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Binary Relation for Tripled Fixed Point Theorem in Metric Spaces

Animesh Gupta and Vandana Rai

abstract: In this paper we present a new extension of tripled fixed point theorems
in metric spaces endowed with a reflexive binary relation that is not necessarily
neither transitive nor antisymmetric. The key feature in this tripled fixed point
theorems is that the contractivity condition on the nonlinear map is only assumed
to hold on elements that are comparable in the binary relation. Next on the basis of
the tripled fixed point theorems, we prove the existence and uniqueness of positive
definite solutions of a nonlinear matrix equation of type

X = Q+ Σm
i=1A

∗

iG(X)Ai − Σn
j=1B

∗

jK(X)Bj − Σt
r=1C

∗

rL(X)Cr

Key Words: Tripled fixed point, Reflexive relation, Matrix equations, Positive
define solution.
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1. Introduction

The Banach contraction principle [10] is a classical and powerful tool in non
linear analysis and has been generalized by many authors. Bhaskar and Lak-
shmikantham [14] introduced the concept of a coupled fixed point of mapping
F : X ×X → X and investigated some coupled fixed point theorems in partially
ordered metric spaces. During the last few decades, many authors discussed on
coupled fixed point results in various spaces and considered this concept to study
nonlinear differential equations, nonlinear integral equations and matrix equations
( [1,4,5,6,7,8,22,23,24,25,26]). Recently Berinde and Borcut [11] introduced the no-
tion of tripled fixed points in partially ordered metric spaces, which refer to the
operator as F : X ×X ×X → X , motivated by the fact that through the coupled
fixed point technique we cannot solve a system with the following form:

x2 + 2yz − 6x+ 3 = 0,

y2 + 2xz − 6y + 3 = 0,
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z2 + 2yx− 6z + 3 = 0.

In a subsequent series, Berinde and Borcut [11], introduced the concept of
tripled coincidence point and obtained the tripled coincidence point theorems.

Definition 1.1. Let (X,�) be a partially ordered set, F : X3 → X mapping. The
mapping F is said to have the mixed monotone property if for any x, y, z ∈ X,

(i) x1, x2 ∈ X, x1 � x2 =⇒ F (x1, y, z) � F (x2, y, z),

(ii) y1, y2 ∈ X, y1 � y2 =⇒ F (x, y1, z) � F (x, y2, z),

(iii) z1, z2 ∈ X, z1 � z2 =⇒ F (x, y, z1) � F (x, y, z2).

Definition 1.2. An element (x, y, z) ∈ X3 is called a tripled fixed point of F :
X3 → X if F (x, y, z) = x, F (y, x, y) = y, and F (z, y, x) = z.

Definition 1.3. Let (X,�) be a partially ordered set, F : X3 → X and g : X → X

two mappings. The mapping F is said to have the mixed g−monotone property if
for any x, y, z ∈ X.

(i) x1, x2 ∈ X, g(x1) � g(x2) =⇒ F (x1, y, z) � F (x2, y, z),

(ii) y1, y2 ∈ X, g(y1) � g(y2) =⇒ F (x, y1, z) � F (x, y2, z),

(iii) z1, z2 ∈ X, g(z1) � g(z2) =⇒ F (x, y, z1) � F (x, y, z2).

Definition 1.4. An element (x, y, z) ∈ X3 is called a tripled coincidence point of
the mappings F : X3 → X and g : X → X if

F (x, y, z) = gx, F (y, x, y) = gy and F (z, y, x) = gz.

Definition 1.5. An element (x, y, z) ∈ X3 is called a tripled common fixed point
of the mappings F : X3 → X and g : X → X if

F (x, y, z) = gx = x, F (y, x, y) = gy = y and F (z, y, x) = gz = z.

Definition 1.6. An element x ∈ X is called a common fixed point of the mappings
F : X3 → X and g : X → X if F (x, x, x) = gx = x.

Definition 1.7. Let X be a non empty set. The mappings F : X3 → X and
g : X → X are commuting if for all x, y, z ∈ X,

g(F (x, y, z)) = F (g(x), g(y), g(z)).

Definition 1.8. Let (X, d) be a metric space. The mappings F and g where F :
X3 → X and g : X → X are said to be compatible if

lim
n→∞

d(g(F (xn, yn, zn)), F (g(xn), g(yn), g(zn))) = 0,

lim
n→∞

d(g(F (yn, xn, yn)), F (g(yn), g(xn), g(yn))) = 0
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and

lim
n→∞

d(g(F (zn, yn, xn)), F (g(zn), g(yn), g(xn))) = 0

whenever {xn}, {yn} and {zn} are sequences in X such that

lim
n→∞

F (xn, yn, zn) = lim
n→∞

g(xn) = x,

lim
n→∞

F (yn, xn, yn) = lim
n→∞

g(yn) = y

and
lim
n→∞

F (zn, yn, xn) = lim
n→∞

g(zn) = z

for some x, y, z ∈ X.

In [11] Berinde and Borcut proved the following theorem.

