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Finitely Generated Rings Obtain From Hyperrings Through the

Fundamental Relations
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abstract: In this article, we introduce and analyze a strongly regular relation ω∗

A

on a hyperring R such that in a particular case we have |R/ω∗

A
| ≤ 2 or R/ω∗

A
=<

ω∗

A
(a) >, i.e., R/ω∗

A
is a finite generated ring. Then, by using the notion of ω∗

A
-parts,

we investigate the transitivity condition of ωA. Finally, we investigate a strongly
regular relation χ∗

A
on the hyperring R such that R/χ∗

A
is a finitely generated

commutative ring.
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1. Introduction

A hypergroup in the sense of Marty [9] is a non-empty set H endowed with a
hyperoperation · : H ×H −→ ℘∗(H), the set of all non-empty subset of H , which
satisfies the associative law and the reproduction axiom. If (H, ·) is a hypergroup
and ρ ⊆ H×H is an equivalence relation, then for all non-empty subsets A,B of H
we set A ρ B if and only if aρb, for all a ∈ A, b ∈ B. The relation ρ is called strongly
regular on the right (on the left) if x ρ y ⇒ a·x ρ a·y(x ρ y ⇒ x·a ρ y·a, respectively),
for all (x, y, a) ∈ H3. Moreover, ρ is called strongly regular if it is strongly regular
on the right and on the left. LetH be a hypergroup and ρ an equivalence relation on
H . A hyperoperation ⊗ is defined on H/ρ by ρ(a)⊗ρ(b) = {ρ(x)|x ∈ ρ(a) ·ρ(b)}. If
ρ is strongly regular, then it readily follows that ρ(a)⊗ρ(b) = {ρ(x) | x ∈ a ·b}. It is
well known for ρ strongly regular that 〈H/ρ,⊗〉 is a group, that is, ρ(a)⊗ρ(b) = ρ(c)
for all c ∈ a · b. Basic definitions and propositions about the hyperstructures can
be found in [2,3,5]. Krasner [8] has studied the notion of hyperfield, hyperring,
and then some researchers works on this subject. The more general structure that
satisfies the ring-like axioms is the hyperring in the general sense: (R,+, ·) is a
hyperring if + and · are two hyperoperations such that (R,+) is a hypergroup and
· is an associative hyperoperation, which is distributive with respect to +. We call
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(R,+, ·) a hyperfield if (R,+, ·) is a hyperring and (R, ·) is a hypergroup. There
are different notions of hyperrings. If only the addition + is a hyperoperation and
the multiplication · is a binary operation, then the hyperring is called Krasner
additive hyperring [8]. Davvaz and Leoreanu-Fotea [5] published a book titled
Hyperring Theory and Applications. The hyperrings were studied by many authors,
for example see [4,7,11,12,13,15]. In [1], Babaeia et al. introduced the notion of
ℜ-parts in hyperrings as a generalization of complete parts in hyperrings. In [5]
there are several types of hyperrings and hyperfields. In what follows we shall
consider one of the most general types of hyperrings.

Definition 1.1. [14] The triple (R,+, ·) is a hyperring if (1) (R,+) is a hy-
pergroup; (2) (R, ·) is a semihypergroup; (3) the hyperoperation “ ·” is distribu-
tive over the hyperoperation “+”, which means that for all x, y, z of R we have:
x · (y+ z) = x · y+ x · z and (x+ y) · z = x · z + y · z. We call (R,+, ·) a hyperfield
if (R,+, ·) is a hyperring and (R, ·) is a hypergroup.

Example 1.2. Let R = {0, 1, 2, 3, 4} be a set with the hyperoperations + and ·
defined as follow:

+ 0 1 2 3 4
0 {0, 4} 1 {2, 3} {2, 3} {0, 4}
1 1 {2, 3} {0, 4} {0, 4} 1
2 {2, 3} {0, 4} 1 1 {2, 3}
3 {2, 3} {0, 4} 1 1 {2, 3}
4 {0, 4} 1 {2, 3} {2, 3} {0, 4}

· 0 1 2 3 4
0 {0, 4} {0, 4} {0, 4} {0, 4} {0, 4}
1 {0, 4} 1 {2, 3} {2, 3} {0, 4}
2 {0, 4} {2, 3} 1 1 {0, 4}
3 {0, 4} {2, 3} 1 1 {0, 4}
4 {0, 4} {0, 4} {0, 4} {0, 4} {0, 4}

Then (R,+, ·) is a finite hyperring such that is not a ring.

Example 1.3. Let (R,+, ·) be a finite ring and S be a non-empty finite set such
that S ∩ R = ∅. Let A = R ∪ S and define two hyperoperations ⊕ and ⊙ on A as
follow: For all x, y ∈ R and s, t ∈ S

x⊕ y =

{

x+ y if x+ y 6= 0
S ∪ {0} if x+ y = 0

and x⊙ y =

{

x · y if x · y 6= 0
S ∪ {0} if x · y = 0

and

x⊕ t = x⊕ 0, s⊕ y = 0⊕ y, s⊕ t = S ∪ {0}, x⊙ t = s⊙ y = s⊙ t = S ∪ {0}

It is not difficult to see that (A,⊕,⊙) is a proper finite hyperring.
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Let us recall now some important equivalence relations and results of hyper-
group and hyperring theory.

Definition 1.4. [15] Let (R,+, ·) be a hyperring. We define the relation γ as
follows: x γ y ⇔ ∃n ∈ N, ∃(k1, · · · , kn) ∈ Nn and [∃(xi1, · · · , xiki

) ∈ Rki , (i =
1, · · · , n)] such that

x, y ∈
n
∑

i=1

(
ki
∏

j=1

xij).

Let γ∗ be the transitive closure of γ. The fundamental relation γ∗ on R can be
considered as the smallest equivalence relation such that the quotient R/γ∗ be a
ring.

Definition 1.5. [6] Let (R,+, ·) be a hyperring. We define the relation α as
follows: x α y ⇔ ∃n ∈ N, ∃(k1, · · · , kn) ∈ Nn, ∃τ ∈ Sn and [∃(xi1, · · · , xiki

) ∈
Rki , ∃τ i ∈ Ski

, (i = 1, · · · , n)] such that

x ∈
n
∑

i=1

(
ki
∏

j=1

xij) and y ∈
n
∑

i=1

Aτ(i),

where Ai =
ki
∏

j=1

xiτ i(j).

Let α∗ be the transitive closure of α. Then, α∗ is the smallest strongly regular
relation on R such that R/α∗ is a commutative ring.

Definition 1.6. [5] Let (R,+, ·) be a hyperring and M be a non-empty subset of
R. We say that M is a α-part if for every n ∈ N, ∃(k1, · · · , kn) ∈ Nn, ∃τ ∈ Sn and
[∃(xi1, · · · , xiki

) ∈ Rki , ∃τ i ∈ Ski
, (i = 1, · · · , n)] such that

n
∑

i=1

(
ki
∏

j=1

xij) ∩M 6= ∅ ⇒
n
∑

i=1

Aτ(i) ⊆M,

where Ai =
ki
∏

j=1

xiτ i(j). Also, M is said to be a complete part of R [10], if we have

n
∑

i=1

(
ki
∏

j=1

xij) ∩M 6= ∅ ⇒
n
∑

i=1

(
ki
∏

j=1

xij) ⊆M.

2. The Relation ωA

In this section, we introduce the relation ωA on a hyperring R, which we use
in order to obtain a finite generated ring as a quotient structure of R.

