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Some Common Fixed Point Theorems for Four Self-Mappings

Satisfying a General Contractive Condition
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abstract: In the paper, we derive a general case for four weakly compatible self
maps satisfying a general contractive condition due to the same method introduced
by Altun et al. [2]. We make use of such a study to prove common fixed point
theorems for weakly compatible maps along with E.A. and (CLR) properties.
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1. Introduction

The study of common fixed point of mappings satisfying contractive conditions
has been a very active field of research during recent years. The most general of
the common fixed point theorems pertaining to four mappings A, B, S and T of a
metric space (X, d), uses either a Banach-type contractive condition [3] of the form

d(Ax,By) ≤ km(x, y) (0 ≤ k < 1),

where

m(x, y) = max{d(Ax,By), d(Sx,Ax), d(Ty,By) and
1

2
(d(Sx,By) + d(Ty,Ax))},

or a Meir - Keeler - type (ε, δ) - contractive condition [6], that is, given ε > 0, there
exists a δ > 0 such that or a ϕ - contractive condition [7] of the form

d(Ax,By) ≤ ϕ(m(x, y)),

involving a contractive gauge function ϕ : [0,∞) → [0,∞) such that ϕ(t) < t for
each t > 0. Note that Banach-type contractive condition is a special case of both
conditions Meir - Keeler - type (ε, δ) - contractive and ϕ - contractive. A ϕ -
contractive condition does not guarantee the existence of a fixed point unless some
additional condition is assumed. Moreover, a ϕ - contractive condition, in general,
does not imply the Meir - Keeler - type (ε, δ) - contractive condition. In the paper,
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we aim to prove a common fixed point theorem for four weakly compatible self -
maps satisfying a general contractive condition and also prove common fixed point
theorems for weakly compatible maps along with E.A. and (CLR) properties.
We are now in a position to state the following three definitions which is an im-
portant to derive our main results.

Definition 1.1. [4] Two self maps f and g are said to be weakly compatible
if they commute at coincidence points.

Definition 1.2. [1] Two self-mappings f and g of a metric space (X, d) are
said to satisfy E.A. property if there exists a sequence {xn} in X such that
limn→∞ fxn = limn→∞ gxn = t for some t in X .

Definition 1.3. [8] Two self-mappings f and g of a metric space (X, d) are
said to satisfy (CLRF ) property if there exists a sequence {xn} in X such that
limn→∞ fxn = limn→∞ gxn = fx for some x in X .

2. Main Results

Now, we give the following theorems.
Theorem 2.1. Let A, B, S and T be self maps of a metric space (X, d) satisfying
the followings:

SX ⊆ BX, TX ⊆ AX, (2.1)

for all x ∈ X , there exists right continuous functions ψ, φ : R+ → R
+, with

ψ(0) = 0 = φ(0) and ψ(s) < s for s > 0 such that
ψ(d(Sx, T y)) ≤ ψ(m(x, y))–φ(m(x, y)),

(2.2)

where

m(x, y) = max{d(Ax,By), d(Sx,Ax), d(Ty,By),
1

2
(d(Sx,By) + d(Ty,Ax))}.

If one of AX , BX , SX or TX is complete subspace of X , then the pair (A,S)
or (B, T ) have a coincidence point. Moreover, if pairs (A,S) and (B, T ) are weakly
compatible, then A, B, S and T have a unique common fixed point.

