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abstract: We concern this manuscript with Geraghty type contraction mappings
via simulation functions and pull down some sufficient conditions for the existence
and uniqueness of point of coincidence for several classes of mappings involving
Geraghty functions in the setting of metric spaces. These findings touch up many of
the existing results in the literature. Additionally, we elicit one of our main results
by a non-trivial example and pose an interesting open problem for the enthusiastic
readers.
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1. Introduction and Preliminaries

The origin of fixed point theory is dated to the last quarter of nineteenth cen-
tury and rests in the use of successive approximations to establish existence and
uniqueness of solutions, particularly of differential equations. It is worth noting
that based on the work of S. Banach [4] in 1922, known as the Banach contraction
principle, the metric fixed point theory took off. Since then, due to its wide appli-
cations, this principle is being investigated at a large in contemporary researches
[2,3,7,8,9]. Fixed point theory gains very large impetus due to its wide range of
applications in various fields such as engineering, economics, computer science, and
many more.

In his research article, Geraghty [10] stated the Cauchy criteria for the con-
vergence of a contractive iteration in a complete metric space and converted this
sequential condition to the functional form which eventually gave birth to Geraghty
contractions.

On the other hand, in 2015, Khojasteh et al. [12] originated the notion of Z-
contractions using a specific family of functions called simulation functions. Sub-
sequently, many researchers generalized this idea in many ways ( [5,6,13,14,15,16,
17,18,22] and references therein) and proved many interesting results in the arena
of fixed point theory.

In this paper, we define new kinds of Geraghty type contraction mappings via
simulation functions and inspect for some sufficient conditions for the existence
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and uniqueness of point of coincidence as well as of common fixed point for such
classes of mappings in complete metric spaces. Besides, we raise an open problem
for intent researchers and construct an example to substantiate one of the main
result.

Now, we recollect some basic definitions, notations and concepts to be used in
this sequel.

Definition 1.1. [12] A mapping ζ : [0,∞)2 → R is called a simulation function if
it satisfies the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn > 0, then

lim
n→∞

ζ(tn, sn) < 0.

The set of all simulation functions is denoted by Z.

Example 1.2. [12] The following are some examples of simulation functions.

(i) Let ζ : [0,∞)2 → R be defined by ζ(t, s) = f(s) − g(t) for all t, s ∈ [0,∞),
where f, g : [0,∞) → [0,∞) are two continuous functions such that f(t) =
g(t) = 0 if and only if t = 0 and f(t) < t < g(t) for all t > 0. Then ζ is a
simulation function.

(ii) Let ζ : [0,∞)2 → R be defined by ζ(t, s) = s − f(t,s)
g(t,s) t for all t, s ∈ [0,∞),

where f, g : [0,∞)2 → [0,∞) are two continuous functions with respect to
each variable such that f(t, s) > g(t, s) for all t, s > 0. Then ζ is a simulation
function.

(iii) Let ζ : [0,∞)2 → R be defined by ζ(t, s) = s − f(s) − t for all t, s ∈ [0,∞),
where f : [0,∞) → [0,∞) is a continuous function such that f(t) = 0 if and
only if t = 0. Then ζ is a simulation function.

Definition 1.3. [12] Let (X, d) be a metric space and ζ ∈ Z. A mapping T : X →
X is called a Z-contraction with respect to ζ if

ζ(d(Tx, T y), d(x, y)) ≥ 0

holds for all x, y ∈ X.

Remark 1.4. Note that a Banach contraction mapping is a Z-contraction mapping
which can be obtained by taking λ ∈ [0, 1) and ζ(t, s) = λs− t for all t, s ≥ 0. Also,
we know that every Z-contraction mapping is a contractive mapping and hence it
is also continuous.

Let T and S be two self-maps defined on a non-empty set X. If w = Tx = Sx

for some x ∈ X, then x is called a coincidence point of T and S and w is called
a point of coincidence of T and S. Moreover w is called a common fixed point of
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T and S if x = w. A pair (T, S) of self-maps is called weakly compatible if they
commute at their coincidence points.

Given two self-mappings T, S : X → X and a sequence {xn} ⊆ X, the sequence
{xn} is said to be a Picard-Jungck sequence of the pair (T, S) (based on x0) if
yn = Txn = Sxn+1 holds for all n ∈ N0.

It is obvious that if TX ⊆ SX , then for each x0 ∈ X there exists a Picard-
Jungck sequence {yn} = {Txn} = {Sxn+1}, n ∈ N0. In general, the converse is not
true.