Let (R,+, ·) be a hyperring, A is a non-empty subset of R, a1, · · · , am ∈ A and

D = {t | t ∈
m
∑

i=1

ziai +
m
∑

i=1

siai +
m
∑

i=1

aiti +
m
∑

i=1

(
ni
∑

i=1

ui,kaivi,k),

m, ni ∈ N, zi ∈ Z, si, ti, ui,k, vi,k ∈ R}.
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For all n ≥ 1 and (k1, · · · , kn) ∈ Nn define RA

n,k1,k2,··· ,kn
as follows:

R
A

n,k1,k2,··· ,kn
:= γAn,k1,k2,··· ,kn

∪ ℑA

n,k1,k2,··· ,kn
∪ ξAn,k1,k2,··· ,kn

,

where

γAn,k1,k2,··· ,kn
:= {(

n
∑

i=1

ki
∏

j=1

xij ,
n
∑

i=1

ki
∏

j=1

yij) |
n
∑

i=1

ki
∏

j=1

xij =
n
∑

i=1

ki
∏

j=1

yij},

ℑA

n,k1,k2,··· ,kn
:= {(

n
∑

i=1

ki
∏

j=1

xij ,
n
∑

i=1

ki
∏

j=1

yij) | {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D

= {yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D 6= ∅}

and

ξAn,k1,k2,··· ,kn
:= {(

n
∑

i=1

ki
∏

j=1

xij ,
n
∑

i=1

ki
∏

j=1

yij) | {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D

= {yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D = ∅}.

Notice that RA
1,1 := {({x}, {y}) | {x, y} ∩D = ∅ or x = y}.

Definition 2.1. We define the relation ωA on (R,+, ·) as follows:

x ωA y ⇔ ∃(A,B) ∈ RA

n,k1,k2··· ,kn
, such that x ∈ A, y ∈ B.

Notice that for n = 1 and k1 = 1 we obtain x ωA y if and only if ({x}, {y}) ∈
RA

1,1 or x = y ∈ D.

Remark 2.1. The relation ωA is reflexive and symmetric and β ⊆ ωA and γ ⊆ ωA.

Let ω∗
A
be the transitive closure of ωA. In order to analyze the quotient hyper-

structure with respect to this equivalence relation, we state the following lemma.

Lemma 2.2. ω∗
A

is a strongly regular equivalence relation both on (R,+) and on
(R, ·).

Proof. Clearly, ω∗
A

is an equivalence relation. In order to prove that it is strongly
regular, it is enough to show that

x ωA y =⇒

{

x+ a ωA y + a, a+ x ωA a+ y,

x · a ωA y · a, a · x ωA a · y,

for all a ∈ R. Since x ωA y, it follows that there exists (A,B) ∈ RA

n,k1,k2,··· ,kn
such

that x ∈ A and y ∈ B. We distinguish the following situations.

Case 1. Suppose that (A,B) ∈ γAn,k1,k2,··· ,kn
such that x ∈ A =

n
∑

i=1

(
ki
∏

j=1

xij)

and y ∈ B =
n
∑

i=1

(
ki
∏

j=1

yij). Then, we have x + a ⊆ A + a = (
n
∑

i=1

(
ki
∏

j=1

xij)) + a and
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y + a ⊆ B + a = (
n
∑

i=1

(
ki
∏

j=1

yij)) + a. Set a = xn+1 1 = yn+1 1 and kn+1 = 1. Thus,

x+ a ⊆ (
n+1
∑

i=1

(
ki
∏

j=1

xij) and y + a ⊆ (
n+1
∑

i=1

(
ki
∏

j=1

yij)).

It is easy to see that the pair (A + a,B + a) belongs to γAn+1,k1,k2,··· ,kn
⊆

RA

n+1,k1,k2,··· ,kn
. Therefore, for all u ∈ x+a and v ∈ y+a, we have u ∈ x+a ⊆ A+a

and v ∈ y + a ⊆ B + a. So, u ωA v. Thus, x+ a ωA y + a.
Case 2. Suppose that (A,B) ∈ ℑA

n,k1,k2,··· ,kn
. Then, we have x ∈ A =

n
∑

i=1

(
ki
∏

j=1

xij) and y ∈ B =
n
∑

i=1

(
ki
∏

j=1

yij) such that {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D =

{yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki}∩D 6= ∅. If a /∈ D, then (A+a,B+a) ∈ ℑA

n+1,k1,k2,··· ,kn

and if a ∈ D, then (A + a,B + a) ∈ ℑA

n+1,k1,k2,··· ,kn
. Thus, according to Case 1,

(A+ a,B + a) ∈ RA

n+1,k1,k2,··· ,kn
. So, u ωA v. Thus, x+ a ωA y + a.

Case 3. Suppose that (A,B) ∈ ξAn,k1,k2,··· ,kn
. Then, we have x ∈ A =

n
∑

i=1

(
ki
∏

j=1

xij) and y ∈ B =
n
∑

i=1

(
ki
∏

j=1

yij) such that {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D =

{yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki}∩D = ∅. If a /∈ D, then (A+a,B+a) ∈ ξAn+1,k1,k2,··· ,kn

and if a ∈ D, then (A + a,B + a) ∈ ℑA

n+1,k1,k2,··· ,kn
. Thus, according to Case 1,

(A+ a,B + a) ∈ RA

n+1,k1,k2,··· ,kn
. So, u ωA v. This implies that x+ a ωA y + a.

In the same way, we can show that a+ x ωA a+ y. It is easy to see that

a+ x ω
∗

A a+ y and x+ a ω
∗

A y + a.

Notice that for (R, ·) we have

Case 1. Suppose that (A,B) ∈ γAn,k1,k2,··· ,kn
such that x ∈ A =

n
∑

i=1

(
ki
∏

j=1

xij)

and y ∈ B =
n
∑

i=1

(
ki
∏

j=1

yij). Then, we obtain x · a ⊆ A · a = (
n
∑

i=1

(
ki
∏

j=1

xij)) · a and

y · a ⊆ B · a = (
n
∑

i=1

(
ki
∏

j=1

yij)) · a. Set k′i = ki + 1, xik′

i
= a and yik′

i
= a. Thus,

x · a ⊆ (
n
∑

i=1

(
k′

i
∏

j=1

xij)) and y · a ⊆ (
n
∑

i=1

(
k′

i
∏

j=1

yij)).

It is easy to see that the pair (A · a,B · a) belongs to γAn,k′

1,k
′

2,··· ,k
′

n
⊆ RA

n,k′

1,k
′

2,··· ,k
′

n
.

Therefore, for all u ∈ x ·a and v ∈ y ·a, we have u ∈ x ·a ⊆ A ·a and v ∈ y ·a ⊆ B ·a.
So, u ωA v. This implies that x · a ωA y · a.

Case 2. Suppose that (A,B) ∈ ℑA

n,k1,k2,··· ,kn
. Then, we have x ∈ A =

n
∑

i=1

(
ki
∏

j=1

xij) and y ∈ B =
n
∑

i=1

(
ki
∏

j=1

yij) such that {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D =
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{yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D 6= ∅. If a /∈ D, then (A · a,B · a) ∈ ℑA

n+1,k1,k2,··· ,kn

and if a ∈ D, then (A · a,B · a) ∈ ℑA

n,k′

1,k
′

2,··· ,k
′

n
. Thus, according to Case 1,

(A · a,B · a) ∈ R
A

n,k′

1,k
′

2,··· ,k
′

n
. So, u ωA v. We conclude that x · a ωA y · a.

