

(3s.) **v. 39** 1 (2021): 51–69. ISSN-00378712 IN PRESS doi:10.5269/bspm.40500

Finitely Generated Rings Obtain From Hyperrings Through the Fundamental Relations

S. Mirvakili, P. Ghiasvand and B. Davvaz

ABSTRACT: In this article, we introduce and analyze a strongly regular relation $\omega_{\mathcal{A}}^*$ on a hyperring R such that in a particular case we have $|R/\omega_{\mathcal{A}}^*| \leq 2$ or $R/\omega_{\mathcal{A}}^* = \langle \omega_{\mathcal{A}}^*(a) \rangle$, i.e., $R/\omega_{\mathcal{A}}^*$ is a finite generated ring. Then, by using the notion of $\omega_{\mathcal{A}}^*$ -parts, we investigate the transitivity condition of $\omega_{\mathcal{A}}$. Finally, we investigate a strongly regular relation $\chi_{\mathcal{A}}^*$ on the hyperring R such that $R/\chi_{\mathcal{A}}^*$ is a finitely generated commutative ring.

Key Words: Hyperring, Strongly regular relation, Ring.

Contents

1	Introduction	51
2	The Relation $\omega_{\mathcal{A}}$	53
3	The transitivity condition of $\omega_{\mathcal{A}}$	58
4	New strongly regular relation χ_A	62

1. Introduction

A hypergroup in the sense of Marty [9] is a non-empty set H endowed with a hyperoperation $: H \times H \longrightarrow \wp^*(H)$, the set of all non-empty subset of H, which satisfies the associative law and the reproduction axiom. If (H, \cdot) is a hypergroup and $\rho \subseteq H \times H$ is an equivalence relation, then for all non-empty subsets A, B of H we set $A \overline{\rho} B$ if and only if $a\rho b$, for all $a \in A$, $b \in B$. The relation ρ is called *strongly* regular on the right (on the left) if $x \rho y \Rightarrow a \cdot x \overline{\rho} a \cdot y (x \rho y \Rightarrow x \cdot a \overline{\rho} y \cdot a$, respectively), for all $(x, y, a) \in H^3$. Moreover, ρ is called strongly regular if it is strongly regular on the right and on the left. Let H be a hypergroup and ρ an equivalence relation on H. A hyperoperation \otimes is defined on H/ρ by $\rho(a) \otimes \rho(b) = \{\rho(x) | x \in \rho(a) \cdot \rho(b)\}$. If ρ is strongly regular, then it readily follows that $\rho(a) \otimes \rho(b) = \{\rho(x) \mid x \in a \cdot b\}$. It is well known for ρ strongly regular that $\langle H/\rho, \otimes \rangle$ is a group, that is, $\rho(a) \otimes \rho(b) = \rho(c)$ for all $c \in a \cdot b$. Basic definitions and propositions about the hyperstructures can be found in [2,3,5]. Krasner [8] has studied the notion of hyperfield, hyperring, and then some researchers works on this subject. The more general structure that satisfies the ring-like axioms is the hyperring in the general sense: $(R, +, \cdot)$ is a hyperring if + and \cdot are two hyperoperations such that (R, +) is a hypergroup and \cdot is an associative hyperoperation, which is distributive with respect to +. We call

Typeset by ℬ^Sℋstyle. ⓒ Soc. Paran. de Mat.

²⁰¹⁰ Mathematics Subject Classification: 16Y99, 20N20.

Submitted November 17, 2017. Published February 07, 2018

 $(R, +, \cdot)$ a hyperfield if $(R, +, \cdot)$ is a hyperring and (R, \cdot) is a hypergroup. There are different notions of hyperrings. If only the addition + is a hyperoperation and the multiplication \cdot is a binary operation, then the hyperring is called Krasner additive hyperring [8]. Davvaz and Leoreanu-Fotea [5] published a book titled Hyperring Theory and Applications. The hyperrings were studied by many authors, for example see [4,7,11,12,13,15]. In [1], Babaeia et al. introduced the notion of \Re -parts in hyperrings as a generalization of complete parts in hyperrings. In [5] there are several types of hyperrings and hyperfields. In what follows we shall consider one of the most general types of hyperrings.

Definition 1.1. [14] The triple $(R, +, \cdot)$ is a hyperring if (1) (R, +) is a hypergroup; (2) (R, \cdot) is a semihypergroup; (3) the hyperoperation " \cdot " is distributive over the hyperoperation "+", which means that for all x, y, z of R we have: $x \cdot (y + z) = x \cdot y + x \cdot z$ and $(x + y) \cdot z = x \cdot z + y \cdot z$. We call $(R, +, \cdot)$ a hyperfield if $(R, +, \cdot)$ is a hyperring and (R, \cdot) is a hypergroup.

Example 1.2. Let $R = \{0, 1, 2, 3, 4\}$ be a set with the hyperoperations + and \cdot defined as follow:

+	0	1	2	3	4
0		1	$\{2,3\}$	$\{2,3\}$	$\{0, 4\}$
1	1	$\{2,3\}$	$\{0, 4\}$	$\{0, 4\}$	1
2	$\{2,3\}$	$\{0, 4\}$	1	1	$\{2,3\}$
3	$\{2,3\}$	$\{0, 4\}$	1	1	$\{2,3\}$
4	$\{0,4\}$	1	$\{2, 3\}$	$\{2, 3\}$	$\{0, 4\}$
	0	1	2	3	4
0					-
0	$\{0, 4\}$	$\{0, 4\}$	$\{0,4\}$		$\{0,4\}$
0 1	$\{0,4\}$ $\{0,4\}$	$\{0,4\}$ 1	$\{0,4\} \\ \{2,3\}$		
$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$			$\{2,3\}$	$\{0,4\} \\ \{2,3\}$	$\{0, 4\}$
$\frac{1}{2}$	$\{0, 4\}$	$1 \{2,3\}$	$\{2,3\}$ 1	$\{ \begin{array}{c} \{0,4\} \\ \{2,3\} \\ 1 \end{array} \}$	$\{0,4\} \\ \{0,4\}$

Then $(R, +, \cdot)$ is a finite hyperring such that is not a ring.

Example 1.3. Let $(R, +, \cdot)$ be a finite ring and S be a non-empty finite set such that $S \cap R = \emptyset$. Let $A = R \cup S$ and define two hyperoperations \oplus and \odot on A as follow: For all $x, y \in R$ and $s, t \in S$

$$x \oplus y = \begin{cases} x+y & \text{if } x+y \neq 0\\ S \cup \{0\} & \text{if } x+y=0 \end{cases} \text{ and } x \odot y = \begin{cases} x \cdot y & \text{if } x \cdot y \neq 0\\ S \cup \{0\} & \text{if } x \cdot y=0 \end{cases}$$

and

$$x \oplus t = x \oplus 0, \ s \oplus y = 0 \oplus y, s \oplus t = S \cup \{0\}, \ x \odot t = s \odot y = s \odot t = S \cup \{0\}$$

It is not difficult to see that (A, \oplus, \odot) is a proper finite hyperring.

Let us recall now some important equivalence relations and results of hypergroup and hyperring theory.

Definition 1.4. [15] Let $(R, +, \cdot)$ be a hyperring. We define the relation γ as follows: $x \gamma y \Leftrightarrow \exists n \in \mathbb{N}, \exists (k_1, \cdots, k_n) \in \mathbb{N}^n$ and $[\exists (x_{i1}, \cdots, x_{ik_i}) \in \mathbb{R}^{k_i}, (i = 1, \cdots, n)]$ such that

$$x, y \in \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij}).$$

Let γ^* be the transitive closure of γ . The fundamental relation γ^* on R can be considered as the smallest equivalence relation such that the quotient R/γ^* be a ring.

Definition 1.5. [6] Let $(R, +, \cdot)$ be a hyperring. We define the relation α as follows: $x \alpha y \Leftrightarrow \exists n \in \mathbb{N}, \exists (k_1, \cdots, k_n) \in \mathbb{N}^n, \exists \tau \in \mathbb{S}_n$ and $[\exists (x_{i1}, \cdots, x_{ik_i}) \in \mathbb{R}^{k_i}, \exists \tau_i \in \mathbb{S}_{k_i}, (i = 1, \cdots, n)]$ such that

$$x \in \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij}) \text{ and } y \in \sum_{i=1}^{n} A_{\tau(i)},$$

where $A_i = \prod_{j=1}^{k_i} x_{i\tau_i(j)}$.

Let α^* be the transitive closure of α . Then, α^* is the smallest strongly regular relation on R such that R/α^* is a commutative ring.

Definition 1.6. [5] Let $(R, +, \cdot)$ be a hyperring and M be a non-empty subset of R. We say that M is a α -part if for every $n \in \mathbb{N}, \exists (k_1, \cdots, k_n) \in \mathbb{N}^n, \exists \tau \in \mathbb{S}_n$ and $[\exists (x_{i_1}, \cdots, x_{i_k}) \in \mathbb{R}^{k_i}, \exists \tau_i \in \mathbb{S}_{k_i}, (i = 1, \cdots, n)]$ such that

$$\sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij}) \cap M \neq \emptyset \Rightarrow \sum_{i=1}^{n} A_{\tau(i)} \subseteq M,$$

where $A_i = \prod_{j=1}^{k_i} x_{i\tau_i(j)}$. Also, M is said to be a complete part of R [10], if we have

$$\sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij}) \cap M \neq \emptyset \Rightarrow \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij}) \subseteq M.$$

2. The Relation ω_A

In this section, we introduce the relation $\omega_{\mathcal{A}}$ on a hyperring R, which we use in order to obtain a finite generated ring as a quotient structure of R.