Now, here we make a note of the following well known result due to Abbas and
Jungck [1] which is playing a crucial role in this sequel.

Theorem 1.5. Let T and S be weakly compatible self-maps defined on a non-empty
set X. If T and S have a unique point of coincidence w = Tx = Sx, then w is the
unique common fixed point of T and S.

The following lemma is also necessary to obtain our desired results.

Lemma 1.6. [19] Let (X, d) be a metric space and let {xn} be a sequence in X

such that d(xn, xn+1) → 0 as n → ∞. If {xn} is not a Cauchy sequence in X, then
there exist ε > 0 and two sequences {n(k)} and {m(k)} of positive integers such
that n(k) > m(k) > k and the following sequences tend to ε when k → ∞ :

{d(xm(k), xn(k))}, {d(xm(k), xn(k)+1)}, {d(xm(k)−1, xn(k))},

{d(xm(k)−1, xn(k)+1)}, {d(xm(k)+1, xn(k)+1)}.

Also, here we note down the definition of compatible mappings.

Definition 1.7. [11] Two self-mappings f and g of a metric space (X, d) are
compatible if

lim
n→∞

d(gf(xn), fg(xn)) = 0

whenever {xn} is a sequence in X such that

lim
n→∞

f(xn) = lim
n→∞

g(xn) = t

for some t ∈ X.

2. Main results

In this section, we investigate for some existence and uniqueness conditions
for the point of coincidence for a few kinds of Geraghty type contraction mappings
using simulation functions in the framework of metric spaces. Alongside, we discuss
an example to authenticate one of our findings. Throughout this paper, N0 will
stand for the set of all non-negative integers and N will denote the set of all positive
integers.

Beforehand, we put down the following definition.
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Definition 2.1. [21] Let (X, d) be a metric space and T, S : X → X be two self-
mappings. A mapping T is called a (Z, S)-contraction if there exists ζ ∈ Z such
that

ζ(d(Tx, T y), d(Sx, Sy)) ≥ 0

for all x, y ∈ X with Sx 6= Sy.

Let β : [0,∞) → (0, 1) be such that, for each sequence {rn} in [0,∞), one of
the following conditions holds:

lim
n→∞

β(rn) = 1− ⇒ lim
n→∞

rn = 0+, (G1)

or,

lim
n→∞

β(rn) = 1− ⇒ lim
n→∞

rn = 0+. (G2)

It is clear that (G1) implies (G2). But the converse is not true, in general, as this
may be supported by the following example:

Example 2.2. Let β : [0,∞) → (0, 1) be defined as

β(t) =







e−t, if t ∈
{

1, 13 ,
1
5 , ...,

1
2n−1 , ...

}

1
2 , if t ∈ [0,∞)\

{

1, 1
3 ,

1
5 , ...,

1
2n−1 , ...

}

.

Then β(tn) has no limit as n → ∞, where tn = 1
n
but lim

n→∞
β(tn) = 1. This means

that (G2) does not imply (G1).

Theorem 2.3. If β : [0,∞) → (0, 1) satisfies (G2), then ζ(t, s) = sβ(s) − t is a
simulation function.

Proof: It is clear that ζ(0, 0) = 0 as well as

ζ(t, s) =sβ(s)− t

<s− t

for all t, s ∈ (0,∞).
So, (ζ1) and (ζ2) are satisfied. Now we check for (ζ3).
If {tn}, {sn} are two sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn = l > 0,

then

lim
n→∞

ζ(tn, sn) = lim
n→∞

(snβ(sn)− tn). (2.1)

Since tn → l, sn → l and l > 0, we have

tn = l+ αn, sn = l + σn (2.2)

where αn, σn → 0 as n → ∞.
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From (2.1), we get

lim
n→∞

ζ(tn, sn) = lim
n→∞

((l + σn)β(l + σn)− (l + αn))

= lim
n→∞

(l(β(l + σn)− 1) + σnβ(l + σn)− αn)

= lim
n→∞

(l(β(l + σn)− 1) + δn), (2.3)

where δn = σnβ(l + σn)− αn → 0− 0 = 0 as n → ∞.

Since lim
n→∞

(xn + yn) ≤ lim
n→∞

xn + lim
n→∞

yn, from (2.3) it follows that

lim
n→∞

ζ(tn, sn) ≤ lim
n→∞

l(β(l + σn)− 1) + lim
n→∞

δn

= l[ lim
n→∞

(β(l + σn)− 1)] + 0

< 0,

because if lim
n→∞

(β(l + σn) − 1) = 0, then by (G2), it follows that l + σn → 0+, as

n → ∞, which is a contradiction. So (ζ3) is also verified.
This means that ζ(t, s) = sβ(s)− t is a simulation function. ✷

Now we recall the notion of a strong Geraghty function and also the definition
of a strong Geraghty contraction.