Case 3. Suppose that (A,B) ∈ ξAn,k1,k2,··· ,kn
. Then, we have x ∈ A =

n
∑

i=1

(
ki
∏

j=1

xij) and y ∈ B =
n
∑

i=1

(
ki
∏

j=1

yij) such that {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D =

{yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D = ∅. If a /∈ D, then (A · a,B · a) ∈ ξAn,k′

1,k
′

2,··· ,k
′

n

and if a ∈ D, then (A · a,B · a) ∈ ℑA

n,k′

1,k
′

2,··· ,k
′

n
. Thus, according to Case1,

(A · a,B · a) ∈ R
A

n,k′

1,k
′

2,··· ,k
′

n
. So, u ωA v. This implies that x · a ωA y · a.

In the same way, we can show that a·x ωA a·y. It is easy to see that a·x ω
∗

A a·y
and x · a ω

∗

A y · a. ✷

Theorem 2.3. The quotient R/ω∗
A

is a ring with generators

{ω∗
A(b), ω

∗
A(a1), ω

∗
A(a2), · · · , ω

∗
A(am) | b ∈ (R−D), a1, · · · , am ∈ A}

where ω∗
A
(a1), ω

∗
A
(a2), · · · , ω∗

A
(am) ∈ R/ω∗

A
necessarily are not distinct.

Proof. By Lemma 2.2, ω∗
A
is a strongly regular equivalence relation, so the quotient

structure R/ω∗
A

is a ring with respect to the following operations:

ω∗
A(x)⊕ ω∗

A(y) = ω∗
A(z), for all z ∈ x+ y,

ω∗
A(x)⊗ ω∗

A(y) = ω∗
A(t), for all t ∈ x · y.

For all (x, y) ∈ (R − D)2 since {x, y} ∩ D = ∅, we have ({x}, {y}) ∈ R
A
1,1 and

hence xω∗
A
y then ω∗

A
(x) = ω∗

A
(y). If b ∈ (R −D), then for every x ∈ (R −D) we

have ω∗
A
(x) = ω∗

A
(b). Now, suppose that ω∗

A
(h) is given. If h ∈ (R − D), then

ω∗
A
(h) = ω∗

A
(b) and if h ∈ D then ω∗

A
(h) ∈ 〈ω∗

A
(a1), · · · , ω∗

A
(am)〉. Therefore,

R/ω∗
A
= {ω∗

A
(b)} ∪ 〈ω∗

A
(a1), · · · , ω∗

A
(am)〉. ✷

Example 2.4. Let R = Z6 and A = {2̄, 4̄}. Then, D = {0̄, 2̄, 4̄} and R − D =
{1̄, 3̄, 5̄}. Hence, R/ω∗

A
∼= Z2 where ω∗

A
(1̄) = ω∗

A
(3̄) = ω∗

A
(5̄) and ω∗

A
(0̄) =

ω∗
A
(2̄) = ω∗

A
(4̄) and also R/γ∗ ∼= Z6. So, ω∗

A
6= γ∗. If A = {3̄, 5̄} then R/ω∗

A
=

〈ω∗
A
(3̄), ω∗

A
(5̄)〉.

Indeed, this example shows that in general, ω∗
A
6= γ∗.

Now, suppose that A = {a}, so D = {t | t ∈ ra+as+na+
m
∑

i=1

riasi, r, s, ri, si ∈

R,m ∈ N, n ∈ Z}. Put ρa := ωA and ρ∗a := ω∗
A
. Then, we have the following

corollary.

Corollary 2.5. The quotient R/ρ∗a is a ring generated by ρ∗a(a) i. e, R/ρ∗a =
〈ρ∗a(a)〉 or |R/ρ∗a| ≤ 2.
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Proof. By the proof of Theorem 2.3, we conclude that the equivalence classes de-
termined by ω∗

A
of all elements of (R − D) coincide and the equivalence class of

every element of D is generated by ω∗
A
(a1), ω

∗
A
(a2), · · · , ω∗

A
(am) ∈ R/ω∗

A
. If t ∈ D,

then

ρ∗a(t) = [ρ∗a(r) ⊗ ρ∗a(a)]⊕ [ρ∗a(a)⊗ ρ∗a(s)]⊕ nρ∗a(a)⊕
m
∑

i=1

(ρ∗a(ri)⊗ ρ∗a(a)⊗ ρ∗a(si))

∈ 〈ρ∗a(a)〉.

So, R/ρ∗a = {ρ∗a(b)}∪〈ρ
∗
a(a)〉, where b ∈ R−D. Now, we have ρ∗a(b)⊕ρ

∗
a(a) ∈ R/ρ∗a.

Then, ρ∗a(b) + ρ∗a(a) = ρ∗a(b) or ρ
∗
a(b) + ρ∗a(a) ∈< ρ∗a(a) > . If ρ∗a(b)⊕ ρ∗a(a) = ρ∗a(b)

then ρ∗a(a) = 0R/ρ∗

a
and so R/ρ∗a = {0R/ρ∗a

, ρ∗a(b)}. This implies that |R/ρ∗a| ≤ 2. If
ρ∗a(b) ⊕ ρ∗a(a) ∈< ρ∗a(a) >, then there exist n ∈ Z, m ∈ N and r, s, ri, si ∈ R such

that ρ∗a(b)⊕ρ
∗
a(a) = [ρ∗a(r)⊗ρ

∗
a(a)]⊕ [ρ∗a(a)⊗ρ

∗
a(s)]⊕nρ

∗
a(a)⊕

m
∑

i=1

(ρ∗a(ri)⊗ρ
∗
a(a)⊗

ρ∗a(si)) and this implies that ρ∗a(b) ∈ 〈ρ∗a(a)〉. ✷

Corollary 2.6. If R−D = ∅, which means that R is a hyperring generated by the
element a, then R/ρ∗a = 〈ρ∗a(a)〉.

Corollary 2.7. If the hyperring R has an identity element and a is in the center
of R, then R/ρ∗a = 〈ρ∗a(a)〉 = {ρ∗a(a)⊗ ρ∗a(r) | ρ∗a(r) ∈ R/ρ∗a} or |R/ρ∗a| ≤ 2.

Example 2.8. Let R = {b, c, d, e, f}. Consider the hyperring (R,+, ·), where
hyperoperations + and · are defined on R as follows:

+ f b c d e
f f {b, e} c d {b, e}
b {b, e} c d f c
c c d {b, e} c d
d d f {b, e} c f
e {b, e} c d f c

· f b c d e
f f f f f f
b f {b, e} c d {b, e}
c f c f c c
d f d c {b, e} d
e f {b, e} c d {b, e}

Suppose that A = {d}. Then, D = {b, c, d, e, f} and R − D = ∅. Thus,
R/ρ∗a = 〈ρ∗a(d)〉 = {ρ∗a(f), ρ

∗
a(b), ρ

∗
a(c), ρ

∗
a(d)}.

Suppose that A = {c}. Then, D = {f, c} and R − D = {b, d, e}. Hence,
ρ∗a(b) = ρ∗a(d) = ρ∗a(e) and ρ∗a(f) = ρ∗a(c). This implies that R/ρ∗a

∼= Z2 and
R/γ∗ ∼= Z4. Therefore, ρ∗a 6= γ∗.