Proof: Let x0 ∈ X be an arbitrary point of X . from (2.1), we can construct a
sequence {yn} in X as follows:

y(2n+1) = Sx2n = Bx(2n+1), y(2n+2) = Tx(2n+1) = Ax(2n+2), (2.3)

for all n = 0, 1, 2, . . . . Define dn = d(yn, y(n+1)). Suppose that d2n = 0 for some
n. Then y2n = y(2n+1), that is, Tx(2n−1) = Ax2n = Sx2n = Bx(2n+1), and A

and S have a coincidence point. Similarly, if d(2n+1) = 0, then B and T have a
coincidence point. Assume that dn 6= 0 for each n.
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from (2.2), we have

ψ(d(Sx2n, T x(2n+1)) ≤ ψ(m(x2n, x(2n+1)))− φ(m(x2n, x2n+1))), (2.4)

where

m(x2n, x2n+1)) = max{d(Ax2n, Bx(2n+1)), d(Sx2n, Ax2n),

d(Sx2n, Bx(2n+1)) + d(Tx(2n+1), Ax2n)

2
d(Tx(2n+1), Bx(2n+1))}

= max{d2n, d(2n+1)} (2.5)

Thus, from (2.4), we have

ψ(d(Sx2n, T x(2n+1)) ≤ ψ(max{d2n, d2n+1)})− φ(max{d2n, d(2n+1)}). (2.6)

Now, if d(2n+1) ≥ d2n, for some n, then from (2.6), we have

ψ(d(2n+1)) ≤ ψ(d(2n+1))− φ(d(2n+1))

< ψ(d(2n+1)), (2.7)

which is a contradiction. Thus, d2n > d(2n+1) for all n, and so, from (2.6), we have

ψ(d(2n+1)) ≤ ψ(d2n)− φ(d2n), for all n ∈ N. (2.8)

Similarly,
ψ(d2n) ≤ ψ(d(2n−1))− ψ(d(2n−1)),

ψ(d(2n−1)) ≤ ψ(d(2n−2))− φ(d(2n−2)).

In general, we have for all n = 1, 2, ...,

ψ(dn) ≤ ψ(d(n−1))− φ(d(n−1)) (2.9)

< ψ(d(n−1)).

Hence the sequence {ψ(dn)} is monotonically decreasing and bounded below. Thus,
there exists, r ≥ 0, such that

lim
n→∞

ψ(dn) = r. (2.10)

From(9), we deduce that

0 ≤ φ(d(n−1)) ≤ ψ(d(n−1))− ψ(dn).

Letting limit as n→ ∞ and using (10), we get limn→∞ φ(d(n−1)) = 0 implies that

lim
n→∞

φ(d(n−1)) = lim
n→∞

(d(y(n−1), yn)) = 0, (2.11)
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or

lim
n→∞

dn = lim
n→∞

d(yn, y(n+1)) = 0. (2.12)

Now, we show that {yn} is a Cauchy sequence. For this, it is sufficient to show
that {y2n} is a Cauchy sequence. Let, if possible, {y2n} is not a Cauchy sequence.
Then there exists an ε > 0 such that for each even integer 2k there exists even
integers 2m(k) > 2n(k) > 2k such that

d(y(2n(k)), y(2m(k))) ≥ ε. (2.13)

For every even integer 2k, suppose that 2m(k) be the least positive integer exceed-
ing 2n(k) satisfying (13) such that

d(y2n(k), y(2m(k)−2)) < ε. (2.14)

from (2.13), we have

ε ≤d(y2n(k), y2m(k))

≤d(y2n(k), y(2m(k)−2)) + d(y(2m(k)−2), y(2m(k)−1)) + d(y(2m(k)−1), y2m(k)).

Using (12) and (14) in the above inequality, we get

lim
k→∞

d(y2n(k), y2m(k)) = ε. (2.15)

Also, by the triangular inequality,

|d(y(2n(k)), y(2m(k)−1)) + d(y(2n(k)y(2m(k))| ≤ d(2m(k)−1),

|d(y(2n(k)+1), y(2m(k)−1)) + d(y(2n(k)), y(2m(k)))| ≤ d(2m(k)−1) + d2m(k). (2.16)

Using (12), we get

lim
k→∞

d(y2n(k), y(2m(k)−1)) = lim
k→∞

d(y(2n(k)+1), y(2m(k)−1)) = ε. (2.17)

from (2.2), we have

ψ(d(Sx2n(k), T x(2m(k)−1)) ≤ ψ(m(x(2n(k)), x(2m(k)−1))

