s < q′
s(s−1)

2

s−1
∏

i=1

(q′i − 1) ≤

q3(q − 1)2(q + 1) < r5, which implies that s(s− 1)− s < 5s. Hence s = 3, 5.

If s = 5, then q2+q+1
d

= q′4+q′3+q′2+q′+1
(5,q′−1) and hence, (q′, q) = 1. Also, q′10(q′ −

1)(q′2 − 1)(q′3 − 1)(q′4 − 1) | q3(q − 1)2(q + 1). But q′10 ∤ q3(q − 1)2(q + 1), which

is a contradiction. If s = 3, then q′3−1
(3,q′−1)(q′−1) = q2+q+1

d
and hence, by Lemma

2.6(i,iii), q′ ∈ {q, 5}. Thus either q′ = q and K/H ∼= PSL(3, q) or q′ = 5 and
K/H ∼= PSL(3, 5).

1.3. If K/H ∼= Cn(q
′), where n = 2u ≥ 2, then q′n+1

(2,q′−1) = q2+q+1
d

. Now, if

(2, q′ − 1) = 1, then q′n = q2+q+1−d

d
and hence, (q′, q) = 1 and q′n+1 > q2+q+1−d

d
.

On the other hand, (p′α)n
2

= |K/H |p′ ≤ |G|p′ = | q2+q+1
d

|p′ |(q − 1)2|p′ |q + 1|p′ <

( q
2+q+1−d

d
)4 < (p′α)4(n+1), thus n ∈ {2, 4} and hence, r ∈ {q′2 + 1, q′4 + 1}.

Since (2, q′ − 1) = 1, q′ = 2α and r ∈ {22α + 1, 24α + 1}. Let d = 1. It
follows that q(q + 1) ∈ {22α, 24α}, which is a contradiction. If d = 3, then
q2+q+1

3 ∈ {22α + 1, 24α + 1}, which implies that (q−1)(q+2)
3 ∈ {22α, 24α}. Since

3 | q − 1, 3 | q + 2 and hence, 3 | 22α, which is a contradiction. If (2, q′ − 1) = 2,
then similar to the above, we get a contradiction. The same reasoning completes the



32 S. Asgary

proof in the case when either K/H ∼= Bn(q
′) orK/H ∼= 2Dn(q

′), where n = 2u ≥ 4.

1.4. If K/H ∼= Bs(3), where s is an odd prime, then 3s−1
2 = q2+q+1

d
. So

3s = 2
d
(q2 + q + d+2

2 ) and hence, (3, q) = 1 and 3s+1 > q2 + q + d+2
2 . Since

3s
2

= |K/H |3 ≤ |G|3 = | q2+q+1
d

|3|(q − 1)2|3|q + 1|3 < (q2 + q + d+2
2 )4 < 34(s+1),

thus s2 < 4(s+ 1) and hence, s = 3, which implies that 33−1
2 = q2+q+1

d
, which has

already been considered. By the same method, we can prove that K/H cannot be
a simple group Cs(3).

1.5. If K/H ∼= Cs(2), where s is an odd prime, then 2s − 1 = q2+q+1
d

and hence,

2s = q2+q+1+d

d
. Now, if q ∈ {2, 4}, then q2+q+1

d
= 7 and hence, s = 3. In these

cases, |PSL(3, 2)| = 23.3.7 and |PSL(3, 4)| = 26.32.5.7. On the other hand, 29 |
|Cs(2)|, which is a contradiction. If q 6∈ {2, 4}, then (2, q) = 1 and 2s+1 > q2+q+1+d

d
.

We know that 2s
2

= |K/H |2 ≤ |G|2 = |(q − 1)2|2|q + 1|2 < ( q
2+q+1+d

d
)2 < 22(s+1)

and hence, s2 < 2(s+ 1), which implies that s < 3, which is impossible.

1.6. If K/H ∼= Ds(q
′), where s ≥ 5 is prime and q′ = 2, 3, 5, then q′s−1

q′−1 = r. Thus

q′s(s−1)

s−1
∏

i=1

(q′2i − 1) | q3(q − 1)2(q + 1). On the other hand, r5 = (q′s−1)5

(q′−1)5 ≤ q′5s

and q′s(s−1).q′
s(s−1)

2 < q′s(s−1)

s−1
∏

i=1

(q′2i − 1) ≤ q3(q − 1)2(q + 1) < r5, which implies

that q′s(s−1)+ s(s−1)
2 < q′5s and hence, s < 5, which is a contradiction.