Theorem 1.9. Let (X,�) be a partially ordered set and (X, d) be a complete
metric space. Let F : X3 → X be a continuous mapping having the mixed monotone
property on X. Assume that there exist constants a, b, c ∈ [0, 1) such that a+b+c ≺
1 for which,

d(F (x, y, z), F (u, v, w)) � ad(x, u) + bd(y, v) + cd(z, w) (1.1)

for all x � u, y � v, z � w. Assume either,

(1) F is continuous,

(2) X has the following properties:

(a) if non decreasing sequence xn → x and zn → z, then xn � x and zn � z

for all n,

(b) if non increasing sequence yn → y, then yn � x for all n.

If there exist x0, y0, z0 ∈ X such that x0 � F (x0, y0, z0), y0 � F (y0, x0, y0) and
z0 � F (z0, y0, x0). Then there exist x, y, z ∈ X such that,

F (x, y, z) = x, F (y, x, y) = y, and F (z, y, x) = z.

For more generalized results of Theorem 1.9 in different spaces are refer to
[19,16,20,21].

Motivated by the interesting works [11], we first introduce the notions of binary
relation for tripled fixed point and later establish the existence and convergence
theorems of tripled fixed point in metric spaces. Moreover, we apply these results
to prove the existence and uniqueness of positive definite solutions of a nonlinear
matrix equation of type

X = Q+Σm
i=1A

∗
iG(X)Ai − Σn

j=1B
∗
jK(X)Bj − Σt

r=1C
∗
rL(X)Cr

and give illustrative examples of our theorems.
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2. Preliminaries

Throughout the paper X will be a topological space and R is a reflexive relation
on X . We start our consideration by introducing the following definitions and
basic properties of tripled fixed point in metric spaces. In whole work we denote
X ×X ×X = X3.

Remark 2.1. Let X be a nonempty set and let f : X3 → X be a mapping. Then

(i) We will denote

f0(x, y, z) = x, f0(y, x, y) = y and f0(z, y, x) = z

and

fn(x, y, z) = f(fn−1(x, y, z), fn−1(y, x, y), fn−1(z, y, x)).

(ii) The Cartesian product of f, g and h is denoted by f × g × h, and defined by

f × g × h(x, y, z) = (f(x, y, z), g(y, x, y), h(z, y, x)).

Definition 2.2. Let X be a nonempty set and f : X ×X ×X → X be a mapping.
Then an element (x, y, z) ∈ X ×X ×X is called tripled fixed point of f , if

f(x, y, z) = x, f(y, x, y) = y and f(z, y, x) = z

and an element x ∈ X is called a fixed point of f , if f(x, x, x) = x. We will denote
the set of all the tripled fixed point of f by FT

f and the set of all the fixed points of
f by Ff .

3. Main results

In this section we will prove the tripled fixed point theorems with respect to a
reflexive relation.

Definition 3.1. Let X be a topological space and let f, g, h : X3 → X be three
map. Then

(i) An element (x, y, z) ∈ X3 is called a tripled attractor basin element of f with
respect to (x∗, y∗, z∗) ∈ X3, if

fn(x, y, z) → x∗,

fn(y, x, y) → y∗,

fn(z, y, x) → z∗,

as n → ∞ and an element x ∈ X is called a attractor basin element of f with
respect to (x∗, y∗, z∗) by AT

f (x
∗, y∗, z∗) and the set of all the attractor basin

of f with respect to x∗ ∈ X by Af (x
∗).
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(ii) The mapping f is called orbitally continuous if (x, y, z), (a, b, c) ∈ X3 and

fnk(x, y, z) → a,

fnk(y, x, y) → b,

fnk(z, y, x) → c

as k → ∞ imply

as k → ∞.

fnk−1(x, y, z) → f(a, b, c),

fnk−1(y, x, y) → f(b, a, b),

fnk−1(z, y, x) → f(c, b, a)

(iii) The mapping f is called a Picard operator, if there exits x∗ ∈ X such that

(1) Ff = {x∗}.

(2) Af (x
∗) = X.

Also f is called a weakly Picard operator, if the sequences {fn(x, x, x)}n∈N

convergent for all x ∈ X and the limits (which may depend on x) are a fixed
point of f .

Definition 3.2. Let X be nonempty set and let R be a reflexive relation on X, for
every (p, q, r) ∈ X3 we define

XR(p, q, r) = {(x, y, z) ∈ X3 : xRp
∧

qRy
∧

zRr}.

Note that (x, y, z) ∈ XR(p, q, r) if and only if (q, p, q) ∈ XR(y, x, y), (r, q, p) ∈
XR(z, y, x) and (x, y, z) ∈ XR(y, x, y) ∩XR(z, y, x).

Definition 3.3. Let X be nonempty set and let R be a reflexive relation on X,
f : X3 → X. Then

(i) We say that f has the mixed R−monotone property on X, if

f × f × f(RX(x, y, z)) ⊆ XR(f × f × f(x, y, z))

for all (x, y, z) ∈ X3.

(ii) An element (x, y, z) ∈ X3 is called a R−tripled fixed point of f , if f × f ×
f(x, y, z) ∈ XR(x, y, z).

(iii) A sequence {xn, yn, zn}n∈N ⊆ X is called a R−monotone sequence, if

(xn, yn, zn) ∈ XR(xn−1, yn−1, zn−1)

for all n ∈ N.
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We begin the following theorem that establishes the existence of a tripled fixed
point for a orbitally continuous function F : X3 → X with respect to a reflexive
relation R in topological space X .