−φ(m(x(2n(k), x(2m(k)−1)), (2.18)

where

m(x2n(k), x(2m(k)−1)) =max{d(Ax2n(k), Bx(2m(k)−1)), d(Sx2n(k), Ax2n(k)),

(d(Sx2n(k), Bx(2m(k)−1)) + d(Tx2n(k), Ax(2m(k)−1))

2
,

d(Tx(2m(k)−1), Bx(2m(k)−1))}

=max{d(y2n(k), y(2m(k)−1)), d(y2n(k), y(2n(k)+1)),

(d(y(2n(k)+1), y(2m(k)−1)) + d(y2n(k), y(2m(k)−1))

2
,

d(y(2m(k)−1), y2m(k))}.
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Letting limit as k → ∞ and using (17), we get

ψ(ε) ≤ ψ(ε)− φ(ε),

which is a contradiction, since ε > 0. Thus, {y2n} is a Cauchy sequence and so
{yn} is a Cauchy sequence. Now, suppose that A(X) is complete. Note that {y2n}
is contained in A(X) and has a limit in A(X), say u, that is, limn→∞ y2n = u. Let
v ∈ A(−1)u. Then Av = u. Now, we shall prove that Sv = u. Let, if possible,
Sv 6= u, that is, d(Sv, u) = p > 0.

Putting x = v and y = x(2n−1) in (1.2), we have

ψ(d(Sv, Tx(2n−1)) ≤ ψ(m(v, x(2n−1))− φ(m(v, x(2n−1)).

Letting limit as n→ ∞, we have

lim
n→∞

ψ(d(Sv, Tx(2n−1)) ≤ lim
n→∞

ψ(m(v, x(2n−1))

− lim
n→∞

φ(m(v, x(2n−1)), (2.19)

where,

lim
n→∞

m(v, x(2n−1)) = lim
n→∞

[max{d(u, y(2n−1)), d(Sv, u), d(y2n, y(2n−1)),

(d(Sv, y(2n−1)) + d(y2n, u))

2
}]

=max{d(u, u), d(Sv, u), d(u, u),
1

2
(d(Sv, u) + d(u, u))}

=d(Sv, u) = p.

Thus, from (2.19), we have

ψ(d(Sv, u) ≤ ψ(p)− φ(p),

that is
ψ(p) ≤ ψ(p)− φ(p),

which is a contradiction, since p > 0. Thus, Sv = u = Av. Hence u is the
coincidence point of the pair (A,S). Since SX ⊆ BX , Sv = u, implies that,
u ∈ BX . Let w ∈ B(−1)u. Then Bw = u. By using the same arguments as above,
one can easily verify that, Tw = u = Bw, that is, u is the coincidence point of
the pair (B, T ). The same result holds, if we assume that BX is complete instead
of AX . Now, if TX is complete, then by (1), u ∈ TX ⊆ AX . Similarly, if SX is
complete, then u ∈ SX ∈ BX . Now, since the pairs (A,S) and (B, T ) are weakly
compatible, so

u = Sv = Av = Tw = Bw,

then

Au = ASv = SAv = Su,

Bu = BTw = TBw = Tu. (2.20)
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Now, we claim that Tu = u. Let, if possible, Tu 6= u.
from (2.2), we have

ψ(d(u, Tu) =ψ(d(Sv, Tu)

≤ψ(m(v, u)) − φ(m(v, u)),

where

m(v, u) =max{d(Av,Bu), d(Sv,Av), d(Tu,Bu),
1

2
(d(Sv,Bu) + d(Tu,Av))}

=max{d(u, Tu), d(u, u), 0,
1

2
(d(u, Tu) + d(Tu, u))}

=d(u, Tu).