Example 2.9. Let R = Z be the set of all integers and a = 2. Then, D =
{· · · , 4, 2, 0,−2,−4, · · · } and R−D = {· · · , 3, 1,−1, 3, · · · }. Then, R/ρ∗a

∼= Z2 and
R/γ∗ ∼= Z. This implies that ρ∗a 6= γ∗. If a = 1, then R/ρ∗a

∼= Z and R/γ∗ ∼= Z.
Thus, ρ∗a = γ∗.

Theorem 2.10. The relation ρ∗a is the smallest strongly regular relation such that
the quotient R/ρ∗a is a ring generated by ρ∗a(a) or |R/ρ

∗
a| ≤ 2, where the equivalence

classes of all elements of R−D are equal.
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Proof. Suppose that θ is a strongly regular relation such that the quotient R/θ
is a ring generated by θ∗(a) or |R/θ∗| ≤ 2, and the equivalence classes of θ of
all elements of (R − D) are equal. Suppose that φ : R → R/θ is the canonical
projection. Clearly, φ is a good homomorphism. We show that ρ∗a ⊆ θ. Let x ρa y.
Then, there exists (A,B) ∈ RA

n,k1,k2,··· ,kn
such that x ∈ A and y ∈ B. We have

three cases.

Case 1. Suppose that (A,B) ∈ γAn,k1,k2,··· ,kn
. Then, we have A =

n
∑

i=1

(
ki
∏

j=1

xij)

and B =
n
∑

i=1

(
ki
∏

j=1

yij) such that
n
∑

i=1

(
ki
∏

j=1

xij) =
n
∑

i=1

(
ki
∏

j=1

yij). Thus,

φ(x) = ⊕
n
∑

i=1

(⊗
ki
∏

j=1

θ(xij)) = φ(y) = ⊕
n
∑

i=1

(⊗
ki
∏

j=1

(θ(yij))).

Therefore, x θ y.

Case 2. Suppose that (A,B) ∈ ℑA

n,k1,k2,··· ,kn
. Then, we have A =

n
∑

i=1

(
ki
∏

j=1

xij)

and B =
n
∑

i=1

(
ki
∏

j=1

yij) such that {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki}∩D = {yij |1 ≤ i ≤ n, 1 ≤

j ≤ ki} ∩D 6= ∅. Renumber the elements of the sets {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki}
and {yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} such that {yi′j′ |1 ≤ i ≤ n′, 1 ≤ j ≤ k′i} ⊆ D, where
1 6 n′ 6 n and 1 6 k′i 6 ki and xts, yts /∈ D for all n′+1 6 t 6 n and k′i+1 6 s 6 ki.

Then, we have φ(x) = (⊕
n′

∑

i=1

(⊗
k′

i
∏

j=1

θ(xij)))
⊕

(⊕
n
∑

t=n′+1

(⊗
ki
∏

s=k′

i+1

θ(xij))) = φ(y) =

(⊕
n′

∑

i=1

(⊗
k′

i
∏

j=1

θ(yij)))
⊕

(⊕
n
∑

t=n′+1

(⊗
ki
∏

s=k′

i
+1

θ(yij))). So, φ(x) = φ(y) and x θ y.

Case 3. Suppose that (A,B) ∈ ξAn,k1,k2,··· ,kn
. Then, we have A =

n
∑

i=1

(
ki
∏

j=1

xij)

and B =
n
∑

i=1

(
ki
∏

j=1

yij) such that {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D = {yij |1 ≤ i ≤

n, 1 ≤ j ≤ ki} ∩ D = ∅. Hence, for all 1 ≤ i ≤ n and 1 ≤ j ≤ ki we have
φ(xij) = φ(yij). Therefore, φ(x) = φ(y) which implies that and x θ y.

In the all cases we have x θ y and hence x ρa y implies that x θ y and hence
x ρ∗a y implies that x θ y by transitivity of θ. Therefore, we have ρ∗a ⊆ θ. ✷

3. The transitivity condition of ωA

In this section, we introduce the concept of ω∗
A
-part of a hyperring R and

we determine necessary and sufficient conditions such that the relation ωA to be
transitive. Let M be a non-empty subset of a hyperring (R,+, ·).

Definition 3.1. We say that M is a ω∗
A
-part of R if the following conditions hold.
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(F1)
n
∑

i=1

(
ki
∏

j=1

xij) ⊆M ;

(F2) If {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D 6= ∅ then for all
n
∑

i=1

(
ki
∏

j=1

yij) such that

{xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D = {yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D, we have
n
∑

i=1

(
ki
∏

j=1

yij) ⊆M ;

(F3) If {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D = ∅ then for all
n
∑

i=1

(
ki
∏

j=1

yij) such that

{yij|1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D = ∅, we have
n
∑

i=1

(
ki
∏

j=1

yij) ⊆M .

By using the above notion we obtain the following characterization.

Proposition 3.2. The following conditions are equivalent.

(1) M is a ω∗
A
-part;

(2) x ∈M , x ωA y =⇒ y ∈M ;

(3) x ∈M , x ω∗
A
y =⇒ y ∈M .

Proof. (1⇒2): Let (x, y) ∈ R2 such that x ∈ M and xωAy. Then, there exists
(A,B) ∈ R

A

n,k1,k2,··· ,kn
such that x ∈ A and y ∈ B. Hence, we have three cases.

Case 1. Suppose that (A,B) ∈ γAn,k1,k2,··· ,kn
. Then, we have A =

n
∑

i=1

(
ki
∏

j=1

xij)

and B =
n
∑

i=1

(
ki
∏

j=1

yij) such that
n
∑

i=1

(
ki
∏

j=1

xij) =
n
∑

i=1

(
ki
∏

j=1

yij). Since x ∈
n
∑

i=1

(
ki
∏

j=1

xij) ∩

M, by (F1) we obtain
n
∑

i=1

(
ki
∏

j=1

yij) ⊆M and hence y ∈M .

Case 2. Let (A,B) ∈ ℑA

n,k1,k2,··· ,kn
. Then, we have A =

n
∑

i=1

(
ki
∏

j=1

xij) and

B =
n
∑

i=1

(
ki
∏

j=1

yij) such that {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D = {yij |1 ≤ i ≤ n, 1 ≤

j ≤ ki} ∩D 6= ∅. Since x ∈
n
∑

i=1

(
ki
∏

j=1

xij) ∩M, by (F2) we obtain
n
∑

i=1

(
ki
∏

j=1

yij) ⊆ M

and hence y ∈M .

Case 3. Suppose that (A,B) ∈ ξAn,k1,k2,··· ,kn
. Then, we have A =

n
∑

i=1

(
ki
∏

j=1

xij)

and B =
n
∑

i=1

(
ki
∏

j=1

yij) such that {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki}∩D = {yij |1 ≤ i ≤ n, 1 ≤
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j ≤ ki} ∩D = ∅. Since x ∈
n
∑

i=1

(
ki
∏

j=1

xij) ∩M, by (F3) we obtain
n
∑

i=1

(
ki
∏

j=1

yij) ⊆ M

and hence y ∈M .
(2⇒3): Let (x, y) ∈ R2 such that x ∈ M and x ω∗

A
y. Then, there exist t ∈ N

and (v0 = x, v1, · · · , vt = y) ∈ Rt+1 such that

x = v0 ωA v1 ωA v2 · · ·ωA vt−1 ωA vt = y.

Since x ∈M , by applying (2) t times, we obtain y ∈M .