1.7. If K/H ∼= Ds+1(q
′), where s is an odd prime and q′ = 2, 3, then q′s−1

(2,q′−1) = r.

Thus 1
(2,q′−1)q

′s(s+1)(q′s + 1)(q′s+1 − 1)

s−1
∏

i=1

(q′2i − 1) | q3(q− 1)2(q + 1). Also, r5 =

(q′s−1)5

(2,q′−1)5 ≤ q′5s and q′s(s+1)+ s(s+1)
2 < 1

(2,q′−1)q
′s(s+1)(q′s+1)(q′s+1−1)

s−1
∏

i=1

(q′2i−1) ≤

q3(q − 1)2(q + 1) < r5, which implies that q′
3s(s+1)

2 < q′5s and hence, s < 3, which
is a contradiction.
1.8. If K/H ∼= E6(q

′), then r = q′6+q′3+1
(3,q′−1) and q′36(q′12 − 1)(q′8 − 1)(q′6 − 1)(q′5 −

1)(q′3 − 1)(q′2 − 1) | q3(q − 1)2(q + 1). On the other hand, r5 = (q′6+q′3+1)5

(3,q′−1)5 ≤
(q′9 − 1)5 ≤ q′45 and q′36(q′12 − 1)(q′8 − 1)(q′6 − 1)(q′5 − 1)(q′3 − 1)(q′2 − 1) ≤
q3(q− 1)2(q+1) < r5 < q′45, which is impossible. If K/H ∼= 2E6(q

′), where q′ > 2,
then similar to the above, we get a contradiction.
1.9. If K/H ∼= G2(q

′), where 2 < q′ ≡ ǫ (mod 3) and ǫ = ±1, then q′2 − ǫq′ + 1 =
q2+q+1

d
. We know that |K/H | | |G|. Since |K/H | = q′6(q′2 − 1)(q′6 − 1) and

q′2 − ǫq′ + 1 = r, it follows that |K/H | > |G|, which is a contradiction. By the
same method, we can prove that K/H cannot be a simple group G2(q

′), where
q′ ≡ 0 (mod 3).
1.10. IfK/H ∼= 2As(q

′), where (s, q′) 6= (3, 3), (5, 2), (q′+1) | (s+1) and s is an odd
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prime, then r = q′s+1
q′+1 and q′

s(s+1)
2 (q′s+1−1)

s−1
∏

i=1

(q′i−(−1)i) | q3(q−1)2(q+1). Also,

r5 = (q′s+1)5

(q′+1)5 < q′5s and q′
s(s+1)

2 .q′
s(s−1)

2 +s < q′
s(s+1)

2 (q′s+1 − 1)

s−1
∏

i=1

(q′i − (−1)i) ≤

q3(q − 1)2(q + 1) < r5, which implies that s + 1 < 5 and hence, s = 3. In this
state, r = q′2 − q′ + 1 and q′6(q′4 − 1)(q′2 − 1)(q′ + 1) | q3(q − 1)2(q + 1). But
q′6(q′4 − 1)(q′2 − 1)(q′ + 1) > q3(q − 1)2(q + 1), which is a contradiction. By the
same method, we can prove that K/H cannot be a simple group 2As−1(q

′).

1.11. If K/H ∼= 2A3(2), then
q2+q+1

d
= 5, which is impossible.

1.12. If K/H ∼= 2Dn(2), where n = 2m+1 ≥ 5, then 2n−1+1 =
q2 + q + 1

d
. Thus

2n−1 = q2+q+1−d

d
and hence, (2, q) = 1. We know that 2n(n−1) = |K/H |2 ≤ |G|2 =

|(q − 1)2|2|q + 1|2 < ( q
2+q+1−d

d
)3 < 23n, so n− 1 < 3, which is impossible.

1.13. If K/H ∼= 2Ds(3), where 5 < s 6= 2m + 1 and s is an odd prime, then

3s+1
4 = r and 3s(s−1)

s−1
∏

i=1

(32i − 1) | q3(q − 1)2(q + 1). Also, r5 = (3s+1)5

1024 ≤ 35s

and 3s(s−1) < 3s(s−1)

s−1
∏

i=1

(32i − 1) ≤ q3(q − 1)2(q + 1) < r5, which implies that

s(s− 1) < 5s and hence, s− 1 < 5, which is a contradiction.

1.14. If K/H ∼= 2Dn(3), where 9 ≤ n = 2m+1 and n is not prime, then 3n−1+1
2 =

q2+q+1
d

. Thus (3, q) = 1 and 3n−1 = 2
d
(q2 + q+ 2−d

2 ) and hence, 3n > q2 + q+ 2−d
2 .