Theorem 3.4. Let X be a topological space and R be a reflexive relation on X.
Assume that F : X3 → X is a mapping having the following properties :

(i) For each (x, y, z), (p, q, r) ∈ X3 there exists a (u, v, w) ∈ X3 such that (x, y, z),
(p, q, r) ∈ XR(u, v, w).

(ii) There exists (x0, y0, z0), (x
∗, y∗, z∗) ∈ X3 such that (x0, y0z0 ∈ Af (x

∗, y∗, z∗).

(iii) For each (x, y, z), (p, q, r) ∈ X3 if

(x, y, z) ∈ XR(p, q, r)

and
(p, q, r) ∈ Af (x

∗, y∗, z∗)

then (x, y, z) ∈ Af (x
∗, y∗, z∗). Then Af (x

∗, y∗, z∗) = X3. Moreover, if f is
orbitally continuous then, it is also a Picard operator and Ff = {x∗}.

Proof: Let (x, y, z) ∈ X3 be arbitrary, then from (i) there exists (p, q, r) ∈ X3

such that (x, y, z), (x0, y0, z0) ∈ XR(p, q, r). From (x0, y0, z0) ∈ XR(p, q, r), we have
(q, p, q) ∈ XR(y0, x0, y0), (r, q, p) ∈ XR(z0, y0, x0) and from (ii) and (iii) we get
that (p, q, r) ∈ Af (x

∗, y∗, z∗), also from (x, y, z) ∈ XR(p, q, r), (x, y, z) ∈ Af (p, q, r)
and (iii) we obtain (x, y, z) ∈ Af (x

∗, y∗, z∗) = X3. Now, let f be an orbitally
continuous mapping, then (ii) follows that f(x∗, y∗, z∗) = x∗, f(y∗, x∗, y∗) = y∗

and f(z∗, y∗, x∗) = z∗. Also, from (y∗, x∗, y∗), (z∗, y∗, x∗) ∈ Af (x
∗, y∗, z∗), we get

x∗ = y∗ = z∗. Therefore Af (x
∗) = x∗ = X which this shows that the operator f

is Picard.

Remark 3.5. Note that the assumption (iii) in Theorem 15 is essential. To see
this, let X = N with discrete topology τ . Suppose that R is the division relation
on X and f : X3 → X be defined by f(x, y, z) = x. Also Af (x, y, z) = {x, y, z} for
all x, y, z ∈ X and there exists Then for every (x, y, z) ∈ XR(p, q, r) and (p, q, r) ∈
Af (a, b, c) such that (x, y, z) ∈ Af (a, b, c). Moreover, f is continuous and Ff = N,
thus f is not a Picard operator.

In the following theorem we prove a generalization of [11] for a orbitally con-
tinuous mapping with respect to a reflexive relation on the metric space X .

Theorem 3.6. Let (X, d) be a metric space and R be a reflexive relation on X. If
f : X3 → X is a mapping such that:

(i) f having the mixed R−monotone property on X.

(ii) (X, d) be a complete metric space.

(iii) f having a R−tripled fixed point. i.e., there exists (x0, y0, z0) ∈ X3 such that
f × f × f(x0, y0, z0) ∈ XR(x0, y0, z0).
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(iv) There exists k ∈ [0, 1) such that

d(f(x, y, z), f(p, q, r)) ≤
k

3
[d(x, u) + d(y, v) + d(z, r)].

(v) f is an orbitally continuous mapping. Then:

(a) There exists x∗, y∗, z∗ ∈ X such that f(x∗, y∗, z∗) = x∗, f(y∗, x∗, y∗) =
y∗ and f(z∗, y∗, x∗) = z∗.

(b) The sequences xnn ∈ N, ynn ∈ N and znn ∈ N defined by

xn+1 = f(xn, yn, zn),

yn+1 = f(yn, xn, yn)

and
zn+1 = f(zn, yn, xn)

converges respectively to x∗, y∗ and z∗.

(c) The error estimation is given by

max
n∈N

{d(xn, x
∗), d(yn, y

∗), d(zn, z
∗)}

≤
kn

3(1− k)
[d(f(x0, y0, z0), x0) + d(f(y0, x0, y0), y0) + d(f(z0, y0, x0), z0)].

Proof. Since f × f × f(x0, y0, z0) ∈ XR(x0, y0, z0), so from (i) it follows that

(f2(x0, y0, z0), f
2(y0, x0, y0), f

2(z0, y0, x0))

in
XR(f(x0, y0, z0), f(y0, x0, y0), f(z0, y0, x0)).