Let $(R, +, \cdot)$ be a hyperring, \mathcal{A} is a non-empty subset of $R, a_1, \cdots, a_m \in \mathcal{A}$ and

$$\mathcal{D} = \{t \mid t \in \sum_{i=1}^{m} z_i a_i + \sum_{i=1}^{m} s_i a_i + \sum_{i=1}^{m} a_i t_i + \sum_{i=1}^{m} (\sum_{i=1}^{n_i} u_{i,k} a_i v_{i,k}), \\ m, n_i \in \mathbb{N}, \ z_i \in \mathbb{Z}, \ s_i, t_i, u_{i,k}, v_{i,k} \in R\}.$$

For all $n \geq 1$ and $(k_1, \dots, k_n) \in \mathbb{N}^n$ define $\mathcal{R}^{\mathcal{A}}_{n,k_1,k_2,\dots,k_n}$ as follows:

$$\mathcal{R}^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n} := \gamma^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n} \cup \mathfrak{S}^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n} \cup \xi^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n}$$

where

$$\begin{split} \gamma_{n,k_{1},k_{2},\cdots,k_{n}}^{\mathcal{A}} &:= \{ (\sum_{i=1}^{n} \prod_{j=1}^{k_{i}} x_{ij}, \sum_{i=1}^{n} \prod_{j=1}^{k_{i}} y_{ij}) \mid \sum_{i=1}^{n} \prod_{j=1}^{k_{i}} x_{ij} = \sum_{i=1}^{n} \prod_{j=1}^{k_{i}} y_{ij} \}, \\ \Im_{n,k_{1},k_{2},\cdots,k_{n}}^{\mathcal{A}} &:= \{ (\sum_{i=1}^{n} \prod_{j=1}^{k_{i}} x_{ij}, \sum_{i=1}^{n} \prod_{j=1}^{k_{i}} y_{ij}) \mid \{x_{ij} \mid 1 \le i \le n, 1 \le j \le k_{i} \} \cap \mathcal{D} \\ &= \{ y_{ij} \mid 1 \le i \le n, 1 \le j \le k_{i} \} \cap \mathcal{D} \ne \varnothing \} \end{split}$$

and

$$\begin{split} \xi^{\mathcal{A}}_{n,k_{1},k_{2},\cdots,k_{n}} &:= \{ (\sum_{i=1}^{n} \prod_{j=1}^{k_{i}} x_{ij}, \sum_{i=1}^{n} \prod_{j=1}^{k_{i}} y_{ij}) \mid \{x_{ij} \mid 1 \leq i \leq n, 1 \leq j \leq k_{i}\} \cap \mathcal{D} \\ &= \{y_{ij} \mid 1 \leq i \leq n, 1 \leq j \leq k_{i}\} \cap \mathcal{D} = \varnothing \}. \end{split}$$

Notice that $\mathcal{R}_{1,1}^{\mathcal{A}} := \{(\{x\}, \{y\}) \mid \{x, y\} \cap \mathcal{D} = \emptyset \text{ or } x = y\}.$

Definition 2.1. We define the relation $\omega_{\mathcal{A}}$ on $(R, +, \cdot)$ as follows:

$$x \ \omega_{\mathcal{A}} \ y \Leftrightarrow \ \exists (A, B) \in \mathfrak{R}_{n, k_1, k_2 \cdots, k_n}^{\mathcal{A}}, \text{ such that } x \in A, \ y \in B.$$

Notice that for n = 1 and $k_1 = 1$ we obtain $x \ \omega_{\mathcal{A}} \ y$ if and only if $(\{x\}, \{y\}) \in \mathcal{R}_{1,1}^{\mathcal{A}}$ or $x = y \in \mathcal{D}$.

Remark 2.1. The relation $\omega_{\mathcal{A}}$ is reflexive and symmetric and $\beta \subseteq \omega_{\mathcal{A}}$ and $\gamma \subseteq \omega_{\mathcal{A}}$.

Let $\omega_{\mathcal{A}}^*$ be the transitive closure of $\omega_{\mathcal{A}}$. In order to analyze the quotient hyperstructure with respect to this equivalence relation, we state the following lemma.

Lemma 2.2. $\omega_{\mathcal{A}}^*$ is a strongly regular equivalence relation both on (R, +) and on (R, \cdot) .

Proof. Clearly, $\omega_{\mathcal{A}}^*$ is an equivalence relation. In order to prove that it is strongly regular, it is enough to show that

$$x \ \omega_{\mathcal{A}} \ y \Longrightarrow \begin{cases} x + a \ \overline{\omega}_{\mathcal{A}} \ y + a, & a + x \ \overline{\omega}_{\mathcal{A}} \ a + y, \\ x \cdot a \ \overline{\omega}_{\mathcal{A}} \ y \cdot a, & a \cdot x \ \overline{\omega}_{\mathcal{A}} \ a \cdot y, \end{cases}$$

for all $a \in R$. Since $x \omega_A y$, it follows that there exists $(A, B) \in \mathcal{R}^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n}$ such that $x \in A$ and $y \in B$. We distinguish the following situations.

Case 1. Suppose that $(A, B) \in \gamma_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$ such that $x \in A = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})$ and $y \in B = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$. Then, we have $x + a \subseteq A + a = (\sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})) + a$ and

54

$$y + a \subseteq B + a = \left(\sum_{i=1}^{n} \left(\prod_{j=1}^{k_i} y_{ij}\right)\right) + a. \text{ Set } a = x_{n+1-1} = y_{n+1-1} \text{ and } k_{n+1} = 1. \text{ Thus,}$$
$$x + a \subseteq \left(\sum_{i=1}^{n+1} \left(\prod_{j=1}^{k_i} x_{ij}\right) and \ y + a \subseteq \left(\sum_{i=1}^{n+1} \left(\prod_{j=1}^{k_i} y_{ij}\right)\right).$$

It is easy to see that the pair (A + a, B + a) belongs to $\gamma_{n+1,k_1,k_2,\cdots,k_n}^{\mathcal{A}} \subseteq \mathcal{R}_{n+1,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$. Therefore, for all $u \in x+a$ and $v \in y+a$, we have $u \in x+a \subseteq A+a$ and $v \in y+a \subseteq B+a$. So, $u \omega_{\mathcal{A}} v$. Thus, $x + a \overline{\omega}_{\mathcal{A}} y + a$. Case 2. Suppose that $(A, B) \in \mathfrak{S}_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$. Then, we have $x \in A =$

 $\begin{array}{l} Case \ 2. \ \ \text{Suppose that} \ (A,B) \in \mathfrak{S}^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n}. \ \ \text{Then, we have} \ x \in A = \\ \sum\limits_{i=1}^n (\prod\limits_{j=1}^{k_i} x_{ij}) \ \text{and} \ y \in B = \sum\limits_{i=1}^n (\prod\limits_{j=1}^{k_i} y_{ij}) \ \text{such that} \ \{x_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \\ \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} \neq \varnothing. \ \text{If} \ a \notin \mathcal{D}, \ \text{then} \ (A+a,B+a) \in \mathfrak{S}^{\mathcal{A}}_{n+1,k_1,k_2,\cdots,k_n} \\ \text{and if} \ a \in \mathcal{D}, \ \text{then} \ (A+a,B+a) \in \mathfrak{S}^{\mathcal{A}}_{n+1,k_1,k_2,\cdots,k_n}. \ \text{Thus, according to} \ Case \ 1, \\ (A+a,B+a) \in \mathfrak{R}^{\mathcal{A}}_{n+1,k_1,k_2,\cdots,k_n}. \ \text{So,} \ u \ \omega_{\mathcal{A}} \ v. \ \text{Thus,} \ x+a \ \overline{\omega}_{\mathcal{A}} \ y+a. \\ Case \ 3. \ \ \text{Suppose that} \ (A,B) \ \in \ \xi^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n}. \ \ \text{Then, we have} \ x \in A = \\ \end{array}$

Case 3. Suppose that $(A, B) \in \xi_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$. Then, we have $x \in A = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})$ and $y \in B = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ such that $\{x_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \emptyset$. If $a \notin \mathcal{D}$, then $(A+a, B+a) \in \xi_{n+1,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$ and if $a \in \mathcal{D}$, then $(A+a, B+a) \in \mathfrak{S}_{n+1,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$. Thus, according to Case 1, $(A+a, B+a) \in \mathfrak{R}_{n+1,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$. So, $u \omega_{\mathcal{A}} v$. This implies that $x + a \overline{\omega}_{\mathcal{A}} y + a$.

In the same way, we can show that $a + x \overline{\overline{\omega}}_{\mathcal{A}} a + y$. It is easy to see that

$$a + x \,\overline{\overline{\omega}}_{\mathcal{A}}^* a + y \quad \text{and} \quad x + a \,\overline{\overline{\omega}}_{\mathcal{A}}^* y + a.$$

Notice that for (R, \cdot) we have

Case 1. Suppose that $(A, B) \in \gamma_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$ such that $x \in A = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})$ and $y \in B = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$. Then, we obtain $x \cdot a \subseteq A \cdot a = (\sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})) \cdot a$ and $y \cdot a \subseteq B \cdot a = (\sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})) \cdot a$. Set $k'_i = k_i + 1$, $x_{ik'_i} = a$ and $y_{ik'_i} = a$. Thus,

$$x \cdot a \subseteq (\sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})) \text{ and } y \cdot a \subseteq (\sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})).$$

It is easy to see that the pair $(A \cdot a, B \cdot a)$ belongs to $\gamma_{n,k'_1,k'_2,\cdots,k'_n}^{\mathcal{A}} \subseteq \mathcal{R}_{n,k'_1,k'_2,\cdots,k'_n}^{\mathcal{A}}$. Therefore, for all $u \in x \cdot a$ and $v \in y \cdot a$, we have $u \in x \cdot a \subseteq A \cdot a$ and $v \in y \cdot a \subseteq B \cdot a$. So, $u \omega_{\mathcal{A}} v$. This implies that $x \cdot a \ \overline{\omega}_{\mathcal{A}} y \cdot a$.