Thus, we have

ψ(d(u, Tu) ≤ψ(d(u, Tu))− φ(d(u, Tu))

<ψ(d(u, Tu)),

which is a contradiction. So, Tu = u. Similarly, Su = u. Thus, we get Au = Su =
Bu = Tu = u. Hence u is the common fixed point of A, B, S and T . For the
uniqueness, let z be another common fixed point of A, B, S and T .

Now, we claim that u = z. Let, if possible, u 6= z.
from (2.2), we have

ψ(d(u, z) =ψ(d(Su, T z)

≤ψ(m(u, z))− φ(m(u, z))

=ψ(d(u, z))− φ(d(u, z)),

since

m(u, z) =d(u, z)

<ψ(d(u, z)),

a contradiction. Thus, u = z, and the uniqueness follows.
Theorem 2.2. Let A, B, S and T be self mappings of a metric space (X, d)

satisfying (1), (2) and the followings:

pairs (A,S) and (B, T ) are weakly compatible, (2.21)

pair (A,S) or (B, T ) satisfy the E.A. property. (2.22)

If any one of AX , BX , SX and TX is a complete subspace of X , then A, B, S
and T have a unique common fixed point.

Proof: Suppose that (A,S) satisfies the E.A. property. Then there exists a
sequence {xn} in X such that limn→∞ Axn = limn→∞ Sxn = z, for some z in
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X . Since SX ⊆ BX , there exists a sequence {yn} in X such that Sxn = Byn.
Hence limn→∞Byn = z. We shall show that limn→∞ Tyn = z. Let, if possible,
limn→∞ Tyn = t = z.

from (2.2), we have

ψ(d(Sxn, T yn) ≤ ψ(m(xn, yn))− φ(m(xn, yn)).

Letting limit as n→ ∞, we have

lim
n→∞

ψ(d(Sxn, T yn) ≤ lim
n→∞

ψ(m(xn, yn))− lim
n→∞

φ(m(xn, yn)), (2.23)

where,

lim
n→∞

m(xn, yn) = lim
n→∞

[max{d(Axn, Byn), d(Sxn, Axn), d(Tyn, Byn),

1

2
(d(Sxn, Byn) + d(Tyn, Axn))}]

=max{d(z, z), d(z, z), d(t, z),
1

2
(d(z, z) + d(t, z))}

=d(t, z).

Thus, from (2.23), we get

ψ(d(z, t) ≤ψ(d(z, t))− φ(d(z, t))

<ψ(d(z, t)),

which is a contradiction. Therefore, t = z, that is, limn→∞ Tyn = z. Suppose that
BX is a complete subspace of X . Then z = Bu for some u in X . Subsequently,
we have

lim
n→∞

Tyn = lim
n→∞

Sxn = lim
n→∞

Axn = lim
n→∞

Byn = z = Bu.

Now, we shall show that Tu = Bu. Let, if possible, Tu 6= Bu.
from (2.2), we have

ψ(d(Sxn, T u) ≤ ψ(m(xn, u))–φ(m(xn, u)).

Letting limit as n→ ∞, we have

lim
n→∞

ψ(d(Sxn, T u) ≤ lim
n→∞

ψ(m(xn, u))− lim
n→∞

φ(m(xn, u)), (2.24)

where

lim
n→∞

m(xn, u) = lim
n→∞

[max{d(Axn, Bu), d(Sxn, Axn), d(Tu,Bu),

1

2
(d(Sxn, Bu) + d(Tu,Axn))}]

=max{d(z, z), d(z, z), d(Tu, z),
1

2
(d(z, z) + d(Tu, z))}

=d(Tu, z).
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Thus, from (2.24), we have

ψ(d(z, Tu) ≤ψ(d(z, Tu))− φ(d(z, Tu))