Further, we can easily verify that for any n ∈ N,

(fn(x0, y0, z0), f
n(y0, x0, y0), f

n(z0, y0, x0))

∈ XR(f
n−1(x0, y0, z0), f

n−1(y0, x0, y0), f
n−1(z0, y0, x0)). (3.1)

Now, we claim that, for n ∈ N

d(fn+1(x0, y0, z0), f
n(x0, y0, z0)) ≤

kn

3
[d(f(x0, y0, z0), x0)

+d(f(y0, x0, y0), y0) + d(f(z0, y0, x0), z0)]

d(fn+1(y0, x0, y0), f
n(y0, x0, y0)) ≤

kn

3
[d(f(x0, y0, z0), x0)

+d(f(y0, x0, y0), y0) + d(f(y0, x0, y0), y0)]

d(fn+1(z0, y0, x0), f
n(z0, y0, x0)) ≤

kn

3
[d(f(x0, y0, z0), x0)

+d(f(y0, x0, y0), y0)

+d(f(z0, y0, x0), z0)]. (3.2)
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Indeed, for n = 1, using (iii) and (iv), we get

d(f2(x0, y0, z0), f(x0, y0, z0)) = d(f(f(x0, y0, z0)), f(x0, y0, z0))

≤
k

3
[d(f(x0, y0, z0), x0)

+d(f(y0, x0, y0), y0) + d(f(z0, y0, x0), z0)]

d(f2(y0, x0, y0), f(y0, x0, y0)) = d(f(f(y0, x0, y0)), f(y0, x0, y0))

≤
k

3
[d(f(x0, y0, z0), x0)

+d(f(y0, x0, y0), y0) + d(f(y0, x0, y0), y0)]

d(f2(z0, y0, x0), f(z0, y0, x0)) = d(f(f((z0, y0, x0)), f(z0, y0, x0))

≤
k

3
[d(f(x0, y0, z0), x0)

+d(f(y0, x0, y0), y0) + d(f(z0, y0, x0), z0)].

Now assume that 3.2 holds, Using (iv) we get

d(fn+2(x0, y0, z0), f
n+1(x0, y0, z0)) = d(f(fn+1(x0, y0, z0)), f(f

n(x0, y0, z0)))

≤
k

3
[d(fn+1(x0, y0, z0), f

n(x0, y0, z0))

+d(fn+1(y0, x0, y0), f
n(y0, x0, y0))

+d(fn+1(z0, y0, x0), f
n(z0, y0, x0))]

≤
kn+1

3
[d(f(x0, y0, z0), x0)

+d(f(y0, x0, y0), y0) + d(f(z0, y0, x0), z0)]

d(fn+2(y0, x0, y0), f
n+1(y0, x0, y0)) = d(f(fn+1(y0, x0, y0)), f(f

n(y0, x0, y0)))

≤
k

3
[d(fn+1(x0, y0, z0), f

n(x0, y0, z0))

+d(fn+ 1(y0, x0, y0), fn(y0, x0, y0))

+d(fn+ 1(y0, x0, y0), fn(y0, x0, y0))]

≤
kn+1

3
(f(x0, y0, z0), x0)

+d(f(y0, x0, y0), y0) + d(f(y0, x0, y0), y0)]
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d(fn+2(z0, y0, x0), f
n+1(z0, y0, x0)) = d(f(fn+1(z0, y0, x0)), f(f

n(z0, y0, x0)))

≤
k

3
[d(fn+1(z0, y0, x0), f

n(z0, y0, x0))

+d(fn+ 1(y0, x0, y0), fn(y0, x0, y0))

+d(fn+ 1(x0, y0, z0), fn(x0, y0, z0))]

≤
kn+1

3
[d(f(x0, y0, z0), x0)

+d(f(y0, x0, y0), y0) + d(f(z0, y0, x0), z0)].

This implies that {fn(x0, y0, z0)}n∈N, fn(y, x, y)n∈N
and {fn(z, y, x)}n∈N are Cau-

chy sequences in X . Because, if m > n, then

d(fm(x0, y0, z0), f
n(x0, y0, z0)) ≤ Σm−1

j=n d(f j+1(x0, y0, z0), f
j(x0, y0, z0))

≤
Σm−1

j=n

3
[d(f(x0, y0, z0), x0)

+d(f(y0, x0, y0), y0) + d(f(z0, y0, x0), z0)]

≤
kn − km

3
[d(f(x0, y0, z0), x0)

+d(f(y0, x0, y0), y0) + d(f(z0, y0, x0), z0)]

≤
kn

3
[d(f(x0, y0, z0), x0)

+d(f(y0, x0, y0), y0) + d(f(z0, y0, x0), z0)]

d(fm(y0, x0, y0), f
n(y0, x0, y0)) ≤ Σm−1

j=n d(f j+1(y0, x0, y0), f
j(y0, x0, y0))

≤
Σm−1

j=n

3
[d(f(y0, x0, y0)), y0)

+d(f(y0, x0, y0), y0) + d(f(x0, y0, z0), x0)]

≤
kn − km

3
[d(f(y0, x0, y0)), y0)

+d(f(y0, x0, y0), y0) + d(f(x0, y0, z0), x0)]

≤
kn

3
[d(f(y0, x0, y0)), y0)

+d(f(y0, x0, y0), y0) + d(f(x0, y0, z0), x0)].

d(fm(z0, y0, x0), fn(z0, y0, x0)) ≤Σm−1
j=n d(f j+1(x0, y0, z0), f

j(x0, y0, z0))

≤
Σm−1

j=n

3
[d(f(x0, y0, z0), x0)

+ d(f(y0, x0, y0), y0) + d(f(z0, y0, x0), z0)]
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≤
kn − km

3
[d(f(x0, y0, z0), x0)

+ d(f(y0, x0, y0), y0) + d(f(z0, y0, x0), z0)]

≤
kn

3
[d(f(x0, y0, z0), x0)

+ d(f(y0, x0, y0), y0) + d(f(z0, y0, x0), z0)].