Case 2. Suppose that
$$(A, B) \in \mathfrak{S}^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n}$$
. Then, we have $x \in A = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})$ and $y \in B = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ such that $\{x_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} =$

 $\{y_{ij}|1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} \neq \varnothing. \text{ If } a \notin \mathcal{D}, \text{ then } (A \cdot a, B \cdot a) \in \mathfrak{S}_{n+1,k_1,k_2,\cdots,k_n}^{\mathcal{A}} \\ \text{and if } a \in \mathcal{D}, \text{ then } (A \cdot a, B \cdot a) \in \mathfrak{S}_{n,k'_1,k'_2,\cdots,k'_n}^{\mathcal{A}}. \text{ Thus, according to } Case 1, \\ (A \cdot a, B \cdot a) \in \mathfrak{R}_{n,k'_1,k'_2,\cdots,k'_n}^{\mathcal{A}}. \text{ So, } u \; \omega_{\mathcal{A}} \; v. \text{ We conclude that } x \cdot a \; \overline{\omega}_{\mathcal{A}} \; y \cdot a.$

 $\begin{array}{l} Case \ 3. \ \ \text{Suppose that} \ (A,B) \in \xi_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}. \ \ \text{Then, we have} \ x \in A = \\ \sum\limits_{i=1}^n (\prod\limits_{j=1}^{k_i} x_{ij}) \ \text{and} \ y \in B = \sum\limits_{i=1}^n (\prod\limits_{j=1}^{k_i} y_{ij}) \ \text{such that} \ \{x_{ij} | 1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} = \\ \{y_{ij} | 1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} = \varnothing. \ \ \text{If} \ a \notin \mathcal{D}, \ \text{then} \ (A \cdot a, B \cdot a) \in \xi_{n,k_1',k_2',\cdots,k_n'}^{\mathcal{A}}. \\ \text{and if} \ a \in \mathcal{D}, \ \text{then} \ (A \cdot a, B \cdot a) \in \Im_{n,k_1',k_2',\cdots,k_n'}^{\mathcal{A}}. \ \ \text{Thus, according to} \ Case1, \\ (A \cdot a, B \cdot a) \in \Re_{n,k_1',k_2',\cdots,k_n'}^{\mathcal{A}}. \ \text{So,} \ u \ \omega_{\mathcal{A}} \ v. \ \ \text{This implies that} \ x \cdot a \ \overline{\omega}_{\mathcal{A}} \ y \cdot a. \end{array}$

In the same way, we can show that $a \cdot x \,\overline{\overline{\omega}}_{\mathcal{A}} \, a \cdot y$. It is easy to see that $a \cdot x \,\overline{\overline{\omega}}_{\mathcal{A}}^* \, a \cdot y$ and $x \cdot a \,\overline{\overline{\omega}}_{\mathcal{A}}^* \, y \cdot a$.

Theorem 2.3. The quotient R/ω_A^* is a ring with generators

$$\{\omega_{\mathcal{A}}^{*}(b), \omega_{\mathcal{A}}^{*}(a_{1}), \omega_{\mathcal{A}}^{*}(a_{2}), \cdots, \omega_{\mathcal{A}}^{*}(a_{m}) \mid b \in (R - \mathcal{D}), a_{1}, \cdots, a_{m} \in \mathcal{A}\}$$

where $\omega_{\mathcal{A}}^*(a_1), \omega_{\mathcal{A}}^*(a_2), \cdots, \omega_{\mathcal{A}}^*(a_m) \in R/\omega_{\mathcal{A}}^*$ necessarily are not distinct.

Proof. By Lemma 2.2, $\omega_{\mathcal{A}}^*$ is a strongly regular equivalence relation, so the quotient structure $R/\omega_{\mathcal{A}}^*$ is a ring with respect to the following operations:

$$\omega_{\mathcal{A}}^{*}(x) \oplus \omega_{\mathcal{A}}^{*}(y) = \omega_{\mathcal{A}}^{*}(z), \text{ for all } z \in x + y,$$
$$\omega_{\mathcal{A}}^{*}(x) \otimes \omega_{\mathcal{A}}^{*}(y) = \omega_{\mathcal{A}}^{*}(t), \text{ for all } t \in x \cdot y.$$

For all $(x, y) \in (R - \mathcal{D})^2$ since $\{x, y\} \cap \mathcal{D} = \emptyset$, we have $(\{x\}, \{y\}) \in \mathcal{R}_{1,1}^A$ and hence $x\omega_{\mathcal{A}}^*y$ then $\omega_{\mathcal{A}}^*(x) = \omega_{\mathcal{A}}^*(y)$. If $b \in (R - \mathcal{D})$, then for every $x \in (R - \mathcal{D})$ we have $\omega_{\mathcal{A}}^*(x) = \omega_{\mathcal{A}}^*(b)$. Now, suppose that $\omega_{\mathcal{A}}^*(h)$ is given. If $h \in (R - \mathcal{D})$, then $\omega_{\mathcal{A}}^*(h) = \omega_{\mathcal{A}}^*(b)$ and if $h \in \mathcal{D}$ then $\omega_{\mathcal{A}}^*(h) \in \langle \omega_{\mathcal{A}}^*(a_1), \cdots, \omega_{\mathcal{A}}^*(a_m) \rangle$. Therefore, $R/\omega_{\mathcal{A}}^* = \{\omega_{\mathcal{A}}^*(b)\} \cup \langle \omega_{\mathcal{A}}^*(a_1), \cdots, \omega_{\mathcal{A}}^*(a_m) \rangle$. \Box

Example 2.4. Let $R = \mathbb{Z}_6$ and $\mathcal{A} = \{\overline{2}, \overline{4}\}$. Then, $\mathcal{D} = \{\overline{0}, \overline{2}, \overline{4}\}$ and $R - \mathcal{D} = \{\overline{1}, \overline{3}, \overline{5}\}$. Hence, $R/\omega_{\mathcal{A}}^* \cong \mathbb{Z}_2$ where $\omega_{\mathcal{A}}^*(\overline{1}) = \omega_{\mathcal{A}}^*(\overline{3}) = \omega_{\mathcal{A}}^*(\overline{5})$ and $\omega_{\mathcal{A}}^*(\overline{0}) = \omega_{\mathcal{A}}^*(\overline{2}) = \omega_{\mathcal{A}}^*(\overline{4})$ and also $R/\gamma^* \cong \mathbb{Z}_6$. So, $\omega_{\mathcal{A}}^* \neq \gamma^*$. If $\mathcal{A} = \{\overline{3}, \overline{5}\}$ then $R/\omega_{\mathcal{A}}^* = \langle \omega_{\mathcal{A}}^*(\overline{3}), \omega_{\mathcal{A}}^*(\overline{5}) \rangle$.

Indeed, this example shows that in general, $\omega_A^* \neq \gamma^*$.

Now, suppose that $\mathcal{A} = \{a\}$, so $\mathcal{D} = \{t \mid t \in ra + as + na + \sum_{i=1}^{m} r_i as_i, r, s, r_i, s_i \in R, m \in \mathbb{N}, n \in \mathbb{Z}\}$. Put $\rho_a := \omega_{\mathcal{A}}$ and $\rho_a^* := \omega_{\mathcal{A}}^*$. Then, we have the following corollary.

Corollary 2.5. The quotient R/ρ_a^* is a ring generated by $\rho_a^*(a)$ i. e, $R/\rho_a^* = \langle \rho_a^*(a) \rangle$ or $|R/\rho_a^*| \leq 2$.

Proof. By the proof of Theorem 2.3, we conclude that the equivalence classes determined by $\omega_{\mathcal{A}}^*$ of all elements of $(R - \mathcal{D})$ coincide and the equivalence class of every element of \mathcal{D} is generated by $\omega_{\mathcal{A}}^*(a_1), \omega_{\mathcal{A}}^*(a_2), \cdots, \omega_{\mathcal{A}}^*(a_m) \in R/\omega_{\mathcal{A}}^*$. If $t \in \mathcal{D}$, then

$$\rho_a^*(t) = [\rho_a^*(r) \otimes \rho_a^*(a)] \oplus [\rho_a^*(a) \otimes \rho_a^*(s)] \oplus n\rho_a^*(a) \oplus \sum_{i=1}^m (\rho_a^*(r_i) \otimes \rho_a^*(a) \otimes \rho_a^*(s_i)) \oplus (\rho_a^*(a)) \oplus$$

So, $R/\rho_a^* = \{\rho_a^*(b)\} \cup \langle \rho_a^*(a) \rangle$, where $b \in R-\mathcal{D}$. Now, we have $\rho_a^*(b) \oplus \rho_a^*(a) \in R/\rho_a^*$. Then, $\rho_a^*(b) + \rho_a^*(a) = \rho_a^*(b)$ or $\rho_a^*(b) + \rho_a^*(a) \in \langle \rho_a^*(a) \rangle$. If $\rho_a^*(b) \oplus \rho_a^*(a) = \rho_a^*(b)$ then $\rho_a^*(a) = 0_{R/\rho_a^*}$ and so $R/\rho_a^* = \{0_{R/\rho_a^*}, \rho_a^*(b)\}$. This implies that $|R/\rho_a^*| \leq 2$. If $\rho_a^*(b) \oplus \rho_a^*(a) \in \langle \rho_a^*(a) \rangle$, then there exist $n \in \mathbb{Z}$, $m \in \mathbb{N}$ and $r, s, r_i, s_i \in R$ such that $\rho_a^*(b) \oplus \rho_a^*(a) = [\rho_a^*(r) \otimes \rho_a^*(a)] \oplus [\rho_a^*(a) \otimes \rho_a^*(s)] \oplus n\rho_a^*(a) \oplus \sum_{i=1}^m (\rho_a^*(r_i) \otimes \rho_a^*(a) \otimes \rho_a^*(s_i))$ and this implies that $\rho_a^*(b) \in \langle \rho_a^*(a) \rangle$.

Corollary 2.6. If $R - D = \emptyset$, which means that R is a hyperring generated by the element a, then $R/\rho_a^* = \langle \rho_a^*(a) \rangle$.

Corollary 2.7. If the hyperring R has an identity element and a is in the center of R, then $R/\rho_a^* = \langle \rho_a^*(a) \rangle = \{\rho_a^*(a) \otimes \rho_a^*(r) \mid \rho_a^*(r) \in R/\rho_a^*\}$ or $|R/\rho_a^*| \leq 2$.

Example 2.8. Let $R = \{b, c, d, e, f\}$. Consider the hyperring $(R, +, \cdot)$, where hyperoperations + and \cdot are defined on R as follows:

+	f	b	c	d	e			f	b	c	d	e
f	f	$\{b, e\}$	С	d	$\{b, e\}$	-	f	f	f	f	f	f
b	$\{b, e\}$	c	d	f	c		b	f	$\{b, e\}$	c	d	$\{b, e\}$
c	c	d	$\{b, e\}$	c	d		c	f	c	f	c	c
d	d	f	$\{b, e\}$	c	f		d	f	d	c	$\{b, e\}$	d
e	$\{b,e\}$	С	d	f	С		e	f	$\{b,e\}$	c	d	$\{b,e\}$

Suppose that $\mathcal{A} = \{d\}$. Then, $\mathcal{D} = \{b, c, d, e, f\}$ and $R - \mathcal{D} = \emptyset$. Thus, $R/\rho_a^* = \langle \rho_a^*(d) \rangle = \{\rho_a^*(f), \rho_a^*(b), \rho_a^*(c), \rho_a^*(d)\}$. Suppose that $\mathcal{A} = \{c\}$. Then, $\mathcal{D} = \{f, c\}$ and $R - \mathcal{D} = \{b, d, e\}$. Hence,

Suppose that $\mathcal{A} = \{c\}$. Then, $\mathcal{D} = \{f, c\}$ and $R - \mathcal{D} = \{b, d, e\}$. Hence, $\rho_a^*(b) = \rho_a^*(d) = \rho_a^*(e)$ and $\rho_a^*(f) = \rho_a^*(c)$. This implies that $R/\rho_a^* \cong \mathbb{Z}_2$ and $R/\gamma^* \cong \mathbb{Z}_4$. Therefore, $\rho_a^* \neq \gamma^*$.