Definition 2.4. [10] A function β : [0,∞) → (0, 1) is called a strong Geraghty
function if {rn} ⊂ [0,∞) and lim

n→∞
β (rn) = 1 implies rn → 0+ as n → ∞, that is,

if it satisfies (G2).

Definition 2.5. [10] A mapping T : X → X is called a strong Geraghty contrac-
tion if there exists a strong Geraghty function β such that

d(Tx, T y) ≤ β(d(x, y))d(x, y) (2.4)

holds for all x, y ∈ X.

Employing Theorem 2.3, we can easily claim the next result.

Theorem 2.6. [20] Every strong Geraghty contraction T from a complete metric
space (X, d) into itself has a unique fixed point in X and for every x0 ∈ X, the
Picard sequence {xn}, where xn = Txn−1 for all n ∈ N converges to the fixed point
of T.

Here we present the concepts of a Geraghty function and a Geraghty contraction
which were discussed by Geraghty [10] in his research article.

Definition 2.7. [10] A function β : [0,∞) → (0, 1) is called a Geraghty function
if {rn} ⊂ [0,∞) and lim

n→∞
β(rn) = 1+ implies rn → 0+ as n → ∞, that is, if it

satisfies (G1).
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Definition 2.8. [10] A mapping T : X → X is called a Geraghty contraction if
there exists a Geraghty function β such that

d(Tx, T y) ≤ β(d(x, y))d(x, y) (2.5)

for all x, y ∈ X.

Now we state the fixed point result due to Geraghty [10].

Theorem 2.9. Every Geraghty contraction T from a complete metric space (X, d)
into itself has a unique fixed point.

Now, we furnish our first main result which generalizes the Theorem 2.9.

Theorem 2.10. Let (X, d) be a complete metric space and T, S : X → X be two
self-mappings. Assume there exists ζ ∈ Z such that

ζ(d(Tx, T y), β(d(Sx, Sy))d(Sx, Sy)) ≥ 0 (2.6)

for all x, y ∈ X, where β : [0,∞) → (0, 1) is a Geraghty function.
Suppose that there exists a Picard-Jungck sequence {jn} of (T, S). Also assume

that, at least, one of the following conditions holds:

(i) (TX, d) or (SX, d) is complete;

(ii) (X, d) is complete, S is continuous and T and S are compatible.

Then T and S have a unique point of coincidence.

Proof: First of all, we prove that the point of coincidence of T and S is unique
(if it exists). Suppose that w1 and w2 are distinct points of coincidence of T

and S. From this, it follows that there exist two points s1 and s2 (s1 6= s2) such
that Ts1 = Ss1 = w1 and Ts2 = Ss2 = w2. Then d(Ts1, T s2) > 0 and clearly
β(d(Ss1, Ss2))d(Ss1, Ss2) > 0. Therefore using (ζ2), we obtain from (2.6)

0 ≤ ζ(d(Ts1, T s2), β(d(Ss1, Ss2))d(Ss1, Ss2))

= ζ(d(w1, w2), β(d(w1, w2))d(w1, w2))

< β(d(w1, w2))d(w1, w2)− d(w1, w2)

< d(w1, w2)− d(w1, w2)

= 0,

which is a contradiction.

In order to prove that T and S have a point of coincidence, suppose that there
is a Picard-Jungck sequence {jn} such that jn = Txn = Sxn+1, where n ∈ N0.

If jm = jm+1 for some m ∈ N0, then Sxm+1 = jm = jm+1 = Txm+1 and T and
S have a coincidence point xm+1. Therefore, we suppose that jn 6= jn+1 for all
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n ∈ N0. This implies that d(jn+1, jn+2) > 0 and also β(d(jn, jn+1))d(jn, jn+1) > 0
for each n ∈ N0. Putting x = xn+1, y = xn+2 in (2.6), we obtain that

0 ≤ ζ(d(Txn+1, T xn+2), β(d(Sxn+1, Sxn+2))d(Sxn+1, Sxn+2))

= ζ(d(jn+1, jn+2), β(d(jn, jn+1))d(jn, jn+1))

< β(d(jn, jn+1))d(jn, jn+1)− d(jn+1, jn+2)

< d(jn, jn+1)− d(jn+1, jn+2).

Hence, we have that d(jn+1, jn+2) < d(jn, jn+1) for all n ∈ N0.