<ψ(d(z, Tu)),

which is a contradiction. Therefore, Tu = z = Bu. Since B and T are weakly
compatible, therefore, BTu = TBu, implies that, TTu = TBu = BTu = BBu.
Since TX ⊆ AX , there exists v ∈ X , such that, Tu = Av.
Now, we claim that Av = Sv. Let, if possible, Av 6= Sv.

from (2.2), we have

ψ(d(Sv, Tu) ≤ ψ(m(v, u))− φ(m(v, u)), (2.25)

where

m(v, u) =max{d(Av,Bu), d(Sv,Av), d(Tu,Bu),
1

2
(d(Sv,Bu) + d(Tu,Av))}

=d(Sv,Av) = d(Sv, Tu).

Thus, from (2.25), we have

ψ(d(Sv, Tu) ≤ψ(d(Sv, Tu))− φ(d(Sv, Tu)

<ψ(d(Sv, Tu)),

which is a contradiction. Therefore, Sv = Tu = Av. Thus, we have, Tu = Bu =
Sv = Av. The weak compatibility of A and S implies that ASv = SAv = SSv =
AAv. Now, we claim that Tu is the common fixed point of A, B, S and T . Suppose
that, TTu 6= Tu.

from (2.2), we have

ψ(d(Tu, TTu) = ψ(d(Sv, TTu)

≤ ψ(m(v, Tu))− ψ(m(v, Tu)), (2.26)

where

m(v, Tu) =max{d(Av,BTu), d(Sv,Av), d(BTu, TTu),

1

2
(d(Sv,BTu) + d(TTu,Av))}

=max{d(Tu, TTu), 0, 0, d(Tu, TTu)}

=d(Tu, TTu).

Thus, from (2.26), we have

ψ(d(Tu, TTu) ≤ψ(d(Tu, TTu))− φ(d(Tu, TTu))

<ψ(d(Tu, TTu)),

which is a contradiction. Therefore, Tu = TTu = BTu. Hence Tu is the common
fixed point of B and T . Similarly, we prove that Sv is the common fixed point of
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A and S. Since Tu = Sv, Tu is the common fixed point of A, B, S and T . The
proof is similar when AX is assumed to be a complete subspace of X . The cases
in which or SX is a complete subspace of X are similar to the cases in which AX
or BX , respectively is complete subspace of X , since TX ⊆ AX and SX ⊆ BX .

Now, we shall prove that the common fixed point is unique. If possible, let p
and q be two common fixed points of A, B, S and T , such that, p 6= q.

from (2.2), we have

ψ(d(p, q) = ψ(d(Sp, T q)

≤ ψ(m(p, q))− φ(m(p, q)), (2.27)

where

m(p, q) =max{d(Ap,Bq), d(Sp,Aq), d(Bq, T q),
1

2
(d(Sp,Bq) + d(Tq,Ap))}

=max{d(p, q), 0, 0, d(p, q)}

=d(p, q).

Thus, from (2.27), we have

ψ(d(p, q) ≤ψ(d(p, q))− φ(d(p, q))

<ψ(d(p, q)),

which is a contradiction. Therefore, p = q, and the uniqueness follows.

Theorem 2.3. Let A, B, S and T be self maps of a metric space (X, d)
satisfying (2), (21) and the following:

SX ⊆ BX and the pair (A,S) satisfies (CLRA) property or (2.28)

TX ⊆ AX and the pair (B, T ) satisfies (CLRB) property.

Then A, B, S and T have a unique common fixed point.

Proof: Without loss of generality, assume that SX ⊆ BX and the pair
(A,S) satisfies (CLRA) property, then there exists a sequence {xn} in X such that
limn→∞ Axn = limn→∞ Sxn = Ax, for some x in X . Since SX ⊆ BX , there exists
a sequence {yn} in X such that Sxn = Byn. Hence limn→∞Byn = Ax. We shall
show that limn→∞ Tyn = Ax. Let, if possible, limn→→ Tyn = z 6= Ax.

from (2.2), we have

ψ(d(Sxn, T yn) ≤ ψ(m(xn, yn))− φ(m(xn, yn)).