Which shows that {fn(x0, y0, z0)}n∈N, {f
n(y, x, y)}n∈N and {fn(z, y, x)}n∈N are

Cauchy sequences in X . Since X is complete, there exist x∗, y∗, z∗ ∈ X such
that fn(x0, y0, z0) → x∗, fn(y0, x0, y0) → y∗ and fn(z0, y0, x0) → z∗. Now the
conclusion of theorem follows from the orbitally continuous of f .

Example 3.1. Let X = R with d(x, y) = |x− y| and consider the relation R on X

by xRy ⇐⇒ x2 + x = y2 + y. Let f : X3 → X be defined by f(x, y) = x2 + x− 1.
then for any (x, y, z) ∈ X3, XR(x, y, z) = {(x, y, z), (x,−y−1,−z−1), (−x−1,−y−
1, z), (−x− 1, y,−z − 1), (−x− 1, y, z), (x,−y − 1, z), (x, y,−z − 1), (−x− 1,−y −
1,−z − 1)}

f × f × f(XR(x, y, z)) = f × f × f(x, y, z) ⊆ XR(f × f × f(x, y, z)).

Thus, f having the mixed R−monotone property on X . Moreover, f is con-
tinuous and there exists point (1,−2, 1) ∈ X3 such that f × f × f(1,−2, 1) ∈
XR(1,−2, 1). So, the hypothesis of Theorem 3.6 is satisfies. Therefore, we con-
clude that f has a tripled fixed point in X3. This tripled fixed points are (x, y, z) =
{(1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1,−1), (−1, 1, 1), (1,−1, 1), (1, 1,−1),
(−1,−1,−1)}.

Theorem 3.7. In addition to the hypothesis of Theorem 3.6, suppose that for every
(x, y, z), (p, q, r) ∈ X3 there exists a (u, v, w) ∈ X3 such that (x, y, z), (p, q, r) ∈
XR(u, v, w). Then f is a Picard operator.

Proof. According to the proof of Theorem 3.6, there exist x∗, y∗, z∗ ∈ X
such that f(x∗, y∗, z∗) = x∗, f(y∗, x∗, y∗) = y∗ and f(z∗, y∗, x∗) = z∗. Now, we
show that Af (x

∗, y∗, z∗) = X3. Let (x, y, z) ∈ X3 be arbitrary, then (i) implies
that there exists (u, v, w) ∈ X3 such that (x, y, z), (x0, y0, z0) ∈ XR(u, v, w). From
(x0, y0, z0) ∈ XR(u, v, w) and (ii) it follows that for n ∈ N

(fn(x0, y0, z0), f
n(y0, x0, y0), f

n(z0, y0, x0)) ∈ XR(f
n(u, v, w), fn(v, u, v), fn(w, v, u)).

Also by using (v) we have

d(fn(x0, y0, z0), f
n(u, v, w)) ≤

kn

3
[d(x0, u) + d(y0, v) + d(z0, w)]

d(fn(y0, x0, y0), f
n(v, u, v)) ≤

kn

3
[d(y0, v) + d(x0, u) + d(y0, v)]

d(fn(x0, y0, x0), f
n(w, v, u)) ≤

kn

3
[d(x0, u) + d(y0, v) + d(z0, w)].
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From this and the fact that (x0, y0, z0) ∈ Af (x
∗, y∗, z∗), which this implies that

Af (x
∗, y∗, z∗) = X3. Now as the proof of the Theorem 3.4 we obtain that f is a

Picard operator.
Theorem 3.6 is still valid for a mapping without the orbitally continuous prop-

erty, assuming an additional hypothesis on X.

Theorem 3.8. Let (X, d) be a metric space and R be a reflexive relation on X. If
f : X3 → X is a mapping such that:

(i) f having the mixed R−monotone property on X.

(ii) (X, d) be a complete metric space.

(iii) f having a R−tripled fixed point. i.e., there exists (x0, y0, z0) ∈ X3 such that
f × f × f(x0, y0, z0) ∈ XR(x0, y0, z0).

(iv) There exists k ∈ [0, 1) such that

d(f(x, y, z), f(p, q, r)) ≤
k

3
[d(x, u) + d(y, v) + d(z, r)].

(v) If a R−monotone sequence {(xn, yn, zn)}n∈N → (x, y, z), then (xn, yn, zn) ∈
XR(x, y, z) for all n ∈ N. Then,

(a) There exists x∗, y∗, z∗ ∈ X such that f(x∗, y∗, z∗) = x∗, f(y∗, x∗, y∗) =
y∗ and f(z∗, y∗, x∗) = z∗.

(b) The sequences {xn}n∈N, {yn}n∈N and {zn}n∈N defined by

xn+1 = f(xn, yn, zn),

yn+1 = f(yn, xn, yn)

and
zn+1 = f(zn, yn, xn)

converges respectively to x∗, y∗ and z∗.