Since 3n(n−1) = |K/H |3 ≤ |G|3 = | q2+q+1
d

|3|(q−1)2|3|q+1|3 < (q2+q+ 2−d
2 )4 < 34n,

we obtain n− 1 < 4, which is impossible.
1.15. If K/H ∼= 3D4(q

′), then r = q′4 − q′2 + 1 and q′12(q′4 + q′2 + 1)(q′6 −
1)(q′2 − 1) | q3(q − 1)2(q + 1). Also, r5 = (q′4 − q′2 + 1)5 < (q′4)5 = q′20 and
q′12(q′4 + q′2 + 1)(q′6 − 1)(q′2 − 1) ≤ q3(q − 1)2(q + 1) < r5 < q′20, which is a
contradiction.
1.16. If K/H ∼= 2F4(2)

′, then |K/H | = 211 · 33 · 52 · 13. Thus q2+q+1
d

= 13. If
d = 1, then q = 3 and |PSL(3, 3)| = 24.33.13. On the other hand, 5 | |K/H |, which
is a contradiction. If d = 3, then q(q + 1) = 38, which is impossible.
Case 2. Let t(K/H) = 3. Then r ∈ {OC2(K/H), OC3(K/H)}:

2.1. If K/H ∼= A1(q
′), where 4 | q′, then the odd order components of K/H are

q′ + 1 and q′ − 1. If q′ + 1 = r, then q′ = r − 1 = q2+q+1
d

− 1 and hence, either

q′ = q(q+1) or q′ = (q−1)(q+2)
3 , which are impossible. If q′−1 = r, then by Lemma

2.6(i,iii), q′ = q3. Since q′(q′ − 1)(q′ + 1) = |K/H | | |G| = r.q3(q − 1)2(q + 1), we
can conclude that (q2 − q + 1) | (q2 − 2q + 1), which is a contradiction.

2.2. If K/H ∼= A1(q
′), where 4 | q′ − 1, then q′ = r or q′+1

2 = r. Now, we consider
the following cases:

(i) Let q = 2m and q′ = r. If d = 3, then q′+1
2 = q2+q+4

6 , thus 2 | q′+1
2 . Since q′+1

2
is an odd order component of K/H , we get a contradiction. If d = 1, then since



34 S. Asgary

|K/H | | |G|, we can conclude that q2+q+2
2 | q2(q−1)2, which implies that q = 2 and

hence, q′ = 7. But 4 | q′ − 1, which is a contradiction. If q′+1
2 = r and d = 3, then

|A1(q
′)| = ( q

2+q+1
3 )(2q

2+2q−1
3 )(2q

2+2q−4
3 ). Since |K/H | | |G|, 2q2+2q−1

3 | (q − 1)2.

Also, (q − 1)2 = q2 − 2q + 1 = 2q2+2q−1
3 + q2−8q+4

3 , thus 2q2+2q−1
3 | q2−8q+4

3 . But
2q2+2q−1

3 > q2−8q+4
3 , which is a contradiction. If d = 1, then since |K/H | | |G|, we

can conclude that 2(2q2 + 2q + 1) | q2(q − 1)2, which is a contradiction.
(ii) Let q be an odd prime power, q′ = r and d = 1, then q′ = q2 + q + 1

and |K/H | = (q2 + q + 1)(q2 + q)( q
2+q+2

2 ). Since |K/H | | |G|, we can con-

clude that q2+q+2
2 | q2(q − 1)2, which implies that q = 5 and hence, q′ = 31.

But 4 | q′ − 1, which is a contradiction. If d = 3, then q′ = q2+q+1
3 and since

|K/H | | |G|, q2+q−2
6 | q3(q − 1)2(q + 1). On the other hand, (q + 2, q − 1) = 3 and

q2+q−2
6 = (q−1)(q+2)

6 , which implies that (q+2)
6 | q − 1, which is a contradiction. If

q′+1
2 = r, then by 2.6(ii), we get a contradiction. The same reasoning rules out the

case when K/H ∼= A1(q
′), where 4 | q′ + 1.

2.3. If K/H ∼= 2G2(q
′), where q′ = 32t+1 > 3, then q′ − √

3q′ + 1 = q2+q+1
d

or

q′+
√
3q′+1 = q2+q+1

d
. Let (3, q) = 1. If q′−√

3q′+1 = q2+q+1
d

, then q′ > q2+q+1
d

.