Letting limit as n→ ∞, we have

lim
n→∞

ψ(d(Sxn, T yn) ≤ lim
n→∞

ψ(m(xn, yn))− lim
n→∞

φ(m(xn, yn)), (2.29)
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where

lim
n→∞

m(xn, yn) = lim
n→∞

[max{d(Axn, Byn), d(Sxn, Axn), d(Tyn, Byn),

1

2
(d(Sxn, Byn) + d(Tyn, Axn))}]

=max{d(Ax,Ax), d(Ax,Ax), d(z, Ax),
1

2
(d(z, z) + d(z, Ax))}

=d(z, Ax).

Thus, from (2.29), we get

ψ(d(Ax, z) ≤ψ(d(Ax, z)) − φ(d(Ax, z))

<ψ(d(Ax, z)),

which is a contradiction. Therefore, Ax = z, that is, limn→∞Tyn = Ax. Subse-
quently, we have

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = Ax = z.

Now, we shall show that Sx = z. Let, if possible, Sx 6= z. from (2.2), we have

ψ(d(Sx, T yn) 6= ψ(m(x, yn))− φ(m(x, yn)).

Letting limit as n→ ∞, we have

lim
n→∞

ψ(d(Sx, T yn) ≤ lim
n→∞

ψ(m(x, yn))− lim
n→∞

φ(m(x, yn)), (2.30)

where

lim
n→∞

m(x, yn) = lim
n→∞

[max{d(Ax,Byn), d(Sx,Ax), d(Tyn, Byn),

1

2
(d(Sx,Byn) + d(Tyn, Ax))}]

=max{d(z, z), d(Sx, z), d(z, z),
1

2
(d(Sx, z) + d(z, z))}

=d(Sx, z).

Thus, from (2.30), we get

ψ(d(Sx, z) ≤ψ(d(Sx, z))− φ(d(Sx, z))

<ψ(d(Sx, z)),

which is a contradiction. Therefore, Sx = z = Ax. Since, the pair (A,S) is weakly
compatible, it follows that Az = Sz. Also, since SX ⊆ BX , there exists some y
in X such that Sx = By, that is, By = z. Now, we show that Ty = z. Let, if
possible, Ty 6= z.
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from (2.2), we have

ψ(d(Sxn, T y) ≤ ψ(m(xn, y))− φ(m(xn, y)).

Letting limit as n→ ∞, we have

lim
n→∞

ψ(d(Sxn, T y) ≤ lim
n→∞

ψ(m(xn, y))− lim
n→∞

φ(m(xn, y)), (2.31)

where

lim
n→∞

m(xn, y) = lim
n→∞

[max{d(Axn, By), d(Sxn, Axn), d(Ty,By),

1

2
(d(Sxn, By) + d(Ty,Axn))}]

=max{d(z, z), d(z, z), d(z, T y),
1

2
(d(z, z) + d(Ty, z))}

=d(z, T y).

Thus, from (2.31), we get

ψ(d(z, T y) ≤ψ(d(z, T y))− φ(d(z, T y))

<ψ(d(z, T y)),

which is a contradicition. Thus, z = Ty = By. Since the pair (B, T ) is weakly
compatible, it follows that Tz = Bz. Now, we claim that Sz = Tz. Let, if possible,
Sz 6= Tz.

from (2.2), we have

ψ(d(Sz, T z) ≤ ψ(m(z, z))− φ(m(z, z)), (2.32)

where

m(z, z) =max{d(Az,Bz), d(Sz,Az), d(Bz, T z),
1

2
(d(Sz,Bz) + d(Tz,Az)

=d(Sz, T z).