Therefore there exists d∗ ≥ 0 such that lim
n→∞

d(jn, jn+1) = d∗ ≥ 0. Suppose that

d∗ > 0. In this case we obtain that

d(jn+1, jn+2)

d(jn, jn+1)
≤ β(d(jn, jn+1)) < 1,

i.e., β(d(jn, jn+1)) → 1 as n → ∞, which is a contradiction to the fact that
lim
n→∞

d(jn, jn+1) = d∗ > 0.

Hence we obtain lim
n→∞

d(jn, jn+1) = d∗ = 0.

Further, we have to prove that jn 6= jm, whenever n 6= m. Indeed, suppose
that jn = jm for some n > m. Then we can claim that xn+1 = xm+1. Because if
xn+1 6= xm+1, then

Txn 6=Txm

⇒ jn 6=jm,

which is obviously impossible. Therefore,

xn+1 =xm+1

⇒ Txn+1 =Txm+1

⇒ jn+1 =jm+1.

Then following the previous arguments, we have

d(jm+1, jm) < d(jm, jm−1) < · · · < d(jn+1, jn) = d(jm+1, jm),

which is a contradiction.
Now, we have to show that {jn} is a Cauchy sequence. Suppose, to the contrary,

that it is not a Cauchy sequence. Putting x = xm(k)+1, y = xn(k)+1 in (2.6), we
have

0 ≤ ζ(d(jm(k)+1, jn(k)+1), β(d(jm(k), jn(k)))d(jm(k), jn(k))) = ζ(tk, sk),

where 0 < tk = d(jm(k)+1, jn(k)+1), 0 < sk = β(d(jm(k), jn(k)))d(jm(k), jn(k)).
Now, since the sequence {jn} is not a Cauchy sequence, then by Lemma 1.6, we

have {d(jm(k) jn(k))} and {d(jm(k)+1, jn(k)+1)} both the sequences tend to ε > 0,
as k → ∞.
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Indeed,

tk =d(jm(k)+1, jn(k)+1)

≤β(d(jm(k), jn(k)))d(jm(k), jn(k))

=sk

<d(jm(k), jn(k))

and so by the sandwich theorem, {sk}, where sk = β(d(jm(k), jn(k)))d(jm(k), jn(k)),
tends to ε as k → ∞. Therefore, we have 0 < tk, sk → ε.

Therefore,

0 ≤ lim
k→∞

ζ(tk, sk) < lim
k→∞

[sk − tk] → ε− ε = 0,

and we arrive at a contradiction. So, the Picard-Jungck sequence {jn} is a Cauchy
sequence.

Suppose that (i) holds, i.e., (SX, d) is complete. Then there exists z ∈ X such
that jn = Sxn+1 → Sz as n → ∞ which implies

lim
n→∞

d(Sxn+1, Sz) = 0. (2.7)

We prove that Tz = Sz. Let, on the contrary, Tz 6= Sz and so, d(Tz, Sz) = δ > 0.
Again, from (2.7), there exists n0 ∈ N such that

d(Txn, Sz) <δ

=d(Tz, Sz)

for all n ≥ n0. This leads us to

Txn 6=Tz

⇒ d(Txn, T z) >0 (2.8)

for all n ≥ n0. Now, there does not exist some n3 ∈ N such that for all n ≥ n3

Sxn+1 = Sz.

Therefore, there exists a partial subsequence {Sxpk
} of {Sxn+1} such that

Sxpk
6=z (2.9)

for all k ∈ N. Now, let n2 ∈ N be such that pn2
≥ n0. Hence by (2.8) and (2.9),

we have d(Txpn
, T z) > 0 and d(Sxpn

, z) > 0 for all n ≥ n2.
So utilizing the previous facts and (ζ2), we have

0 ≤ ζ(d(Tz, Txpn
), β(d(Sz, Sxn+1))d(Sz, Sxn+1))

< β(d(Sz, Sxn+1))d(Sz, Sxn+1)− d(Tz, Txpn
)

< d(Sz, Sxn+1)− d(Tz, Txpn
).
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Letting n → ∞, we have

0 <d(Sz, Sz)− d(Tz, Sz)

=0− d(Tz, Sz).

This implies that w = Sz = Tz and w is the (unique) point of coincidence of T
and S.

Similarly, we can prove that u = Tz = Sz is a (unique) point of coincidence of
T and S, when (TX, d) is complete.