(c) The error estimation is given by

max
n∈N

{d(xn, x
∗), d(yn, y

∗), d(zn, z
∗)}

≤
kn

3(1− k)
[d(f(x0, y0, z0), x0) + d(f(y0, x0, y0), y0) + d(f(z0, y0, x0), z0)].

Proof. Following the proof of Theorem 3.6, we only have to show that

f(x∗, y∗, z∗) = x∗,

f(y∗, x∗, y∗) = y∗

and
f(z∗, y∗, x∗) = z∗.
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Since fn(x0, y0, z0) → x∗, fn(y0, x0, y0) → y∗ and fn(z0, y0, x0) → z∗, using (v),
we get

d(f(x∗
, y

∗
, z

∗), x∗) ≤ d(f(x∗
, y

∗
, z

∗), fn+1(x0, y0, z0)) + d(fn+1(x0, y0, z0), x
∗)

≤ d(f(x∗
, y

∗
, z

∗), f(fn(x0, y0, z0), f
n(y0, x0, y0), f

n(z0, y0, x0)))

+d(fn+1(x0, y0, z0), x
∗)

≤
k

3
[d(x∗

, f
n(x0, y0, z0)) + d(y∗

, f
n(y0, x0, y0))

+d(z∗, fn(z0, y0, x0))] + d(fn+ 1(x0, y0, z0), x
∗) (3.3)

k

3
(x∗, fn(x0, y0, z0)) + d(y∗, fn(y0, x0, y0))

+d(z∗, fn(z0, y0, x0))] + d(fn+1(x0, y0, z0), x
∗) → 0.

as n → ∞, we have This implies that f(x∗, y∗, z∗) = x∗. Similarly to the
previous case, we can prove that f(y∗, x∗, y∗) = y∗ and f(z∗, y∗, x∗) = z∗.

Alternatively, if we know that in Theorem 3.6 (resp. Theorem 3.8), the element
(x0, y0, z0) ∈ X3 is such that (x0, y0, z0) ∈ R, then we can also demonstrate that
the components x∗, y∗, z∗ of the tripled fixed point are indeed the same.

Theorem 3.9. In addition to the hypothesis of Theorem 3.6 (resp. Theorem 3.8),
suppose that (x0, y0, z0) ∈ X3 is such that (x0, y0, z0) ∈ R. Then x∗ = y∗ = z∗.

Proof. If (x0, y0, z0) ∈ R, then (x0, y0, z0) ∈ XR(y0, x0, y0) ∩XR(z0, y0, x0), so
from the mixed R−monotone of f , it follows that

(f(x0, y0, z0), f(y0, x0, y0), f(z0, y0, x0)) ∈ XR(f(x0, y0, z0), f(y0, x0, y0), f(z0, y0, x0)).

Further, we can easily verify that for any n ∈ N,

(fn−1(x0, y0, z0), f
n−1(y0, x0, y0), f

n−1(z0, y0, x0))

in
XR(f

n−1(x0, y0, z0), f
n−1(y0, x0, y0), f

n−1(z0, y0, x0)).

Also by using the contractivity property of f , we obtain

d(fn(x0, y0, z0), f
n(y0, x0, y0), f

n(z0, y0, x0))

= d(f(fn−1(x0, y0, z0)), f(f
n−1(y0, x0, y0)), f(f

n−1(z0, y0, x0)))

≤ kd(fn−1(x0, y0, z0), f
n−1(y0, x0, y0), f

n−1(z0, y0, x0))

≤ k2d(fn−2(x0, y0, z0), f
n−2(y0, x0, y0), f

n−2(z0, y0, x0))

...

≤ knd(x0, y0, z0) → 0(n → ∞).

This implies that
x∗ = lim

n→∞
fn(x0, y0, z0),
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y∗ = lim
n→∞

fn(y0, x0, y0)

and

z∗ = lim
n→∞

fn(z0, y0, x0).

4. An Application

In this section, on the basis of the tripled fixed point theorems in section 3, we
study the nonlinear matrix equation

X = Q+Σm
i=1A

∗
iG(X)Ai − Σn

j=1B
∗
jK(X)Bj − Σt

r=1C
∗
rL(X)Cr (4.1)

where Q is a positive definite matrix, Ai, Bj , Cr are arbitrary n × n matrices
and G,K,L are three continuous order preserving maps from H(n) into P (n) such
that G(0) = K(0) = L(0) = 0.

In this section we will use the following notation: M(n) denotes the set of all
n × n complex matrices. H(n) ⊂ M(n) the set of all n × n Hermitian matrices
and P (n) ⊂ H(n) is the set of all n× n positive matrices. Instead of X ∈ P (n) we
will also write X > 0. Furthermore, X ≥ 0 means that X is positive semi-definite.
Moreover, in H(n), if we define X ≤ Y then H(n) is partially ordered set and for
any X,Y ∈ H(n) there is a greatest lower bound and least upper bound. Therefore
for any (X,Y, Z), (A,B,C) ∈ (H(n))3 there exists (U, V,W ) ∈ (H(n))3 such that
(X,Y, Z), (A,B,C) ∈ (H(n))3 ≤ (U, V,W ). We also denote ‖.‖ the spectral norm
i.e., ‖A‖ =,

√

λ− (A ∗A) where λ− (A ∗A) is the largest eigenvalue of A ∗A. We
will use the metric induced by the trace norm ‖.‖1 defined by ‖A‖1 = Σn

j=1sj(A),
where sj(A), j = 1, 2, . . . , n are the singular values of A. The set H(n) endowed
with this norm is a complete metric space. In [12,13,28], the authors considered
matrix equations and established the existence and uniqueness of positive definite
solutions. Matrix equations of type Eq.4.1 often arise from many areas, such as
ladder networks [2,3], dynamic programming [17,27], control theory [15,18].