Example 2.9. Let $R = \mathbb{Z}$ be the set of all integers and a = 2. Then, $\mathfrak{D} = \{\cdots, 4, 2, 0, -2, -4, \cdots\}$ and $R - \mathfrak{D} = \{\cdots, 3, 1, -1, 3, \cdots\}$. Then, $R/\rho_a^* \cong \mathbb{Z}_2$ and $R/\gamma^* \cong \mathbb{Z}$. This implies that $\rho_a^* \neq \gamma^*$. If a = 1, then $R/\rho_a^* \cong \mathbb{Z}$ and $R/\gamma^* \cong \mathbb{Z}$. Thus, $\rho_a^* = \gamma^*$.

Theorem 2.10. The relation ρ_a^* is the smallest strongly regular relation such that the quotient R/ρ_a^* is a ring generated by $\rho_a^*(a)$ or $|R/\rho_a^*| \leq 2$, where the equivalence classes of all elements of R - D are equal.

Proof. Suppose that θ is a strongly regular relation such that the quotient R/θ is a ring generated by $\theta^*(a)$ or $|R/\theta^*| \leq 2$, and the equivalence classes of θ of all elements of (R - D) are equal. Suppose that $\phi : R \to R/\theta$ is the canonical projection. Clearly, ϕ is a good homomorphism. We show that $\rho_a^* \subseteq \theta$. Let $x \rho_a y$. Then, there exists $(A, B) \in \mathcal{R}^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n}$ such that $x \in A$ and $y \in B$. We have three cases.

Case 1. Suppose that
$$(A, B) \in \gamma_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$$
. Then, we have $A = \sum_{i=1}^{n} (\prod_{j=1}^{n_i} x_{ij})$
and $B = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ such that $\sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij}) = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$. Thus,
 $\phi(x) = \bigoplus \sum_{i=1}^{n} (\otimes \prod_{j=1}^{k_i} \theta(x_{ij})) = \phi(y) = \bigoplus \sum_{i=1}^{n} (\otimes \prod_{j=1}^{k_i} (\theta(y_{ij}))).$

Therefore, $x \theta y$.

 $Case \ 2. \ \text{Suppose that} \ (A,B) \in \mathfrak{S}_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}. \ \text{Then, we have} \ A = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})$ and $B = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ such that $\{x_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\}$ and $\{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\}$ such that $\{y_{i'j'} | 1 \le i \le n', 1 \le j \le k_i'\} \subseteq \mathcal{D}$, where $1 \le n' \le n \text{ and } 1 \le k'_i \le k_i \text{ and } x_{ts}, y_{ts} \notin \mathcal{D} \text{ for all } n'+1 \le t \le n \text{ and } k'_i+1 \le s \le k_i.$ Then, we have $\phi(x) = (\bigoplus \sum_{i=1}^{n'} (\bigotimes \prod_{j=1}^{k'_i} \theta(x_{ij}))) \bigoplus (\bigoplus \sum_{t=n'+1}^{n} (\bigotimes \prod_{s=k'_i+1}^{k_i} \theta(x_{ij}))) = \phi(y) =$ $(\bigoplus \sum_{i=1}^{n'} (\bigotimes \prod_{j=1}^{k'_i} \theta(y_{ij}))) \bigoplus (\bigoplus \sum_{t=n'+1}^{n} (\bigotimes (\bigotimes (\bigoplus (i_j)))) \otimes (\bigoplus (\bigoplus (\bigoplus (\sum (i_j))))) \otimes (\bigoplus (\bigoplus (\sum (i_j))))) = \phi(y)) = \phi(y)$ and $x \in y$. Case 3. Suppose that $(A,B) \in \xi_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$. Then, we have $A = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})$

and $B = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ such that $\{x_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \emptyset$. Hence, for all $1 \le i \le n$ and $1 \le j \le k_i$ we have $\phi(x_{ij}) = \phi(y_{ij})$. Therefore, $\phi(x) = \phi(y)$ which implies that and $x \theta y$.

In the all cases we have $x \ \theta \ y$ and hence $x \ \rho_a \ y$ implies that $x \ \theta \ y$ and hence $x \ \rho_a^* \ y$ implies that $x \ \theta \ y$ by transitivity of θ . Therefore, we have $\rho_a^* \subseteq \theta$. \Box

3. The transitivity condition of ω_A

In this section, we introduce the concept of $\omega_{\mathcal{A}}^*$ -part of a hyperring R and we determine necessary and sufficient conditions such that the relation $\omega_{\mathcal{A}}$ to be transitive. Let M be a non-empty subset of a hyperring $(R, +, \cdot)$.

Definition 3.1. We say that M is a ω_A^* -part of R if the following conditions hold.

$$(F_1) \sum_{i=1}^n (\prod_{j=1}^{k_i} x_{ij}) \subseteq M;$$

(F₂) If $\{x_{ij}|1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} \neq \emptyset$ then for all $\sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ such that $\{x_{ij}|1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} = \{y_{ij}|1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D}$, we have $\sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij}) \subseteq M;$

(F₃) If
$$\{x_{ij}|1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} = \emptyset$$
 then for all $\sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij})$ such that $\{y_{ij}|1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} = \emptyset$, we have $\sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij}) \subseteq M$.

By using the above notion we obtain the following characterization.

Proposition 3.2. The following conditions are equivalent.

- (1) M is a $\omega_{\mathcal{A}}^*$ -part;
- (2) $x \in M, x \omega_{\mathcal{A}} y \Longrightarrow y \in M;$
- (3) $x \in M, x \omega_{\mathcal{A}}^* y \Longrightarrow y \in M.$

Proof. $(1\Rightarrow 2)$: Let $(x, y) \in \mathbb{R}^2$ such that $x \in M$ and $x\omega_A y$. Then, there exists $(A, B) \in \mathbb{R}^A_{n,k_1,k_2,\cdots,k_n}$ such that $x \in A$ and $y \in B$. Hence, we have three cases.

Case 1. Suppose that $(A, B) \in \gamma_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$. Then, we have $A = \sum_{i=1}^{n} (\prod_{j=1}^{\kappa_i} x_{ij})$ and $B = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ such that $\sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij}) = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$. Since $x \in \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij}) \cap M$, by (F_1) we obtain $\sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij}) \subseteq M$ and hence $y \in M$.

Case 2. Let $(A,B) \in \mathfrak{S}^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n}$. Then, we have $A = \sum_{i=1}^n (\prod_{j=1}^{k_i} x_{ij})$ and $B = \sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij})$ such that $\{x_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} \neq \emptyset$. Since $x \in \sum_{i=1}^n (\prod_{j=1}^{k_i} x_{ij}) \cap M$, by (F_2) we obtain $\sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij}) \subseteq M$ and hence $y \in M$.

Case 3. Suppose that $(A, B) \in \xi_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$. Then, we have $A = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})$ and $B = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ such that $\{x_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\}$ $j \leq k_i \} \cap \mathcal{D} = \emptyset$. Since $x \in \sum_{i=1}^n (\prod_{j=1}^{k_i} x_{ij}) \cap M$, by (F_3) we obtain $\sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij}) \subseteq M$ and hence $y \in M$.

 $(2\Rightarrow3)$: Let $(x,y) \in \mathbb{R}^2$ such that $x \in M$ and $x \omega_{\mathcal{A}}^* y$. Then, there exist $t \in \mathbb{N}$ and $(v_0 = x, v_1, \cdots, v_t = y) \in \mathbb{R}^{t+1}$ such that

$$x = v_0 \ \omega_{\mathcal{A}} \ v_1 \ \omega_{\mathcal{A}} \ v_2 \cdots \omega_{\mathcal{A}} \ v_{t-1} \ \omega_{\mathcal{A}} \ v_t = y.$$

Since $x \in M$, by applying (2) t times, we obtain $y \in M$.

 $(3\Rightarrow1)$: Let $\sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij}) \cap M \neq \emptyset$. We shall check the conditions (F_1) , (F_2) and (F_3) .

(F₁) Suppose that
$$\sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij}) = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$$
. Then,
 $(\sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij}), \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij}) \in \gamma_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}.$

So, for all $y \in \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ we have $x \omega_{\mathcal{A}}^* y$ and $y \in M$. Therefore, $\sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij}) \subseteq M$. (F₂) Let $\{x_{ij} | 1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} \neq \emptyset$. Now, suppose that for all $\sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ if $\{x_{ij} | 1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D}$ then $(\sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij}), \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})) \in \mathfrak{S}_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$. Hence, for all $y \in \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ we have $x \omega_{\mathcal{A}}^* y$ and $y \in M$. Therefore, $\sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij}) \subseteq M$.

 $(F_3) \text{ Let } \{x_{ij}|1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} = \emptyset \text{ and } \sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij}) \text{ be such}$ that $\{y_{ij}|1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} = \emptyset$. Then, $(\sum_{i=1}^n (\prod_{j=1}^{k_i} x_{ij}), \sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij})) \in$ $\xi_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$. Hence, for all $y \in \sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij})$ we have $x \omega_{\mathcal{A}}^* y$ and $y \in M$. Therefore, $\sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij}) \subseteq M$.

Before proving the next theorem, we introduce the following notions.

Definition 3.3. Let x be an arbitrary element of a hyperring R. For all $n \ge 1$, set:

$$(N_1) \ P_{\gamma_n^{\mathcal{A}}}(x) = \bigcup \{ \sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij}) \mid x \in \sum_{i=1}^n (\prod_{j=1}^{k_i} x_{ij}) = \sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij}) \};$$

60

 $(N_2) \ P_{\mathfrak{S}_n^{\mathcal{A}}}(x) = \bigcup \{ \sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij}) \mid x \in \sum_{i=1}^n (\prod_{j=1}^{k_i} x_{ij}), \{ x_{ij} \mid 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} \mid 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} \neq \emptyset \};$

$$(N_3) \ P_{\xi_n^A}(x) = \bigcup \{ \sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij}) \mid x \in \sum_{i=1}^n (\prod_{j=1}^{k_i} x_{ij}), \{ x_{ij} \mid 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \emptyset \};$$

$$\begin{aligned} (N_4) \ \ P(x) &= \bigcup_{n \geq 1} (P_{\gamma_n^{\mathcal{A}}}(x) \cup P_{\mathfrak{S}_n^{\mathcal{A}}}(x) \cup P_{\xi_n^{\mathcal{A}}}(x)). \\ \text{Notice that if } x \notin \mathcal{D}, \text{ then } P_{1,1}(x) &= R - \mathcal{D}. \end{aligned}$$

Proposition 3.4. For all $x \in R$, $P(x) = \{y \in R \mid x \omega_A y\}$.