(3⇒1): Let
n
∑

i=1

(
ki
∏

j=1

xij) ∩M 6= ∅. We shall check the conditions (F1), (F2) and

(F3).

(F1) Suppose that
n
∑

i=1

(
ki
∏

j=1

xij) =
n
∑

i=1

(
ki
∏

j=1

yij). Then,

(
n
∑

i=1

(
ki
∏

j=1

xij),
n
∑

i=1

(
ki
∏

j=1

yij) ∈ γAn,k1,k2,··· ,kn
.

So, for all y ∈
n
∑

i=1

(
ki
∏

j=1

yij we have x ω∗
A
y and y ∈M . Therefore,

n
∑

i=1

(
ki
∏

j=1

yij) ⊆M .

(F2) Let {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D 6= ∅. Now, suppose that for all
n
∑

i=1

(
ki
∏

j=1

yij) if {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D = {yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D

then (
n
∑

i=1

(
ki
∏

j=1

xij),
n
∑

i=1

(
ki
∏

j=1

yij)) ∈ ℑA

n,k1,k2,··· ,kn
. Hence, for all y ∈

n
∑

i=1

(
ki
∏

j=1

yij) we

have x ω∗
A
y and y ∈M . Therefore,

n
∑

i=1

(
ki
∏

j=1

yij) ⊆M .

(F3) Let {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D = ∅ and
n
∑

i=1

(
ki
∏

j=1

yij) be such

that {yij|1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D = ∅. Then, (
n
∑

i=1

(
ki
∏

j=1

xij),
n
∑

i=1

(
ki
∏

j=1

yij)) ∈

ξAn,k1,k2,··· ,kn
. Hence, for all y ∈

n
∑

i=1

(
ki
∏

j=1

yij) we have x ω
∗
A
y and y ∈M . Therefore,

n
∑

i=1

(
ki
∏

j=1

yij) ⊆M . ✷

Before proving the next theorem, we introduce the following notions.

Definition 3.3. Let x be an arbitrary element of a hyperring R.
For all n > 1, set:

(N1) PγA
n
(x) = ∪{

n
∑

i=1

(
ki
∏

j=1

yij) | x ∈
n
∑

i=1

(
ki
∏

j=1

xij) =
n
∑

i=1

(
ki
∏

j=1

yij)};
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(N2) PℑA
n
(x) = ∪{

n
∑

i=1

(
ki
∏

j=1

yij) | x ∈
n
∑

i=1

(
ki
∏

j=1

xij), {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D =

{yij|1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D 6= ∅};

(N3) PξAn
(x) = ∪{

n
∑

i=1

(
ki
∏

j=1

yij) | x ∈
n
∑

i=1

(
ki
∏

j=1

xij), {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D =

{yij|1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D = ∅};

(N4) P (x) =
⋃

n≥1(PγA
n
(x) ∪ PℑA

n
(x) ∪ PξAn

(x)).

Notice that if x /∈ D, then P1,1(x) = R−D.

Proposition 3.4. For all x ∈ R, P (x) = {y ∈ R | x ωA y}.

Proof. Suppose that x ∈ R and y ∈ P (x). Then, there exist A, B such that x ∈ A,
y ∈ B and

(1) y ∈ PγA

n,k1,k2,··· ,kn

(x) ⇒ (A,B) ∈ γAn,k1,k2,··· ,kn
;

(2) x ∈ PℑA

n,k1,k2,··· ,kn

(x) ⇒ (A,B) ∈ ℑA

n,k1,k2,··· ,kn
;

(3) x ∈ PξA
n,k1,k2,··· ,kn

(x) ⇒ (A,B) ∈ ξAn,k1,k2,··· ,kn
.

Therefore, x ωA y and P (x) ⊆ {y ∈ R | x ωA y}.
The proof of the reverse of the inclusion is obvious. ✷

Lemma 3.5. Let (R,+, ·) be a hyperring and let M be a ω∗
A
-part of R. If x ∈M ,

then P (x) ⊆M .

Proof. It follows by Definition 3.1. ✷

Theorem 3.6. Let (R,+, ·) be a hyperring. The following conditions are equiva-
lent.

(1) ωA is transitive;

(2) For any x ∈ R, ω∗
A
(x) = P (x);

(3) For any x ∈ R, P (x) is a ω∗
A
-part of R.

Proof. (1⇒2) By Proposition 3.4, for all pairs (x, y) ∈ R2 we have

y ∈ ω∗
A
(x) ⇔ x ωA y ⇔ y ∈ P (x).

(2⇒1) By Proposition 3.2, ifM is a non-empty subset of R, thenM is a ω∗
A
-part

of R if and only if it is a union of equivalence classes modulo ω∗
A
. In particular,

every equivalence class modulo ω∗
A

is a ω∗
A
-part of R.

(3⇔1) Let x ωA y and y ωA z. Then, x ∈ P (y) and y ∈ P (z) by Proposition
3.4. Since P (z) is a ω∗

A
-part, by Lemma 3.5, we obtain P (y) ⊆ P (z) and hence,

x ∈ P (z). Therefore, x ωA z by Proposition 3.4 and the proof is completed. ✷
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Example 3.7. In Example 2.8, if A = {d} then {b, e}, {c}, {d} and {f} are ω∗
A
-

parts of the hyperring R.It is not difficult to see that P (b) = {b, e}, P (c) = {c},
P (d) = {d} and P (f) = {f} and so by Theorem 3.6, ωA = ρA is transitive.

Example 3.8. In Example 2.9, P (1) = ρ∗a(1) = {· · · , 3, 1,−1, 3, · · · } and P (0) =
ρ∗a(0) = {· · · , 4, 2, 0,−2,−4, · · · } are ω∗

A
-parts of the hyperring Z. Then by Theorem

3.6, ωA = ρA is transitive.

4. New strongly regular relation χA

In this section, we introduce the relation χA on a hyperring R, which we use in
order to obtain a finite generated commutative ring as a quotient structure of R.
Moreover, we determine some necessary and sufficient conditions for the relation
χA to be transitive. Let (R,+, ·) be a hyperring, ∅ 6= A ⊆ R, a1, · · · , am ∈ A and

D = {t | t ∈
m
∑

i=1

ziai +
m
∑

i=1

siai +
m
∑

i=1

aiti +
m
∑

i=1

(
ni
∑

i=1

ui,kaivi,k),

m, ni ∈ N, zi ∈ Z, si, ti, ui,k, vi,k ∈ R}.

For all n ≥ 1 and (k1, · · · , kn) ∈ N
n define ℜA

n,k1,k2,··· ,kn
as follows.

ℜA

n,k1,k2,··· ,kn
:= αA

n,k1,k2,··· ,kn
∪ ℘A

n,k1,k2,··· ,kn
∪ An,k1,k2,··· ,kn

,

where

αA

n,k1,k2,··· ,kn
:= {(

n∑

i=1

ki∏

j=1

xij ,
n∑

i=1

ki∏

j=1

yij)|∃σ ∈ Sn,∃σi ∈ Ski
,

n∑

i=1

ki∏

j=1

yij =
n∑

i=1

Aσ(i),

with Ai =
ki
∏

j=1

xiσi(j),

℘A

n,k1,k2,··· ,kn
:= {(

n
∑

i=1

ki
∏

j=1

xij ,
n
∑

i=1

kσ(i)
∏

j=1

yij) | {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D

= {yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D 6= ∅, ∃σ ∈ Sn, σi ∈ Ski
,

yts ∈ {yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D ⇒ yts = xσ(t)σσ(t)(s)}

and

An,k1,k2,··· ,kn
:= {(

n
∑

i=1

ki
∏

j=1

xij ,
n
∑

i=1

ki
∏

j=1

yij) | {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D

= {yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D = ∅}.