The following lemmas will be useful in the study of the matrix equations, which
is generalized form of Lemma- 3.1 in [28].

Lemma 4.1. Let A ≥ 0, B ≥ 0 and C ≥ 0 be n×n matrices, then 0 ≤ tr(ABC) ≤
‖A‖tr(BC) ≤ ‖A‖‖B‖tr(C).

Proof. It is well known that the eigenvalues of the product of three positive
semi-definite matrices are nonnegative. In particular, tr(ABC) ≥ 0. Furthermore,
since A ≤ ‖A‖In, we have

0 ≤ tr((‖A‖ −A)BC) = tr((‖A‖B −AB)C) = ‖A‖tr(BC) − tr(ABC),

which completes the proof.

Lemma 4.2. Let A ∈ H(n) satisfy A < I, then ‖A‖ < 1.
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In total of this section if, we define the mapping F : (H(n))3 → H(n) by

F (X,Y, Z) = Q+Σm
i=1A

∗
iG(X)Ai − Σn

j=1B
∗
jK(X)Bj − Σt

r=1C
∗
rL(X)Cr

where Q ∈ P (n), Ai, Bj , Cr ∈ M(n) and G,K,L are three continuous order
preserving maps. Then F is well defined and and having the mixed R−monotone
property on H(n) and the fixed points of F are the solutions of Eq.4.1. In the
following theorem we first discuss existence of a tripled fixed point of F in (H(n))3.

Theorem 4.3. Let Q ∈ P (n). Assume there is a positive number M such that:

(i) For every (X,Y, Z) ∈ H(n)≤(U, V,W ),

|tr(G(U) −G(X))| ≤
1

M
|tr(U −X)|,

|tr(K(Y )−K(V ))| ≤
1

M
|tr(Y − V )|,

|tr(L(Z)− L(W ))| ≤
1

M
|tr(Z −W )|.

(ii) Σm
i=1A

∗
iAi <

M
3 In, Σ

n
j=1B

∗
jBj <

M
3 In, and Σt

r=1C
∗
rCr < 1

M
In,

(iii) Σm
i=1A

∗
i (3Q)Ai < Q, Σn

j=1B
∗
j (3Q)Bj < Q, and Σt

r=1C
∗
r (3Q)Cr < Q.

Then there exist X∗, Y ∗, Z∗ ∈ H(n) such that

F (X∗, Y ∗, Z∗) = X∗,

F (Y ∗, X∗, Y ∗) = Y ∗

and

F (Z∗, Y ∗, X∗) = Z∗.

Proof. Let (X,Y, Z) ∈ H(n)≤(U, V,W ). Then G(X) ≤ G(U), K(Y ) ≥ K(V )
and L(Z) ≤ L(W ). Therefore
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‖F (U, V,W )− F (X,Y, Z)‖1

= tr(F (U, V,W )− F (X,Y, Z))

= Σm
i=1tr(A

∗(G(U)−G(X))Ai) + Σn
j=1trB

∗(K(Y )−K(V ))Bj)

+Σn
r=1tr(C

∗(L(Z)− L(W ))Cr)

= Σm
i=1tr(A

∗Ai(G(U)−G(X))) + Σn
j=1trB

∗Bj(K(Y )−K(V )))

+Σn
r=1tr(C

∗Cr(L(Z)− L(W )))

= trΣm
i=1(A

∗Ai(G(U)−G(X))) + trΣn
j=1B

∗Bj(K(Y )−K(V )))

+trΣn
r=1(C

∗Cr(L(Z)− L(W )))

≤ ‖Σm
i=1(A

∗Ai‖‖(G(U)−G(X)))‖1 + ‖Σn
j=1B

∗Bj‖‖(K(Y )−K(V )))‖1

+‖Σn
r=1(C

∗Cr‖‖(L(Z)− L(W )))‖1

≤
‖Σm

i=1(A
∗Ai‖

3
‖U −X‖1 +

‖Σn
j=1B

∗Bj‖

3
‖Y − V ‖1

+
‖Σn

r=1(C
∗Cr‖

3
‖Z −W‖1

≤
λ

3
(‖U −X‖1 + ‖Y − V ‖1 + ‖Z −W‖1)

where λ = max{
‖Σm

i=1
(A∗Ai‖
M

,
‖Σn

j=1
B∗Bj‖

M
,
‖Σn

r=1
(C∗Cr‖
M

}. From Lemma 4.2, we have
λ < 1. Thus, the contractive condition of Theorem 3.6 is satisfied for all (X,Y, Z) ∈
H(n)≤(U, V,W ). Moreover, F has the mixed ≤ −monotone property of H(n) and
from (iii), we have F ×F ×F (3Q, 0, 0) ∈ H(n)≤(3Q, 0, 0). Now from the Theorem
3.6 there existX∗, Y ∗, Z∗ ∈ H(n) such that F (X∗, Y ∗, Z∗) = X∗, F (Y ∗, X∗, Y ∗) =
Y ∗ and F (Z∗, Y ∗, X∗) = Z∗.