Proof. Suppose that $x \in R$ and $y \in P(x)$. Then, there exist A, B such that $x \in A$, $y \in B$ and

- (1) $y \in P_{\gamma_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}}(x) \Rightarrow (A,B) \in \gamma_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}};$
- (2) $x \in P_{\mathfrak{F}_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}}(x) \Rightarrow (A,B) \in \mathfrak{F}_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}};$
- (3) $x \in P_{\xi_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}}(x) \Rightarrow (A,B) \in \xi_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}.$

Therefore, $x \ \omega_{\mathcal{A}} \ y$ and $P(x) \subseteq \{y \in R \mid x \ \omega_{\mathcal{A}} \ y\}$. The proof of the reverse of the inclusion is obvious.

Lemma 3.5. Let $(R, +, \cdot)$ be a hyperring and let M be a $\omega_{\mathcal{A}}^*$ -part of R. If $x \in M$, then $P(x) \subseteq M$.

Proof. It follows by Definition 3.1.

Theorem 3.6. Let $(R, +, \cdot)$ be a hyperring. The following conditions are equivalent.

- (1) $\omega_{\mathcal{A}}$ is transitive;
- (2) For any $x \in R$, $\omega_{\mathcal{A}}^*(x) = P(x)$;
- (3) For any $x \in R$, P(x) is a ω_A^* -part of R.

Proof. $(1\Rightarrow 2)$ By Proposition 3.4, for all pairs $(x, y) \in \mathbb{R}^2$ we have

$$y \in \omega_{\mathcal{A}}^*(x) \Leftrightarrow x \ \omega_{\mathcal{A}} \ y \Leftrightarrow y \in P(x).$$

 $(2\Rightarrow1)$ By Proposition 3.2, if M is a non-empty subset of R, then M is a $\omega_{\mathcal{A}}^*$ -part of R if and only if it is a union of equivalence classes modulo $\omega_{\mathcal{A}}^*$. In particular, every equivalence class modulo $\omega_{\mathcal{A}}^*$ is a $\omega_{\mathcal{A}}^*$ -part of R. (3 \Leftrightarrow 1) Let $x \ \omega_{\mathcal{A}} \ y$ and $y \ \omega_{\mathcal{A}} \ z$. Then, $x \in P(y)$ and $y \in P(z)$ by Proposition

 $(3 \Leftrightarrow 1)$ Let $x \ \omega_{\mathcal{A}} y$ and $y \ \omega_{\mathcal{A}} z$. Then, $x \in P(y)$ and $y \in P(z)$ by Proposition 3.4. Since P(z) is a $\omega_{\mathcal{A}}^*$ -part, by Lemma 3.5, we obtain $P(y) \subseteq P(z)$ and hence, $x \in P(z)$. Therefore, $x \ \omega_{\mathcal{A}} z$ by Proposition 3.4 and the proof is completed. \Box **Example 3.7.** In Example 2.8, if $A = \{d\}$ then $\{b, e\}, \{c\}, \{d\}$ and $\{f\}$ are ω_A^* parts of the hyperring R.It is not difficult to see that $P(b) = \{b, e\}, P(c) = \{c\}, e\}$ $P(d) = \{d\}$ and $P(f) = \{f\}$ and so by Theorem 3.6, $\omega_{\mathcal{A}} = \rho_{\mathcal{A}}$ is transitive.

Example 3.8. In Example 2.9, $P(1) = \rho_a^*(1) = \{\cdots, 3, 1, -1, 3, \cdots\}$ and P(0) = $\rho_a^*(0) = \{\cdots, 4, 2, 0, -2, -4, \cdots\}$ are ω_A^* -parts of the hyperring \mathbb{Z} . Then by Theorem 3.6, $\omega_{\mathcal{A}} = \rho_{\mathcal{A}}$ is transitive.

4. New strongly regular relation χ_A

In this section, we introduce the relation χ_A on a hyperring R, which we use in order to obtain a finite generated commutative ring as a quotient structure of R. Moreover, we determine some necessary and sufficient conditions for the relation $\chi_{\mathcal{A}}$ to be transitive. Let $(R, +, \cdot)$ be a hyperring, $\emptyset \neq \mathcal{A} \subseteq R, a_1, \cdots, a_m \in \mathcal{A}$ and

$$\mathcal{D} = \{t \mid t \in \sum_{i=1}^{m} z_i a_i + \sum_{i=1}^{m} s_i a_i + \sum_{i=1}^{m} a_i t_i + \sum_{i=1}^{m} (\sum_{i=1}^{n_i} u_{i,k} a_i v_{i,k}), \\ m, n_i \in \mathbb{N}, z_i \in \mathbb{Z}, \ s_i, t_i, u_{i,k}, v_{i,k} \in R\}.$$

For all $n \geq 1$ and $(k_1, \dots, k_n) \in \mathbb{N}^n$ define $\Re^{\mathcal{A}}_{n,k_1,k_2,\dots,k_n}$ as follows.

$$\Re^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n} := \alpha^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n} \cup \wp^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n} \cup j^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n}$$

where

$$\begin{aligned} \alpha_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}} &:= \{ (\sum_{i=1}^n \prod_{j=1}^{k_i} x_{ij}, \sum_{i=1}^n \prod_{j=1}^{k_i} y_{ij}) | \exists \sigma \in \mathbb{S}_n, \exists \sigma_i \in \mathbb{S}_{k_i}, \sum_{i=1}^n \prod_{j=1}^{k_i} y_{ij} = \sum_{i=1}^n A_{\sigma(i)}, \end{aligned}$$

with $A_i = \prod_{i=1}^{k_i} x_{i\sigma_i(j)}, \end{aligned}$

$$\begin{split} \wp_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}} &:= \{ (\sum_{i=1}^n \prod_{j=1}^{k_i} x_{ij}, \sum_{i=1}^n \prod_{j=1}^{k_{\sigma(i)}} y_{ij}) \mid \{x_{ij} | 1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} \\ &= \{y_{ij} | 1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} \neq \varnothing, \exists \sigma \in \mathbb{S}_n, \sigma_i \in \mathbb{S}_{k_i}, \\ &y_{ts} \in \{y_{ij} | 1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} \Rightarrow y_{ts} = x_{\sigma(t)\sigma_{\sigma(t)}(s)} \} \end{split}$$

and

$$\begin{aligned}
\mathcal{J}_{n,k_{1},k_{2},\cdots,k_{n}}^{\mathcal{A}} &:= \{ \left(\sum_{i=1}^{n} \prod_{j=1}^{k_{i}} x_{ij}, \sum_{i=1}^{n} \prod_{j=1}^{k_{i}} y_{ij} \right) \mid \{x_{ij} \mid 1 \leq i \leq n, 1 \leq j \leq k_{i} \} \cap \mathcal{D} \\
&= \{ y_{ij} \mid 1 \leq i \leq n, 1 \leq j \leq k_{i} \} \cap \mathcal{D} = \varnothing \}.
\end{aligned}$$

 \mathbb{S}_{k_i} ,

Notice that $\Re_{1,1}^{\mathcal{A}} = \{(\{x\}, \{y\}) \mid \{x, y\} \cap \mathcal{D} = \emptyset \text{ or } x = y\}.$

Definition 4.1. We define the relation χ_A on $(R, +, \cdot)$ as follows:

$$x \ \chi_{\mathcal{A}} \ y \Leftrightarrow \ \exists (A,B) \in \Re^{\mathcal{A}}_{n,k_1,k_2,\cdots,k_n}, \ x \in A, \ y \in B.$$

Notice that for n = 1 and $k_1 = 1$ we obtain $x \chi_A y \Leftrightarrow (\{x\}, \{y\}) \in \Re_{1,1}^A$ or $x = y \in \mathcal{D}$.

Remark 4.1. The relation $\chi_{\mathcal{A}}$ is reflexive and symmetric and $\beta, \gamma \subseteq \chi_{\mathcal{A}}$ and $\gamma, \alpha \subseteq \chi_{\mathcal{A}}$.

Let $\chi^*_{\mathcal{A}}$ be the transitive closure of $\chi_{\mathcal{A}}$. In order to analyze the quotient hyperstructure with respect to this equivalence relation, we check that:

Lemma 4.2. $\chi^*_{\mathcal{A}}$ is a strongly regular equivalence relation both on (R, +) and on (R, \cdot) .

Proof. Clearly $\chi^*_{\mathcal{A}}$ is an equivalence relation. In order to prove that it is strongly regular, it is enough to show that

$$x \ \chi_{\mathcal{A}} \ y \Rightarrow \begin{cases} x + z \ \overline{\chi}_{\mathcal{A}} \ y + z, & z + x \ \overline{\chi}_{\mathcal{A}} \ z + y, \\ x \cdot z \ \overline{\chi}_{\mathcal{A}} \ y \cdot z, & z \cdot x \ \overline{\chi}_{\mathcal{A}} \ z \cdot y, \end{cases}$$

for all $z \in R$. Since $x \ \chi_A \ y$, it follows that there exists $(A, B) \in \Re^A_{n, k_1, k_2, \dots, k_n}$ such that $x \in A$ and $y \in B$. We distinguish the following situations.

Case 1. If $(A, B) \in \alpha_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$, then $x \in A = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})$ and $y \in B = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ and there exist $\sigma \in \mathbb{S}_n$ and $\sigma_i \in \mathbb{S}_{k_i}$ such that $\sum_{i=1}^{n} \prod_{j=1}^{k_i} y_{ij} = \sum_{i=1}^{n} A_{\sigma(i)}$, where $A_i = \prod_{j=1}^{k_i} x_{i\sigma_i(j)}$. Now, let $k_{n+1} = 1$, $x_{n+1-1} = y_{n+1-1} = z$, $\sigma_{n+1} = id$ and τ be the permutation of \mathbb{S}_{n+1} such that

$$\tau(i) = \sigma(i)$$
, for all $i = 1, \dots, n$ and $\tau(n+1) = n+1$.