Notice that ℜA
1,1 = {({x}, {y}) | {x, y} ∩D = ∅ or x = y}.

Definition 4.1. We define the relation χA on (R,+, ·) as follows:

x χA y ⇔ ∃(A,B) ∈ ℜA

n,k1,k2,··· ,kn
, x ∈ A, y ∈ B.
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Notice that for n = 1 and k1 = 1 we obtain x χA y ⇔ ({x}, {y}) ∈ ℜA
1,1 or

x = y ∈ D.

Remark 4.1. The relation χA is reflexive and symmetric and β, γ ⊆ χA and
γ, α ⊆ χA.

Let χ∗
A

be the transitive closure of χA. In order to analyze the quotient hyper-
structure with respect to this equivalence relation, we check that:

Lemma 4.2. χ∗
A

is a strongly regular equivalence relation both on (R,+) and on
(R, ·).

Proof. Clearly χ∗
A

is an equivalence relation. In order to prove that it is strongly
regular, it is enough to show that

x χA y ⇒

{

x+ z χA y + z, z + x χA z + y,

x · z χA y · z, z · x χA z · y,

for all z ∈ R. Since x χA y, it follows that there exists (A,B) ∈ ℜA

n,k1,k2,··· ,kn
such

that x ∈ A and y ∈ B. We distinguish the following situations.

Case 1. If (A,B) ∈ αA

n,k1,k2,··· ,kn
, then x ∈ A =

n
∑

i=1

(
ki
∏

j=1

xij) and y ∈ B =

n
∑

i=1

(
ki
∏

j=1

yij) and there exist σ ∈ Sn and σi ∈ Ski
such that

n
∑

i=1

ki
∏

j=1

yij =
n
∑

i=1

Aσ(i),

where Ai =
ki
∏

j=1

xiσi(j). Now, let kn+1 = 1, xn+1 1 = yn+1 1 = z, σn+1 = id and τ

be the permutation of Sn+1 such that

τ (i) = σ(i), for all i = 1, · · · , n and τ(n+ 1) = n+ 1.

Thus,

x+ z ⊆ (
n+1
∑

i=1

(
ki
∏

j=1

xij)) and y + z ⊆ (
n+1
∑

i=1

(
kτ(i)
∏

j=1

yij)).

It is easy to see that the pair (A + z,B + z) belongs to αA

n+1,k1,k2,··· ,kn,kn+1
⊆

ℜA

n+1,k1,k2,··· ,kn,kn+1
. Therefore, for all u ∈ x + z and v ∈ y + z, we have u ∈

x+ z ⊆ A+ z and v ∈ y + z ⊆ B + z. So, u χA v. Thus, x+ z χA y + z.

Case 2. If (A,B) ∈ ℘A

n,k1,k2,··· ,kn
, then x ∈ A =

n
∑

i=1

(
ki
∏

j=1

xij) and y ∈ B =

n
∑

i=1

(
ki
∏

j=1

yij) such that {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D = {yij|1 ≤ i ≤ n, 1 ≤ j ≤

ki} ∩ D 6= ∅ and σ ∈ Sn and σi ∈ Ski
such that for all 1 6 t 6 n, 1 6 s 6 kn if

yts ∈ D, then yts = xσ(t)σσ(t)(s). If z /∈ D, then it is easy to sea that (A+z,B+z) ∈

℘A

n,k1,k2,··· ,kn
. Let z ∈ D. Set kn+1 = 1, xn+1 1 = yn+1 1 = z, σn+1 = id and τ be

the permutation of Sn+1 such that

τ (i) = σ(i), for all i = 1, · · · , n and τ(n+ 1) = n+ 1.
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So, for 1 6 t 6 n+1 and 1 6 s 6 kn+1 if yts ∈ D, then yts = xσ(t)σσ(t)(s). Therefore,

(A+ z,B+ z) ∈ ℘A

n+1,k1,k2,··· ,kn,kn+1
. Hence, (A+ z,B+ z) ∈ ℜA

n+1,k1,k2,··· ,kn,kn+1
.

So, u χA v. Thus, x+ z χA y + z.

Case 3. If (A,B) ∈ An,k1,k2,··· ,kn
, then x ∈ A =

n
∑

i=1

(
ki
∏

j=1

xij) and y ∈ B =

n
∑

i=1

(
ki
∏

j=1

yij) such that {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D = {yij|1 ≤ i ≤ n, 1 ≤ j ≤

ki}∩D = ∅. If z /∈ D, then (A+z,B+z) ∈ An+1,k1,k2,··· ,kn,kn+1
and if z ∈ D, then

(A+ z,B + z) ∈ ℘A

n+1,k1,k2,··· ,kn,kn+1
. Thus, (A+ z,B + z) ∈ ℜA

n+1,k1,k2,··· ,kn,kn+1
.

Hence, u χA v. This implies that x+ z χA y + z.
In the same way, we can show that z + x χA z + y. It is easy to see that

z + x χ
∗

A z + y and x+ z χ
∗

A y + z.

Notice that for (R, ·) we have

Case 1. If (A,B) ∈ αA

n,k1,k2,··· ,kn
, then x ∈ A =

n
∑

i=1

(
ki
∏

j=1

xij) and y ∈ B =

n
∑

i=1

(
ki
∏

j=1

yij) and there exist σ ∈ Sn and σi ∈ Ski
such that

n
∑

i=1

ki
∏

j=1

yij =
n
∑

i=1

Aσ(i),

where Ai =
ki
∏

j=1

xiσi(j). We set f ′
i = ki + 1, xifi = z and we define

τ i(r) = σi(r) (for all r = 1, · · · , f ′
i) and τ i(f

′
i + 1) = f ′

i + 1.

Hence, τ i ∈ Sf ′

i
(i = 1, · · · , n). It is easy to see that the pair (A · z,B · z) belongs

to αA

n,f ′

1,f
′

2,··· ,f
′

n
⊆ ℜA

n,f ′

1,f
′

2,··· ,f
′

n
. Therefore, for all u ∈ x · z and v ∈ y · z, we have

u ∈ x · z ⊆ A · z and v ∈ y · z ⊆ B · z. So, u χA v. Thus, x · z χA y · z.

Case 2. If (A,B) ∈ ℘A

n,k1,k2,··· ,kn
, then x ∈ A =

n
∑

i=1

(
ki
∏

j=1

xij) and y ∈ B =

n
∑

i=1

(
ki
∏

j=1

yij) such that {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D = {yij |1 ≤ i ≤ n, 1 ≤

j ≤ ki} ∩ D 6= ∅, σ ∈ Sn and σi ∈ Ski
such that for all 1 6 t 6 n, 1 6 s 6

kn, if yts ∈ D, then yts = xσ(t)σσ(t)(s). If z /∈ D, then it is easy to sea that

(A ·z,B ·z) ∈ ℘A

n,f ′

1,f
′

2,··· ,f
′

n
, where f ′

i = ki+1, xifi = z. Let z ∈ D. Set f ′
i = ki+1,

xif ′

i
= yif ′

i
= z, and we define

τ (r) = σi(r), for all i = 1, · · · , ki and τ i(ki + 1) = ki + 1.