Theorem 4.4. LetQ ∈ P (n) also Σm
i=1A

∗
i (3Q)Ai < Q, Σn

j=1B
∗
j (3Q)Bj < Q, and

Σt
r=1C

∗
r (3Q)Cr < Q.

Then 4.1 has atleast one positive definite solution in

[min{F (3Q, 0, 0), F (0, 3Q, 0), F (0, 0, 3Q)},max{F (3Q, 0, 0), F (0, 3Q, 0), F (0, 0, 3Q)}].

Proof. Define a mapping S : P (n) → P (n) by

S(X) = Q+Σm
i=1A

∗
iG(X)Ai − Σn

j=1B
∗
jK(X)Bj − Σt

r=1C
∗
rL(X)Cr

Now we claim that

S([min{F (3Q, 0, 0), F (0, 3Q, 0), F (0, 0, 3Q)},max{F (3Q, 0, 0), F (0, 3Q, 0), F (0, 0, 3Q)}])

is subset of

[min{F (3Q, 0, 0), F (0, 3Q, 0), F (0, 0, 3Q)},max{F (3Q, 0, 0), F (0, 3Q, 0), F (0, 0, 3Q)}].

Indeed, if

min{F (3Q, 0, 0), F (0, 3Q, 0), F (0, 0, 3Q)} ≤ X ≤ max{F (3Q, 0, 0), F (0, 3Q, 0), F (0, 0, 3Q)},
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then we have X ≤ 3Q. Applying G,K,L, we can easily show that, S maps the
compact convex set

[min{F (3Q, 0, 0), F (0, 3Q, 0), F (0, 0, 3Q)},max{F (3Q, 0, 0), F (0, 3Q, 0), F (0, 0, 3Q)}]

into itself. Since S is continuous, it follows from Schauder’s fixed point theorem
that S has at least one fixed in this set. However, fixed points of S are solutions
of eq. 4.1.

Theorem 4.5. Under the assumption Theorem 4.3, the eq.4.1 has an unique so-
lution X̂.

Proof. Since for every X,Y, Z ∈ H(n) there is a greatest lower bound and a
least upper bound, for any (X,Y, Z), (A,B,C) ∈ (H(n))3 there exists (U, V,W ) ∈
(H(n))3 such that (X,Y, Z), (A,B,C) ∈ H(n)≤(U, V,W ). Therefore, we deduce
from Theorem 3.7 that X∗, Y ∗, Z∗ ∈ H(n) in Theorem 4.3 is unique and X∗ =
Y ∗ = Z∗ = X̂ .

Theorem 4.6. Let Q ∈ P (n). Then under the assumption Theorem 4.3,
(i) Eq. 4.1 has an unique positive definite solution

Ĥ ∈ [min{F (3Q, 0, 0), F (0, 3Q, 0), F (0, 0, 3Q)},max{F (3Q, 0, 0), F (0, 3Q, 0), F (0, 0, 3Q)}].

(ii) The sequences {Xn}n∈N, {Yn}n∈N and {Zn}n∈N defined by X0 = 3Q, Y0 =
0, Z0 = 0 and

Xn+1 = Q+Σm
i=1A

∗
iG(Xn)Ai − Σn

j=1B
∗
jK(Yn)Bj − Σt

r=1C
∗
rL(Zn)Cr,

Yn+1 = Q+Σm
i=1A

∗
iG(Yn)Ai − Σn

j=1B
∗
jK(Xn)Bj − Σt

r=1C
∗
rL(Yn)Cr,

Zn+1 = Q+Σm
i=1A

∗
iG(Zn)Ai − Σn

j=1B
∗
jK(Yn)Bj − Σt

r=1C
∗
rL(Xn)Cr,

converges to Ĥ and the error estimation is given by

max
n∈N

{‖Xn−X̂‖1, ‖Yn−X̂‖1, ‖Zn−X̂‖1} ≤
λn

3(1− λ)
(‖X1−X0‖1+‖Y1−Y0‖1+‖Z1−Z0‖1),

for all n ∈ N, where λ = max{
‖Σm

i=1
(A∗Ai‖
M

,
‖Σn

j=1
B∗Bj‖

M
,
‖Σn

r=1
(C∗Cr‖
M

}.

Proof. By Theorem 4.4, eq.4.1 has atleast one positive definite solution in

[min{F (3Q, 0, 0), F (0, 3Q, 0), F (0, 0, 3Q)},max{F (3Q, 0, 0), F (0, 3Q, 0), F (0, 0, 3Q)}].

and by Theorem 26 this equation having a unique solution in H(n). Thus this
solution must be in the set. further the proof of (ii) follows from part (c) of Theorem
3.6.
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