Thus,

1

$$x + z \subseteq (\sum_{i=1}^{n+1} (\prod_{j=1}^{k_i} x_{ij})) \text{ and } y + z \subseteq (\sum_{i=1}^{n+1} (\prod_{j=1}^{k_{\tau(i)}} y_{ij}))$$

It is easy to see that the pair (A + z, B + z) belongs to $\alpha_{n+1,k_1,k_2,\cdots,k_n,k_{n+1}}^{\mathcal{A}} \subseteq \Re_{n+1,k_1,k_2,\cdots,k_n,k_{n+1}}^{\mathcal{A}}$. Therefore, for all $u \in x + z$ and $v \in y + z$, we have $u \in x + z \subseteq A + z$ and $v \in y + z \subseteq B + z$. So, $u \chi_{\mathcal{A}} v$. Thus, $x + z \overline{\chi}_{\mathcal{A}} y + z$. Case 2. If $(A, B) \in \wp_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$, then $x \in A = \sum_{i=1}^n (\prod_{j=1}^{k_i} x_{ij})$ and $y \in B = \frac{1}{2}$.

Case 2. If $(A, B) \in \wp_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$, then $x \in A = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})$ and $y \in B = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ such that $\{x_{ij} | 1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} \neq \emptyset$ and $\sigma \in \mathbb{S}_n$ and $\sigma_i \in \mathbb{S}_{k_i}$ such that for all $1 \leq t \leq n, 1 \leq s \leq k_n$ if $y_{ts} \in \mathcal{D}$, then $y_{ts} = x_{\sigma(t)\sigma_{\sigma(t)}(s)}$. If $z \notin \mathcal{D}$, then it is easy to sea that $(A+z, B+z) \in \wp_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$. Let $z \in \mathcal{D}$. Set $k_{n+1} = 1$, $x_{n+1} = y_{n+1} = z$, $\sigma_{n+1} = id$ and τ be the permutation of \mathbb{S}_{n+1} such that

$$\tau(i) = \sigma(i)$$
, for all $i = 1, \dots, n$ and $\tau(n+1) = n+1$.

So, for $1 \leq t \leq n+1$ and $1 \leq s \leq k_{n+1}$ if $y_{ts} \in \mathcal{D}$, then $y_{ts} = x_{\sigma(t)\sigma_{\sigma(t)}(s)}$. Therefore, $(A+z,B+z) \in \varphi_{n+1,k_1,k_2,\cdots,k_n,k_{n+1}}^{\mathcal{A}}.$ Hence, $(A+z,B+z) \in \Re_{n+1,k_1,k_2,\cdots,k_n,k_{n+1}}^{\mathcal{A}}.$ So, $u \chi_{\mathcal{A}} v$. Thus, $x+z \overline{\overline{\chi}}_{\mathcal{A}} y+z$.

Case 3. If $(A, B) \in \mathcal{J}_{n,k_1,k_2,\dots,k_n}^{\mathcal{A}}$, then $x \in A = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})$ and $y \in B =$ $\sum_{i=1}^{n} \left(\prod_{i=1}^{k_i} y_{ij} \right) \text{ such that } \{ x_{ij} | 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} | 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} | 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} | 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} | 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} | 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} | 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} | 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} | 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} | 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} | 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} | 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} | 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} | 1 \le i \le n, 1 \le j \le k_i \} \cap \mathcal{D} = \{ y_{ij} | 1 \le j \le k_i \} \cap \{ y_{ij} | 1 \le j \le k_i \} \cap \{ y_{ij} | 1 \le j \le k_i \} \cap \{ y_{ij} | 1 \le j \le k_i \} \cap \{ y_{ij} | 1 \le j \le k_i \} \cap \{ y_{ij} | 1 \le j \le k_i \} \cap \{ y_{ij} | 1 \le j \le k_i \} \cap \{ y_{ij} | 1 \le j \le k_i \} \cap \{ y_{ij} | 1 \le j \le k_i \} \cap \{ y_{ij} | 1 \le j \le k_i \} \cap \{ y_{ij} | 1 \le j \le k_i \} \cap \{ y_{ij}$ $\begin{aligned} &i=1 \ j=1 \\ &k_i\} \cap \mathcal{D} = \varnothing. \text{ If } z \notin \mathcal{D}, \text{ then } (A+z, B+z) \in \mathcal{J}_{n+1,k_1,k_2,\cdots,k_n,k_{n+1}}^{\mathcal{A}} \text{ and if } z \in \mathcal{D}, \text{ then } \\ &(A+z, B+z) \in \wp_{n+1,k_1,k_2,\cdots,k_n,k_{n+1}}^{\mathcal{A}}. \text{ Thus, } (A+z, B+z) \in \Re_{n+1,k_1,k_2,\cdots,k_n,k_{n+1}}^{\mathcal{A}}. \end{aligned}$ Hence, $u \chi_{\mathcal{A}} v$. This implies that $x + z \overline{\chi}_{\mathcal{A}} y + z$. In the same way, we can show that $z + x \overline{\chi}_{\mathcal{A}} z + y$. It is easy to see that

 $z + x \,\overline{\overline{\chi}}_{a}^{*} \, z + y \text{ and } x + z \,\overline{\overline{\chi}}_{a}^{*} \, y + z.$

Notice that for (R, \cdot) we have

Case 1. If $(A, B) \in \alpha_{n, k_1, k_2, \dots, k_n}^{\mathcal{A}}$, then $x \in A = \sum_{i=1}^{n} (\prod_{i=1}^{k_i} x_{ij})$ and $y \in B =$ $\sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij}) \text{ and there exist } \sigma \in \mathbb{S}_n \text{ and } \sigma_i \in \mathbb{S}_{k_i} \text{ such that } \sum_{i=1}^{n} \prod_{j=1}^{k_i} y_{ij} = \sum_{i=1}^{n} A_{\sigma(i)},$ where $A_i = \prod_{i=1}^{k_i} x_{i\sigma_i(j)}$. We set $f'_i = k_i + 1$, $x_{if_i} = z$ and we define

$$\tau_i(r) = \sigma_i(r)$$
 (for all $r = 1, \dots, f'_i$) and $\tau_i(f'_i + 1) = f'_i + 1$.

Hence, $\tau_i \in \mathbb{S}_{f'_i}$ $(i = 1, \dots, n)$. It is easy to see that the pair $(A \cdot z, B \cdot z)$ belongs to $\alpha_{n,f_1',f_2',\cdots,f_n'}^{\mathcal{A}} \subseteq \Re_{n,f_1',f_2',\cdots,f_n'}^{\mathcal{A}}$. Therefore, for all $u \in x \cdot z$ and $v \in y \cdot z$, we have $u \in x \cdot z \subseteq A \cdot z$ and $v \in y \cdot z \subseteq B \cdot z$. So, $u \chi_{\mathcal{A}} v$. Thus, $x \cdot z \overline{\chi}_{\mathcal{A}} y \cdot z$.

Case 2. If $(A, B) \in \wp_{n,k_1,k_2,\dots,k_n}^{\mathcal{A}}$, then $x \in A = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})$ and $y \in B =$ $\sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij}) \text{ such that } \{x_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le j \le k_i\} \cap \mathcal{D$ $j \leq k_i \} \cap \mathcal{D} \neq \emptyset, \ \sigma \in \mathbb{S}_n \text{ and } \sigma_i \in \mathbb{S}_{k_i} \text{ such that for all } 1 \leqslant t \leqslant n, 1 \leqslant s \leqslant k_n, \text{ if } y_{ts} \in \mathcal{D}, \text{ then } y_{ts} = x_{\sigma(t)\sigma_{\sigma(t)}(s)}.$ If $z \notin \mathcal{D}$, then it is easy to sea that $(A \cdot z, B \cdot z) \in \wp_{n, f'_1, f'_2, \cdots, f'_n}^{\mathcal{A}}$, where $f'_i = k_i + 1$, $x_{if_i} = z$. Let $z \in \mathcal{D}$. Set $f'_i = k_i + 1$, $x_{if'_i} = y_{if'_i} = z$, and we define

$$\tau(r) = \sigma_i(r)$$
, for all $i = 1, \dots, k_i$ and $\tau_i(k_i + 1) = k_i + 1$.

So, for $1 \leq t \leq n$ and $1 \leq s \leq f'_i$ if $y_{ts} \in \mathcal{D}$, then $y_{ts} = x_{\sigma(t)\sigma_{\sigma(t)}(s)}$. Therefore, $(A \cdot z, B \cdot z) \in \wp_{n, f'_1, f'_2, \cdots, f'_n}^{\mathcal{A}}$. This implies that $(A \cdot z, B \cdot z) \in \Re_{n, f'_1, f'_2, \cdots, f'_n}^{\mathcal{A}}$. Hence, $u \chi_{\mathcal{A}} v$. Thus, $x \cdot z \overline{\chi}_{\mathcal{A}} y \cdot z$.

 $Case \ 3. \ \text{If } (A,B) \in \mathcal{J}_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}, \text{ then } x \in A = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij}) \text{ and } y \in B = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij}) \text{ such that } \{x_{ij} | 1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} = \emptyset. \text{ If } z \notin \mathcal{D}, \text{ then } (A \cdot z, B \cdot z) \in \mathcal{J}_{n,f_1',f_2',\cdots,f_n'}^{\mathcal{A}} \text{ and if } z \in \mathcal{D}, \text{ we set } f_i' = k_i + 1, x_{if_i'} = z \text{ and we define}$

$$\tau_i(r) = \sigma_i(r)$$
, for all $r = 1, \cdots, k_i$ and $\tau_i(k_i + 1) = k_i + 1$.

Hence, $\tau_i \in \mathbb{S}_{f'_i}$ $(i = 1, \dots, n)$. Thus, $(A \cdot z, B \cdot z) \in \Re^{\mathcal{A}}_{n, f'_1, f'_2, \dots, f'_n}$. This implies that $u \chi_{\mathcal{A}} v$. Therefore, $x \cdot z \overline{\chi}_{\mathcal{A}} y \cdot z$.

In the same way, we can show that $z \cdot x \overline{\chi}_{\mathcal{A}} z \cdot y$. It is easy to see that

$$z \cdot x \ \overline{\overline{\chi}}_{\mathcal{A}}^* \ z \cdot y \text{ and } x \cdot z \ \overline{\overline{\chi}}_{\mathcal{A}}^* \ y \cdot z.$$

Theorem 4.3. The quotient $R/\chi^*_{\mathcal{A}}$ is a commutative ring with generators

$$\{\chi_{\mathcal{A}}^*(b), \chi_{\mathcal{A}}^*(a_1), \chi_{\mathcal{A}}^*(a_2), \cdots, \chi_{\mathcal{A}}^*(a_m) \mid b \in (R-\mathcal{D}), a_1, \cdots, a_m \in \mathcal{A}\},\$$

where $\chi^*_{\mathcal{A}}(a_1), \chi^*_{\mathcal{A}}(a_2), \cdots, \chi^*_{\mathcal{A}}(a_m) \in R/\chi^*_{\mathcal{A}}$ necessarily are not distinct.