Also, (32t+1)3 = |K/H |3 ≤ |G|3 < ( q
2+q+1

d
)2 < (32t+1)3, which is a contradiction.

Let q′ +
√
3q′ + 1 = q2+q+1

d
, and d = 1, thus 3t+1(3t + 1) = q(q + 1). Now, since

(3, q) = 1, 3 ∤ q and hence, |q+1|3 = 3t+1. Thus |G|3 = | q2+q+1
d

|3(|q + 1|3) < 33t+3.

On the other hand, 33(2t+1) = |K/H |3 ≤ |G|3 < 33t+3, which is a contradiction. If

d = 3, then q′ +
√
3q′ + 1 = q2+q+1

3 and hence, 3t+2(3t + 1) = (q − 1)(q +2). Thus
either 3t+1 | (q − 1) and (q + 2) | 3(3t + 1) or 3t+1 | (q + 2) and (q − 1) | 3(3t + 1).
This forces q − 1 = 3t+1 and q + 2 = 3(3t + 1). This guarantees that |G|3 < 33t+3.
Also, 33(2t+1) = |K/H |3 ≤ |G|3 < 33t+3, which is a contradiction. Assume that
(3, q) 6= 1. So d = 1 and q′ ± √

3q′ + 1 = q2 + q + 1, this forces q = 3t+1 and
q + 1 = 3t ± 1, which is a contradiction.

2.4. If K/H ∼= 2Ds(3), where s = 2t + 1 ≥ 5, then 3s+1
4 = q2+q+1

d
or 3s−1+1

2 =

q2+q+1
d

. If 3s+1
4 = r, then 3s(s−1)(3s−1−1)(3s−1+1)

s−2
∏

i=1

(32i−1) | q3(q−1)2(q+1).

On the other hand, r5 = (3s+1)5

1024 ≤ 35s and 32s(s−1)−s < 3s(s−1)(3s−1 − 1)(3s−1 +

1)

s−2
∏

i=1

(32i − 1) ≤ q3(q − 1)2(q + 1) < r5, which implies that 2s(s − 1) < 6s and

hence, s < 4, which is a contradiction. If 3s−1+1
2 = q2+q+1

d
, then similar to the

above, we get a contradiction.

2.5. If K/H ∼= 2Ds+1(2), where s = 2n − 1 and n ≥ 2, then 2s + 1 =
q2 + q + 1

d

or 2s+1 + 1 =
q2 + q + 1

d
. If 2s + 1 = r, then 2s = q(q + 1) or 2s =

(q − 1)(q + 2)

3
,

which is impossible. The same reasoning rules out the case when 2s+1 + 1 = r.
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2.6. If K/H ∼= F4(q
′), where q′ is even, then q′4 + 1 = q2+q+1

d
or q′4 − q′2 + 1 =

q2+q+1
d

. If q′4 +1 = r, then q′24(q′6 − 1)2(q′4 − 1)2(q′4 − q′2 +1) | q3(q− 1)2(q+1).
Also, r5 = (q′4 + 1)5 < (q′5)5 = q′25 and q′24(q′6 − 1)2(q′4 − 1)2(q′4 − q′2 + 1) ≤
q3(q − 1)2(q + 1) < r5 < q′25, which is a contradiction. If q′4 − q′2 + 1 = q2+q+1

d
,

then similar to the above, we get a contradiction. By the same method, we can
prove that K/H cannot be a simple group F4(q

′), where q′ is odd.
2.7. If K/H ∼= E7(2), then r ∈ {73, 127}. Therefore, either r = 73 and q = 8
or r = 127 and q = 19. So either |PSL(3, 8)| = 29.32.72.73 or |PSL(3, 19)| =
24 · 34 · 5 · 193 · 127. On the other hand, 13 | |E7(2)|, which is a contradiction.

2.8. If K/H ∼= E7(3), then r ∈ {757, 1093}. Let q2+q+1
d

= 757 and d = 1. Thus
q(q+1) = 756 and hence, q = 27. We know that |PSL(3, 27)| = 24.39.7.132.757. On
the other hand, 5 | |E7(3)|, which is a contradiction. If d = 3, then q(q+1) = 2270,

which is impossible. If q2+q+1
d

= 1093, then q(q + 1) ∈ {1092, 3278}, which is
impossible.

2.9. If K/H ∼= A2(2), then
q2+q+1

d
∈ {3, 7}. Since q is a prime power, q2+q+1

d
= 7,

which implies that K/H ∼= PSL(3, 2).