So, for 1 6 t 6 n and 1 6 s 6 f ′
i if yts ∈ D, then yts = xσ(t)σσ(t)(s). Therefore,

(A · z,B · z) ∈ ℘A

n,f ′

1,f
′

2,··· ,f
′

n
. This implies that (A · z,B · z) ∈ ℜA

n,f ′

1,f
′

2,··· ,f
′

n
. Hence,

u χA v. Thus, x · z χA y · z.
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Case 3. If (A,B) ∈ An,k1,k2,··· ,kn
, then x ∈ A =

n
∑

i=1

(
ki
∏

j=1

xij) and y ∈ B =

n
∑

i=1

(
ki
∏

j=1

yij) such that {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D = {yij|1 ≤ i ≤ n, 1 ≤ j ≤

ki} ∩ D = ∅. If z /∈ D, then (A · z,B · z) ∈ An,f ′

1,f
′

2,··· ,f
′

n
and if z ∈ D, we set

f ′
i = ki + 1, xif ′

i
= z and we define

τ i(r) = σi(r), for all r = 1, · · · , ki and τ i(ki + 1) = ki + 1.

Hence, τ i ∈ Sf ′

i
(i = 1, · · · , n). Thus, (A · z,B · z) ∈ ℜA

n,f ′

1,f
′

2,··· ,f
′

n
. This implies

that u χA v. Therefore, x · z χA y · z.
In the same way, we can show that z · x χA z · y. It is easy to see that

z · x χ
∗

A z · y and x · z χ
∗

A y · z.

✷

Theorem 4.3. The quotient R/χ∗
A

is a commutative ring with generators

{χ∗
A
(b), χ∗

A
(a1), χ

∗
A
(a2), · · · , χ∗

A
(am) | b ∈ (R−D), a1, · · · , am ∈ A},

where χ∗
A
(a1), χ

∗
A
(a2), · · · , χ∗

A
(am) ∈ R/χ∗

A
necessarily are not distinct.

Proof. By Lemma 4.2, χ∗
A

is a strongly regular relation, so the quotient structure
R/χ∗

A
is a ring with respect to the following operations:

χ∗
A(x)⊕ ω∗

A(y) = χ∗
A(z), for all z ∈ x+ y,

χ∗
A(x) ⊗ χ∗

A(y) = χ∗
A(t), for all t ∈ x · y.

Since α∗ ⊆ χ∗
A
, we conclude that χ∗

A
is a commutative ring. For all (x, y) ∈

(R −D)2 since {x, y} ∩ D = ∅, we have ({x}, {y}) ∈ ℜA
1,1 and hence xχ∗

A
y. This

implies that χ∗
A
(x) = χ∗

A
(y). If b ∈ (R − D), then for every x ∈ (R − D) we

have χ∗
A
(x) = χ∗

A
(b). Now, suppose that χ∗

A
(h) is given. If h ∈ (R − D), then

χ∗
A
(h) = χ∗

A
(b) and if h ∈ D, then χ∗

A
(h) ∈ 〈χ∗

A
(a1), · · · , χ

∗
A
(am)〉. Thus, R/χ∗

A
=

{χ∗
A
(b)} ∪ 〈χ∗

A
(a1), · · · , χ∗

A
(am)〉. ✷

Now, suppose that A = {a}, so D = {t | t ∈ ra+as+na+
m
∑

i=1

riasi, r, s, ri, si ∈

R,m ∈ N, n ∈ Z}. Put ψa := χA and ψ∗
a := χ∗

A
. Then, we have the following

corollary.

Corollary 4.4. The quotient R/ψ∗
a is a commutative ring generated by ψ∗

a(a),
i.e, R/ψ∗

a = 〈ψ∗
a(a)〉 = {nψ∗

a(a) ⊕ (ψ∗
a(r) ⊗ ψ∗

a(a)) | n ∈ Z, ψ∗
a(r) ∈ R/ψ∗

a} or
|R/ρ∗a| ≤ 2.
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Corollary 4.5. If R − D = ∅, which means that R is a hyperring generated by
the element a, then R/ψ∗

a = 〈ρ∗a(a)〉 = {nψ∗
a(a)⊕ (ψ∗

a(r)⊗ ψ∗
a(a)) | n ∈ Z, ψ∗

a(r) ∈
R/ψ∗

a}.

Corollary 4.6. If the hyperring R has an identity element, then R/ψ∗
a = 〈ρ∗a(a)〉 =

{ψ∗
a(a)⊗ ψ∗

a(r) | ψ∗
a(r) ∈ R/ψ∗

a} or |R/ψ∗
a| ≤ 2.

Example 4.7. Suppose that

R =M2(Z4) =

{(

c 0
b 0

)

| c, b ∈ Z4

}

, A =

{(

2 0
3 0

)}

It is easy to see that R/ψ∗
a is a commutative ring such that R/ψ∗

a
∼= Z2 and R/α∗ ∼=

Z4 and so, ψ∗
a 6= α∗. If A =

{(

1 0
2 0

)}

then R/ψ∗
a = R/α∗ ∼= Z4.

Example 4.8. Let R = {0, 1, 2, 3, 4, 5, 6} be a set with the hyperoperations + and
· defined as follow:

+ 0 1 2 3 4 5 6
0 {0, 5} 1 {2, 6} {3, 4} {3, 4} {0, 5} {2, 6}
1 1 {0, 5} {3, 4} {2, 6} {2, 6} 1 {3, 4}
2 {2, 6} {3, 4} {0, 5} 1 1 {2, 6} {0, 5}
3 {3, 4} {2, 6} 1 {0, 5} {0, 5} {3, 4} 1
4 {3, 4} {2, 6} 1 {0, 5} {0, 5} {3, 4} 1
5 {0, 5} 1 {2, 6} {3, 4} {3, 4} {0, 5} {2, 6}
6 {2, 6} {3, 4} {0, 5} 1 1 {2, 6} {0, 5}

· 0 1 2 3 4 5 6
0 {0, 5} {0, 5} {0, 5} {0, 5} {0, 5} {0, 5} {0, 5}
1 {0, 5} 1 {0, 5} 1 1 {0, 5} {0, 5}
2 {0, 5} {2, 6} {0, 5} {2, 6} {2, 6} {0, 5} {0, 5}
3 {0, 5} {3, 4} {0, 5} {3, 4} {3, 4} {0, 5} {0, 5}
4 {0, 5} {3, 4} {0, 5} {3, 4} {3, 4} {0, 5} {0, 5}
5 {0, 5} {0, 5} {0, 5} {0, 5} {0, 5} {0, 5} {0, 5}
6 {0, 5} {2, 6} {0, 5} {2, 6} {2, 6} {0, 5} {0, 5}

Then (R,+, ·) is a non-commutative hyperring such that is not a ring. Set A = {2}.
Then, D = {0, 2, 5, 6} and R − D = {1, 3, 4}. Since 1 · 3 + 1 · 3 = {0, 5} and
1 · 3 + 3 · 1 = {2, 6} so ψ∗

a(0) = {0, 2, 5, 6} and ψ∗
a(1) = {1, 3, 4}. Therefore

R/ψ∗
a
∼= Z2. But R/γ

∗ = {0̄, 1̄, 2̄, 3̄} when 0̄ = {0, 5}, 1̄ = {1}, 2̄ = {2, 6} and
3̄ = {3, 4}, is a non-commutative ring with the following table:

+ 0̄ 1̄ 2̄ 3̄
0̄ 0̄ 1̄ 2̄ 3̄
1̄ 1̄ 0̄ 3̄ 2̄
2̄ 2̄ 3̄ 0̄ 1̄
3̄ 3̄ 2̄ 1̄ 0̄

· 0̄ 1̄ 2̄ 3̄
0̄ 0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 0̄ 1̄
2̄ 0̄ 2̄ 0̄ 2̄
3̄ 0̄ 3̄ 0̄ 3̄

In this Example we have γ∗ 6= ψ∗
a.
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Theorem 4.9. The relation ψ∗
a is the smallest strongly regular relation such that

the quotient R/ψ∗
a is a commutative ring generated by ρ∗a(a) or |R/ψ∗

a| ≤ 2, where
the equivalence classes of all elements of R−D are equal.