Proof. By Lemma 4.2, $\chi^*_{\mathcal{A}}$ is a strongly regular relation, so the quotient structure $R/\chi^*_{\mathcal{A}}$ is a ring with respect to the following operations:

$$\chi^*_{\mathcal{A}}(x) \oplus \omega^*_{\mathcal{A}}(y) = \chi^*_{\mathcal{A}}(z), \text{ for all } z \in x + y,$$
$$\chi^*_{\mathcal{A}}(x) \otimes \chi^*_{\mathcal{A}}(y) = \chi^*_{\mathcal{A}}(t), \text{ for all } t \in x \cdot y.$$

Since $\alpha^* \subseteq \chi^*_{\mathcal{A}}$, we conclude that $\chi^*_{\mathcal{A}}$ is a commutative ring. For all $(x, y) \in (R - \mathcal{D})^2$ since $\{x, y\} \cap \mathcal{D} = \emptyset$, we have $(\{x\}, \{y\}) \in \Re^{\mathcal{A}}_{1,1}$ and hence $x\chi^*_{\mathcal{A}}y$. This implies that $\chi^*_{\mathcal{A}}(x) = \chi^*_{\mathcal{A}}(y)$. If $b \in (R - \mathcal{D})$, then for every $x \in (R - \mathcal{D})$ we have $\chi^*_{\mathcal{A}}(x) = \chi^*_{\mathcal{A}}(b)$. Now, suppose that $\chi^*_{\mathcal{A}}(h)$ is given. If $h \in (R - \mathcal{D})$, then $\chi^*_{\mathcal{A}}(h) = \chi^*_{\mathcal{A}}(b)$ and if $h \in \mathcal{D}$, then $\chi^*_{\mathcal{A}}(h) \in \langle \chi^*_{\mathcal{A}}(a_1), \cdots, \chi^*_{\mathcal{A}}(a_m) \rangle$. Thus, $R/\chi^*_{\mathcal{A}} = \{\chi^*_{\mathcal{A}}(b)\} \cup \langle \chi^*_{\mathcal{A}}(a_1), \cdots, \chi^*_{\mathcal{A}}(a_m) \rangle$.

Now, suppose that $\mathcal{A} = \{a\}$, so $\mathcal{D} = \{t \mid t \in ra + as + na + \sum_{i=1}^{m} r_i as_i, r, s, r_i, s_i \in R, m \in \mathbb{N}, n \in \mathbb{Z}\}$. Put $\psi_a := \chi_{\mathcal{A}}$ and $\psi_a^* := \chi_{\mathcal{A}}^*$. Then, we have the following corollary.

Corollary 4.4. The quotient R/ψ_a^* is a commutative ring generated by $\psi_a^*(a)$, *i.e.*, $R/\psi_a^* = \langle \psi_a^*(a) \rangle = \{n\psi_a^*(a) \oplus (\psi_a^*(r) \otimes \psi_a^*(a)) \mid n \in \mathbb{Z}, \psi_a^*(r) \in R/\psi_a^*\}$ or $|R/\rho_a^*| \leq 2$.

Corollary 4.5. If $R - \mathcal{D} = \emptyset$, which means that R is a hyperring generated by the element a, then $R/\psi_a^* = \langle \rho_a^*(a) \rangle = \{n\psi_a^*(a) \oplus (\psi_a^*(r) \otimes \psi_a^*(a)) \mid n \in \mathbb{Z}, \psi_a^*(r) \in R/\psi_a^*\}.$

Corollary 4.6. If the hyperring R has an identity element, then $R/\psi_a^* = \langle \rho_a^*(a) \rangle = \{\psi_a^*(a) \otimes \psi_a^*(r) \mid \psi_a^*(r) \in R/\psi_a^*\}$ or $|R/\psi_a^*| \leq 2$.

Example 4.7. Suppose that

$$R = M_2(\mathbb{Z}_4) = \left\{ \begin{pmatrix} c & 0 \\ b & 0 \end{pmatrix} \mid c, b \in \mathbb{Z}_4 \right\}, \ \mathcal{A} = \left\{ \begin{pmatrix} 2 & 0 \\ 3 & 0 \end{pmatrix} \right\}$$

It is easy to see that R/ψ_a^* is a commutative ring such that $R/\psi_a^* \cong \mathbb{Z}_2$ and $R/\alpha^* \cong \mathbb{Z}_4$ and so, $\psi_a^* \neq \alpha^*$. If $\mathcal{A} = \left\{ \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} \right\}$ then $R/\psi_a^* = R/\alpha^* \cong \mathbb{Z}_4$.

Example 4.8. Let $R = \{0, 1, 2, 3, 4, 5, 6\}$ be a set with the hyperoperations + and \cdot defined as follow:

+	0	1	2	3	4	5	6
0	$\{0,5\}$	1	$\{2, 6\}$	$\{3, 4\}$	$\{3, 4\}$	$\{0, 5\}$	$\{2, 6\}$
1	1	$\{0, 5\}$	$\{3, 4\}$	$\{2, 6\}$	$\{2, 6\}$	1	$\{3, 4\}$
2	$\{2, 6\}$	$\{3, 4\}$	$\{0, 5\}$	1	1	$\{2, 6\}$	$\{0, 5\}$
3	$\{3, 4\}$	$\{2, 6\}$	1	$\{0, 5\}$	$\{0, 5\}$	$\{3, 4\}$	1
4	$\{3, 4\}$	$\{2, 6\}$	1	$\{0, 5\}$	$\{0, 5\}$	$\{3, 4\}$	1
5	$\{0, 5\}$	1	$\{2, 6\}$	$\{3, 4\}$	$\{3, 4\}$	$\{0, 5\}$	$\{2, 6\}$
6	$\{2, 6\}$	$\{3, 4\}$	$\{0, 5\}$	1	1	$\{2, 6\}$	$\{0, 5\}$
	0	1	2	3	4	5	6
0	$\{0,5\}$	$\{0,5\}$	$\{0, 5\}$	$\{0,5\}$	$\{0,5\}$	$\{0,5\}$	$\{0,5\}$
1	$\{0, 5\}$	-1	(~ ~)				
	[0,0]	1	$\{0, 5\}$	1	1	$\{0, 5\}$	$\{0, 5\}$
2	$\{0,5\}$	$1 \{2, 6\}$	$\{0,5\}$ $\{0,5\}$	$1 \{2, 6\}$	$1 \{2, 6\}$	$\{0,5\}\ \{0,5\}$	$\{0,5\}\ \{0,5\}$
$\frac{2}{3}$						C / J	([/])
	$\{0, 5\}$	$\{2, 6\}$	$\{0, 5\}$	$\{2, 6\}$	$\{2, 6\}$	$\{0, 5\}$	$\{0, 5\}$
3	$\{0,5\}$ $\{0,5\}$	$\{2,6\}$ $\{3,4\}$	$\{0,5\}$ $\{0,5\}$	$\begin{array}{c} \{2,6\} \\ \{3,4\} \end{array}$	$\begin{array}{c} \{2,6\} \\ \{3,4\} \end{array}$	$\{0,5\}$ $\{0,5\}$	$\{0,5\}$ $\{0,5\}$

Then $(R, +, \cdot)$ is a non-commutative hyperring such that is not a ring. Set $\mathcal{A} = \{2\}$. Then, $\mathcal{D} = \{0, 2, 5, 6\}$ and $R - \mathcal{D} = \{1, 3, 4\}$. Since $1 \cdot 3 + 1 \cdot 3 = \{0, 5\}$ and $1 \cdot 3 + 3 \cdot 1 = \{2, 6\}$ so $\psi_a^*(0) = \{0, 2, 5, 6\}$ and $\psi_a^*(1) = \{1, 3, 4\}$. Therefore $R/\psi_a^* \cong \mathbb{Z}_2$. But $R/\gamma^* = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ when $\overline{0} = \{0, 5\}, \ \overline{1} = \{1\}, \ \overline{2} = \{2, 6\}$ and $\overline{3} = \{3, 4\}$, is a non-commutative ring with the following table:

+	Ō	Ī	$\overline{2}$	$\bar{3}$		•	Ō	ī	$\overline{2}$	$\bar{3}$
ō	Ō	Ī	$\bar{2}$	3	-	Ō	Ō	Ō	Ō	Ō
ī	1	$\overline{0}$	$\bar{3}$	$\bar{2}$		1	Ō	1	$\overline{0}$	ī
$\overline{2}$	$\overline{2}$	$\bar{3}$	$\bar{0}$	ī		$\overline{2}$	ō	$\overline{2}$	$\bar{0}$	$\overline{2}$
	3	$\overline{2}$	1	$\bar{0}$		$\bar{3}$	Ō	$\bar{3}$	$ar{0} \ ar{0} \ $	$\bar{3}$

In this Example we have $\gamma^* \neq \psi_a^*$.

66

Theorem 4.9. The relation ψ_a^* is the smallest strongly regular relation such that the quotient R/ψ_a^* is a commutative ring generated by $\rho_a^*(a)$ or $|R/\psi_a^*| \leq 2$, where the equivalence classes of all elements of R - D are equal.

Proof. Let θ be a strongly regular equivalence such that quotient R/θ is a commutative ring generated by $\theta^*(a)$ or $|R/\theta^*| \leq 2$, and the equivalence classes of θ of all elements of (R - D) are equal. Suppose that $\phi : R \Longrightarrow R/\theta$ is the canonical projection. ϕ is a good homomorphism. We show that $\psi_a^* \subseteq \theta$. Let $x \ \psi_a^* y$. So there exists $(A, B) \in \Re_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$ such that $x \in A$ and $y \in B$. We have three cases:

Case 1. If $(A, B) \in \alpha_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$, then $A = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})$ and $B = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ and there exist $\sigma \in \mathbb{S}_n$ and $\sigma_i \in \mathbb{S}_{k_i}$ such that $\sum_{i=1}^{n} \prod_{j=1}^{k_i} y_{ij} = \sum_{i=1}^{n} A_{\sigma(i)}$, where

 $A_i = \prod_{j=1}^{k_i} x_{i\sigma_i(j)}$. Therefore,

$$\phi(x) = \bigoplus \sum_{i=1}^{n} (\bigotimes \prod_{j=1}^{k_i} x_{ij}) \text{ and } \phi(y) = \bigoplus \sum_{i=1}^{n} (\bigotimes \prod_{j=1}^{k_i} (y_{ij}))$$

By the commutativity of R/θ , it follows that $\phi(x) = \phi(y)$. Thus $x \theta y$.