Thus, from (2.32), we have

ψ(d(Sz, T z) ≤ψ(d(Sz, T z))− φ(d(Sz, T z))

<ψ(d(Sz, T z)),

which is a contradiction. Therefore, Sz = Tz, that is, Az = Sz = Tz = Bz. Now,
we shall show that z = Tz. Let, if possible, z 6= Tz.

from (2.2), we have

ψ(d(Sx, T z) ≤ ψ(m(x, z))− φ(m(x, z)), (2.33)
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where

m(x, z) =max{d(Ax,Bz), d(Sx,Ax), d(Bz, T z),
1

2
(d(Sx,Bz) + d(Tz,Ax))}

=d(Sx, T z) = d(z, T z).

Thus, from (2.33), we have

ψ(d(z, T z) ≤ψ(d(z, T z))− φ(d(z, T z))

<ψ(d(z, T z)),

which is a contradicition. Therefore, z = Tz = Bz = Az = Sz. Hence z is the
common fixed point of A, B, S and T . Now, we shall prove that the common fixed
point is unique. Let u be another common fixed point of A, B, S and T . Let, if
possible, z 6= u.

from (2.2), we have

ψ(d(u, z) =ψ(d(Su, T z)

≤ψ(m(u, z))− φ(m(u, z))

=ψ(d(u, z))− φ(d(u, z)), since m(u, z) = d(u, z)

<ψ(d(u, z)),

which is a contradiction. Thus, u = z, and hence the uniqueness follows.
Example 2.4. Let X = [0, 1] be endowed with the Euclidean metric d(x, y) =

|x− y|. Let the self maps A, B, S and T be defined by

Sx =
x

8
, Bx =

x

4
, T x =

x

2
, Ax = x.

Clearly,

SX = [0,
1

8
] ⊆ [0,

1

4
] = BX,

TX = [0,
1

2
] ⊆ [0, 1] = AX.

Also AX is complete subspace of X and pairs (A,S), (B, T ) are weakly compatible.
Now,

d(Sx, T y) =|
x

8
−
y

2
| =

x

8
|x− 4y|.

d(Ax,By) =|x−
y

4
| =

1

4
|4x− y|.

d(Sx,Ax) =|
x

8
− x| =

7

8
x.

d(By, Ty) =|
y

4
−
y

2
| =

y

4
.

(d(Sx,By) + d(Ty,Ax))

2
=
1

2
[|
x

8
n−

y

4
|+ |

y

2
− x|]

=
1

16
[|x− 2y|+ 4|y − 2x|].
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Let ψ(t) = t

3 and φ(t) = t

6 . Thus, we have

ψ(d(Sx, T y)) =
1

24
|x− 4y|.

m(x, y) =max{d(Ax,By), d(Sx,Ax), d(Ty,By),
1

2
(d(Sx,By) + d(Ty,Ax))}

=d(Sx,Ax).

Therefore,

ψ(d(Sx,Ax)) =
1

3
(
7

8
x) =

7

24
x.

φ(d(Sx,Ax)) =
1

6
(
7

8
x) =

7

48
x.

Thus, we have

ψ(m(x, y))–φ(m(x, y)) =
7

24
x−

7

48
x =

7

48
x.

Therefore,
ψ(d(Sx, T y) ≤ ψ(m(x, y))− φ(m(x, y)).

Hence condition (2) is satisfied. If, we consider the sequence {xn} = { 1
n
}, then

lim
n→∞

Axn = lim
n→∞

xn = lim
n→∞

1

n
= 0.

lim
n→∞

Sxn = lim
n→∞

xn

8
= lim

n→∞

1

8n
= 0.

Therefore,
lim
n→∞

Axn = lim
n→∞

Sxn = 0, where 0 ∈ X.

So the pair (A,S) satisfies the E.A. property. Also,

lim
n→∞

Axn = lim
n→∞

Axn = 0 = A(0).

So the pair (A,S) satisfies the (CLRA) property. Hence all the conditions of above
Theorems are satisfied. Here 0 is the unique common fixed point of A, S, B and
T .
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