2.10. If K/H ∼= A2(4), then q2+q+1
d

∈ {5, 7, 9}. Since q is a prime power,
q2+q+1

d
= 7, which implies that K/H ∼= PSL(3, 4).

2.11. If K/H ∼= 2A5(2), then q2+q+1
d

∈ {5, 7, 11}. Since q is a prime power,
q2+q+1

d
= 7. In this state, |PSL(3, 2)| = 23.3.7, but 5 | |K/H |, which is a contra-

diction.
2.12. If K/H ∼= 2F4(q

′), where q′ = 22t+1 ≥ 2, then r = q′2±
√

2q′3+q′±√
2q′+1.

In both cases, we can see at once that |K/H | > |G|, which is a contradiction.
Case 3. Let t(K/H) ∈ {4, 5}. Then

r ∈ {OC2(K/H), OC3(K/H), OC4(K/H), OC5(K/H)},

as follows:
3.1. If K/H ∼= 2B2(q

′), where q′ = 22t+1 and t ≥ 1, then r ∈ {q′−1, q′±√
2q′+1}.

Let q′ − 1 = r and d = 1. Thus 2(22t − 1) = q(q + 1). Now, if |q|2 = 2, then
q+1 = 3. It follows that t = 1, q′ = 8 and |K/H | = 26.5.7.13. On the other hand,
|PSL(3, 2)| = 23.3.7. But 5 | |K/H |, which is a contradiction. Thus |q + 1|2 = 2
and since |q− 1|2 ≤ 2t, |G|2 ≤ 22t+1. Moreover, 22(2t+1) = |K/H |2 ≤ |G|2 ≤ 22t+1,
which is a contradiction.

If q′− 1 = r and d = 3, then we can see that 22(3.22t−1− 1) = q(q+1). Now, if
|q|2 = 22, then q + 1 = 5. It follows that t = 1, q′ = 8 and |K/H | = 26.5.7.13. On
the other hand, |PSL(3, 4)| = 26.32.5.7. But 13 | |K/H |, which is a contradiction.
Thus |q + 1|2 = 22 and hence, |q − 1|2 = 2. Moreover, 22(2t+1) = |K/H |2 ≤ |G|2 =
|(q − 1)2|2|q + 1|2 ≤ 22t+2, which is a contradiction.

Assume that q′ +
√
2q′ + 1 = r and d = 3. Thus q2+q−2

3 = 2t+1(2t + 1) and hence,
(q − 1)(q + 2) = 3.2t+1(2t +1). Since 3 | q− 1, q− 1 = 3k for some positive integer

k. Thus 3k(k+1) = 2t+1(2t+1) and hence, k(k+1) = 2t+1(2
t+1
3 ). Now, if 2t+1 | k,

then k+1 < 2t+1
3 and if 2t+1 | k+1, then k ≤ 2t+1

3 , which are impossible. If d = 1,
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then q2 + q + 1 = q′ +
√
2q′ + 1 and q(q + 1) = 2t+1(2t + 1), which is impossible.

The same reasoning rules out the case when q′ −√
2q′ + 1 = r.

3.2. IfK/H ∼= A2(4) then
q2+q+1

d
∈ {5, 7, 9}. Since q is a prime power, q2+q+1

d
= 7,

which implies that K/H ∼= PSL(3, 4).

3.3. If K/H ∼=2E6(2), then
q2+q+1

d
∈ {13, 17, 19}. Let q2+q+1

d
= 19 and d = 1,

thus q(q+1) = 18, which is a contradiction. If d = 3, then q(q+1) = 56, which im-
plies that q = 7. Thus |PSL(3, 7)| = 25 ·32 ·73 ·19. On the other hand 13 | |2E6(2)|,
which is a contradiction. For r ∈ {13, 17}, similar to the above we get a contradic-
tion.
3.4. If K/H ∼= E8(q

′), then r ∈ {q′8−q′7+q′5−q′4+q′3−q′+1, q′8+q′7−q′5−q′4−
q′3+q′+1, q′8−q′6+q′4−q′2+1, q′8−q′4+1}. If q′8−q′7+q′5−q′4+q′3−q′+1 = r,
then r < q′9. On the other hand, r5 < q′45 and |G| < r5. Since q′120 | |K/H | and
|K/H | | |G|, we get a contradiction. For other cases, similarly we get a contradic-
tion.
Step 6. G ∼= M .

Proof: By the above steps, we haveK/H ∼= PSL(3, q), i.e., |K/H | = |PSL(3, q)| =
|G|, thus by Step 2, H = 1 and K = G. Therefore G ∼= PSL(3, q). ✷
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