Proof. Let θ be a strongly regular equivalence such that quotient R/θ is a com-
mutative ring generated by θ∗(a) or |R/θ∗| ≤ 2, and the equivalence classes of θ
of all elements of (R −D) are equal. Suppose that φ : R =⇒ R/θ is the canonical
projection. φ is a good homomorphism. We show that ψ∗

a ⊆ θ. Let x ψ∗
a y. So

there exists (A,B) ∈ ℜA

n,k1,k2,··· ,kn
such that x ∈ A and y ∈ B. We have three

cases:

Case 1. If (A,B) ∈ αA

n,k1,k2,··· ,kn
, then A =

n
∑

i=1

(
ki
∏

j=1

xij) and B =
n
∑

i=1

(
ki
∏

j=1

yij)

and there exist σ ∈ Sn and σi ∈ Ski
such that

n
∑

i=1

ki
∏

j=1

yij =
n
∑

i=1

Aσ(i), where

Ai =
ki
∏

j=1

xiσi(j). Therefore,

φ(x) = ⊕
n
∑

i=1

(⊗
ki
∏

j=1

xij) and φ(y) = ⊕
n
∑

i=1

(⊗
ki
∏

j=1

(yij)).

By the commutativity of R/θ, it follows that φ(x) = φ(y). Thus x θ y.

Case 2. If (A,B) ∈ ℘A

n,k1,k2,··· ,kn
, then A =

n
∑

i=1

(
ki
∏

j=1

xij) and B =
n
∑

i=1

(
ki
∏

j=1

yij)

such that {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki}∩D = {yij|1 ≤ i ≤ n, 1 ≤ j ≤ ki}∩D 6= ∅ and
there exists σ ∈ Sn and σi ∈ Ski

such that for all 1 6 t 6 n, 1 6 s 6 kn if yts ∈ D,
then yts = xσ(t)σσ(t)(s). Renumber of the elements of the sets {xij |1 ≤ i ≤ n, 1 ≤
j ≤ ki} and {yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} such that {yij |1 ≤ i ≤ n′, 1 ≤ j ≤ k′i} ⊆ D,
where 1 6 n′ 6 n and 1 6 k′i 6 ki and xt′s′ , yt′s′ /∈ D for all n′+1 6 t′ 6 n and k′i+

1 6 s′ 6 ki. So, φ(x) = (⊕
n′

∑

i=1

(⊗
k′

i
∏

j=1

θ(xij)))
⊕

(⊕
n
∑

t′=n′+1

(⊗
ki
∏

s′=k′

i
+1

θ(xij))) and

φ(y) = (⊕
n′

∑

i=1

(⊗
k′

i
∏

j=1

θ(xσ(i)σσ(i)(j))))
⊕

(⊕
n
∑

t′=n′+1

(⊗
ki
∏

s′=k′

i
+1

θ(yij))). For all n
′+1 6

l, l′ 6 n and k′i + 1 6 d, d′ 6 ki we have φ(xld) = φ(yl′d′) and since R/θ is a
commutative ring so, φ(x) = φ(y) and x θ y.

Case 3. If (A,B) ∈ An,k1,k2,··· ,kn
, then A =

n
∑

i=1

(
ki
∏

j=1

xij) and B =
n
∑

i=1

(
ki
∏

j=1

yij)

such that {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D = {yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D = ∅.
Therefore, for all 1 ≤ i ≤ n and 1 ≤ j ≤ ki we have φ(xij) = φ(yij). Thus,
φ(x) = φ(y) and x θ y.

In the all cases we have x θ y and hence x ψa y implies that x θ y. Thus, x ψ∗
a y

implies that x θ y by transitivity of R. Therefore, ψ∗
a ⊆ θ. ✷

Definition 4.10. We say that M is a χ∗
A
-part of R if the following conditions

hold:
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(F1) For all σ ∈ Sn and σi ∈ Ski
,

n
∑

i=1

Aσ(i) ⊆M , where Ai =
ki
∏

j=1

xiσi(j)

(F2) If {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D 6= ∅, then for all
n
∑

i=1

(
ki
∏

j=1

yij) such that

{xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D = {yij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D there exist
σ ∈ Sn and σi ∈ Ski

for which for all yij ∈ {yij|1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D,

yij = xσ(i)σσ(i)(j) we have
n
∑

i=1

(
ki
∏

j=1

yij) ⊆M ;

(F3) If {xij |1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩ D = ∅, then for all
n
∑

i=1

(
ki
∏

j=1

yij) such that

{yij|1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∩D = ∅, we have
n
∑

i=1

(
ki
∏

j=1

yij) ⊆M .

Example 4.11. In Example 4.8, χ∗
A
-parts of R are exactly ψ∗

a(0) = {0, 2, 5, 6},
ψ∗
a(1) = {1, 3, 4} and R. Also, complete parts(γ∗-parts) of R are exactly {0, 5},

{1}, {2, 6} and {3, 4} or unions of them. It is clear that ψ∗
a(0) = {0, 2, 5, 6} and

ψ∗
a(1) = {1, 3, 4} are complete parts(γ∗-parts) of R.

Let φ : R −→ R/χ∗
A

be the canonical projection and let D(R) be the kernel of
φ. If we denote by 0 the zero element of R/χ∗

A
, then D(R) = φ−1(0)

Theorem 4.12. For every non empty subset B of hyperring R, we have

1) φ−1(φ(B)) = D(R) +B = B +D(R).

2) If B is a χ∗
A
-part of R, then φ−1(φ(B)) = B.

Proof. 1) For every x ∈ D(R) +B, there exists a pair (b, a) ∈ B ×D(R) such that
x ∈ a + b, so φ(x) = φ(a) ⊕ φ(b) = 0 ⊕ φ(b) = φ(b). Therefore, x ∈ φ−1(φ(b)) ⊆
φ−1(φ(B)). Conversely, for every x ∈ φ−1(φ(B)), an element b ∈ B exists such
that φ(x) = φ(b). By the reproducibility a ∈ R exists such that x ∈ b + a, so
φ(b) = φ(x) = φ(b) ⊕ φ(a), hence φ(a) = 0 and a ∈ φ−1(0) = D(R). Therefore,
x ∈ b+ a ⊆ B +D(R). This prove that φ−1(φ(B)) = D(R) +B. In the same way,
it is possible to prove that φ−1(φ(B)) = B +D(R).

2) It is obvious that B ⊆ φ−1(φ(B)). Moreover, if x ∈ φ−1(φ(B)), then there
exists an element b ∈ B such that φ(x) = φ(b). Since B is a χ∗

A
-part, it follows

that x ∈ φ(x) = φ(b) ⊆ B and therefore φ−1(φ(B)) ⊆ B. ✷
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