 $Case \ 2. \ \text{If} \ (A,B) \in \wp_{n,k_1,k_2,\cdots,k_n}^A, \text{ then } A = \sum_{i=1}^n (\prod_{j=1}^{k_i} x_{ij}) \text{ and } B = \sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij})$ such that $\{x_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} \neq \emptyset$ and there exists $\sigma \in \mathbb{S}_n$ and $\sigma_i \in \mathbb{S}_{k_i}$ such that for all $1 \le t \le n, 1 \le s \le k_n$ if $y_{ts} \in \mathcal{D}$, then $y_{ts} = x_{\sigma(t)\sigma_{\sigma(t)}(s)}$. Renumber of the elements of the sets $\{x_{ij} | 1 \le i \le n, 1 \le j \le k_i\}$ and $\{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\}$ such that $\{y_{ij} | 1 \le i \le n', 1 \le j \le k'_i\} \subseteq \mathcal{D}$, where $1 \le n' \le n$ and $1 \le k'_i \le k_i$ and $x_{t's'}, y_{t's'} \notin \mathcal{D}$ for all $n'+1 \le t' \le n$ and $k'_i + 1 \le s' \le k_i$. So, $\phi(x) = (\bigoplus_{i=1}^{n'} (\bigotimes_{j=1}^{k'_i} \theta(x_{ij}))) \bigoplus (\bigoplus_{t'=n'+1}^{n} (\bigotimes_{s'=k'_i+1}^{k_i} \theta(x_{ij})))$ and

 $\phi(y) = \left(\bigoplus_{i=1}^{n'} \left(\bigotimes_{j=1}^{k'_i} \theta(x_{\sigma(i)\sigma_{\sigma(i)}(j)}) \right) \right) \bigoplus \left(\bigoplus_{t'=n'+1}^{n} \left(\bigotimes_{s'=k'_i+1}^{k_i} \theta(y_{ij}) \right) \right). \text{ For all } n'+1 \leqslant 1 \leq d \leq d \leq k \text{ we have } \phi(x_i) = \phi(x_i) \text{ and since } R/\theta \text{ is a set } n' \in \mathbb{R}$

 $l, l' \leq n$ and $k'_i + 1 \leq d, d' \leq k_i$ we have $\phi(x_{ld}) = \phi(y_{l'd'})$ and since R/θ is a commutative ring so, $\phi(x) = \phi(y)$ and $x \ \theta \ y$.

Case 3. If $(A, B) \in j_{n,k_1,k_2,\cdots,k_n}^{\mathcal{A}}$, then $A = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} x_{ij})$ and $B = \sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ such that $\{x_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \{y_{ij} | 1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \emptyset$. Therefore, for all $1 \le i \le n$ and $1 \le j \le k_i$ we have $\phi(x_{ij}) = \phi(y_{ij})$. Thus, $\phi(x) = \phi(y)$ and $x \ \theta y$.

In the all cases we have $x \ \theta \ y$ and hence $x \ \psi_a \ y$ implies that $x \ \theta \ y$. Thus, $x \ \psi_a^* \ y$ implies that $x \ \theta \ y$ by transitivity of R. Therefore, $\psi_a^* \subseteq \theta$. \Box

Definition 4.10. We say that M is a $\chi^*_{\mathcal{A}}$ -part of R if the following conditions hold:

(F₁) For all
$$\sigma \in \mathbb{S}_n$$
 and $\sigma_i \in \mathbb{S}_{k_i}$, $\sum_{i=1}^n A_{\sigma(i)} \subseteq M$, where $A_i = \prod_{j=1}^{k_i} x_{i\sigma_i(j)}$

(F₂) If
$$\{x_{ij}|1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} \neq \emptyset$$
, then for all $\sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij})$ such that
 $\{x_{ij}|1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D} = \{y_{ij}|1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D}$ there exist
 $\sigma \in \mathbb{S}_n$ and $\sigma_i \in \mathbb{S}_{k_i}$ for which for all $y_{ij} \in \{y_{ij}|1 \leq i \leq n, 1 \leq j \leq k_i\} \cap \mathcal{D}$,
 $y_{ij} = x_{\sigma(i)\sigma_{\sigma(i)}(j)}$ we have $\sum_{i=1}^{n} (\prod_{j=1}^{k_i} y_{ij}) \subseteq M$;

(F₃) If
$$\{x_{ij}|1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \emptyset$$
, then for all $\sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij})$ such that $\{y_{ij}|1 \le i \le n, 1 \le j \le k_i\} \cap \mathcal{D} = \emptyset$, we have $\sum_{i=1}^n (\prod_{j=1}^{k_i} y_{ij}) \subseteq M$.

Example 4.11. In Example 4.8, $\chi^*_{\mathcal{A}}$ -parts of R are exactly $\psi^*_a(0) = \{0, 2, 5, 6\}$, $\psi^*_a(1) = \{1, 3, 4\}$ and R. Also, complete parts(γ^* -parts) of R are exactly $\{0, 5\}$, $\{1\}, \{2, 6\}$ and $\{3, 4\}$ or unions of them. It is clear that $\psi^*_a(0) = \{0, 2, 5, 6\}$ and $\psi^*_a(1) = \{1, 3, 4\}$ are complete parts(γ^* -parts) of R.

Let $\phi: R \longrightarrow R/\chi^*_{\mathcal{A}}$ be the canonical projection and let D(R) be the *kernel* of ϕ . If we denote by $\overline{0}$ the zero element of $R/\chi^*_{\mathcal{A}}$, then $D(R) = \phi^{-1}(\overline{0})$

Theorem 4.12. For every non empty subset B of hyperring R, we have

- 1) $\phi^{-1}(\phi(B)) = D(R) + B = B + D(R).$
- 2) If B is a χ_{A}^{*} -part of R, then $\phi^{-1}(\phi(B)) = B$.

Proof. 1) For every $x \in D(R) + B$, there exists a pair $(b, a) \in B \times D(R)$ such that $x \in a + b$, so $\phi(x) = \phi(a) \oplus \phi(b) = \overline{0} \oplus \phi(b) = \phi(b)$. Therefore, $x \in \phi^{-1}(\phi(b)) \subseteq \phi^{-1}(\phi(B))$. Conversely, for every $x \in \phi^{-1}(\phi(B))$, an element $b \in B$ exists such that $\phi(x) = \phi(b)$. By the reproducibility $a \in R$ exists such that $x \in b + a$, so $\phi(b) = \phi(x) = \phi(b) \oplus \phi(a)$, hence $\phi(a) = \overline{0}$ and $a \in \phi^{-1}(\overline{0}) = D(R)$. Therefore, $x \in b + a \subseteq B + D(R)$. This prove that $\phi^{-1}(\phi(B)) = D(R) + B$. In the same way, it is possible to prove that $\phi^{-1}(\phi(B)) = B + D(R)$. 2) It is obvious that $B \subseteq \phi^{-1}(\phi(B))$. Moreover, if $x \in \phi^{-1}(\phi(B))$, then there

2) It is obvious that $B \subseteq \phi^{-1}(\phi(B))$. Moreover, if $x \in \phi^{-1}(\phi(B))$, then there exists an element $b \in B$ such that $\phi(x) = \phi(b)$. Since B is a $\chi^*_{\mathcal{A}}$ -part, it follows that $x \in \phi(x) = \phi(b) \subseteq B$ and therefore $\phi^{-1}(\phi(B)) \subseteq B$.

References

- Babaei, Jafarpour, M., Mousavi, S.Sh., *R-parts in hyperrings*, Iranian J. Math. Sci. and Info. 7(1), 59-71, (2012).
- 2. Corsini, P., Prolegomena of Hypergroup Theory, Aviani Editore, Italy, (1993).
- Corsini, P., Leoreanu, V., Applications of Hyperstructure Theory, Advances in Mathematics, Kluwer Academic Publishers, (2003).

- Davvaz, B., Isomorphism theorems of hyperrings, Indian J. Pure Appl. Math. 35(3), 321-331, (2004).
- 5. Davvaz, B., Leoreanu-Fotea, V., *Hyperring Theory and Applications*, International Academic Press, USA, (2007).
- 6. Davvaz, B., Vougiouklis, T., Commutative rings obtained from hyperrings (H_v -rings) with α^* -relations, Comm. Algebra, 35(11), 3307-3320, (2007).
- Freni, D., A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra, 30(8), 3977-3989, (2002).
- Krasner, M., A class of hyperrings and hyperfields, Intern. J. Math. Math. Sci., 6(2), 307-312, (1983).
- Marty, F., Sur une generalization de la notion de groupe, 8^{iem} congres Math. Scandinaves, Stockholm, 45-49, (1934).
- Mirvakili, S., Anvariyeh, S.M., Davvaz, B., Transitivity of γ-relation on hyperfields, Bull. Math. Soc. Sci. Math. Roumanie, Tome 51(99), 233-243, (2008).
- 11. Mirvakili, S., Anvariyeh, S.M., Davvaz, B., On α -relation and transitivity conditions of α , Comm. Algebra 36, 1695–1703, (2008).
- Mirvakili, S., Davvaz, B., Relationship between rings and hyperrings by using the notion of Fundamental relations, Comm. Algebra 41(1) (2013), 70-82.
- Norouzi, M., Cristea, I., Fundamental relation on m-idempotent hyperrings, Open Math. 15, 1558-1567, (2017).
- 14. Vougiouklis, T., *Representations of hypergroups, hypermatrices*, Rivista di mat. Pure ed Appl. 2, 7-19, (1987).
- Vougiouklis, T., The fundamental relation in hyperrings. The general hyperfield, Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific, 203-211, (1991).

S. Mirvakili, Department of Mathematics, Payame Noor University, Tehran, Iran. E-mail address: saeed_mirvakili@pnu.ac.ir

and

P. Ghiasvand, Department of Mathematics, Payame Noor University, Tehran, Iran. E-mail address: p.ghiasvand@gmail.com

and

B. Davvaz, Department of Mathematics, Yazd University, Yazd, Iran. E-mail address: davvaz@yazd.ac.ir