Finally, suppose that (ii) holds. Since (X, d) is complete, there exists z ∈ X

such that jn = Txn = Sxn+1 → z when n → ∞. As S is continuous, we have

lim
n→∞

S(Txn) =Sz

⇒ lim
n→∞

d(S(Txn), Sz) =0 (2.10)

and

lim
n→∞

S(Sxn+1) =Sz

⇒ lim
n→∞

d(S(Sxn+1), Sz) =0. (2.11)

Our claim is
lim
n→∞

T (Sxn) = Tz.

If not, then there exists a subsequence {T (Sxpk
)} of {T (Sxn)} such that

d(T (Sxpk
), T z) > 0 (2.12)

for all k ∈ N. Again, there does not exist some k1 ∈ N such that for all n ≥ k1

S(Sxn+1) = Sz.

Hence, there exists a partial subsequence {S(Sxpr
)} of {S(Sxn+1)} such that

S(Sxpr
) 6=Sz (2.13)

for all r ∈ N. Therefore, by (2.12) and (2.13), we have d(T (Sxpk
), T z) > 0 and

d(S(Sxpr
), Sz) > 0 for all k, r ∈ N.

Now employing (ζ2) we get

0 ≤ ζ(d(T (Sxpk
), T z)), β(d(S(Sxpr

), Sz))d(S(Sxpr
), Sz))

< β(d(S(Sxpr
), Sz))d(S(Sxpr

), Sz)− d(T (Sxpk
), T z)

< d(S(Sxpr
), Sz)− d(T (Sxpk

), T z).

Therefore we have

d(T (Sxpk
), T z) < d(S(Sxpr

), Sz) → 0
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as k → ∞, which is a contradiction. It implies that

lim
n→∞

d(T (Sxn), T z) =0. (2.14)

Further, as T and S are compatible, we have

lim
n→∞

d(T (Sxn), S(Txn)) =0. (2.15)

Finally we obtain using (2.10), (2.14) and (2.15)

d(Tz, Sz) ≤d(Tz, T (Sxn)) + d(T (Sxn), S(Txn)) + d(S(Txn), Sz)

⇒ d(Tz, Sz) ≤0

⇒ d(Tz, Sz) =0.

This implies that v = Sz = Tz and v is the (unique) point of coincidence of T and
S.

Hence, the result is proved in both the cases, i.e., the mappings T and S have
a unique point of coincidence. ✷

Here we figure out an additional condition which guarantees the existence and
uniqueness of a common fixed point of these two self-maps.

Theorem 2.11. Let T, S : X → X be two self-maps defined on a complete metric
space (X, d). Assume there exists ζ ∈ Z such that

ζ(d(Tx, T y), β(d(Sx, Sy))d(Sx, Sy)) ≥ 0 (2.16)

for all x, y ∈ X, where β : [0,∞) → (0, 1) is a Geraghty function.
Suppose that, there exists a Picard-Jungck sequence {xn} of (T, S). Also assume

that, (TX, d) or (SX, d) is complete and T and S are weakly compatible. Then T

and S have a unique common fixed point in X.

Proof: Using Theorem 2.10, T and S have a unique point of coincidence. Further,
since T and S are weakly compatible, then according to Theorem 1.5, they have a
unique common fixed point in X . ✷

The succeeding example endorses our previous result.

Example 2.12. Let X = {0, 2, 3} and d : X ×X → [0,∞) be defined by d(x, y) =
|x− y|. Define T, S : X → X as

T =

(

0 2 3
2 2 2

)

and S =

(

0 2 3
3 2 0

)

.

Suppose ζ(t, s) = s
s+1 − t, β(t) = 1

1+ t

9

, for t > 0 and β(t) = 1
2 , for t = 0.

Case-1 For x = 0, y = 2. From (2.6), we have

ζ(d(T 0, T 2), β(d(S0, S2))d(S0, S2)) =ζ(0, β(1)1)

=
β(1)

β(1) + 1

≥ 0.
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Case-2 For x = 0, y = 3. From (2.6), we obtain

ζ(d(T 0, T 3), β(d(S0, S3))d(S0, S3)) =ζ(0, β(3)3)

=
β(3)

β(3) + 1

≥ 0.

Case-3 For x = 2, y = 3. From (2.6), we get

ζ(d(T 2, T 3), β(d(S2, S3))d(S2, S3)) =ζ(0, β(2)2)

=
β(2)

β(2) + 1

≥ 0.

Hence all the assumptions of Theorem 2.11 are satisfied and by the conclusion of
it, T and S have a unique point of coincidence x = 2 and also it is their unique
common fixed point.

Using the similar reasoning as in Theorems 2.10-2.11, we have the following new
results and also these results generalize several ones from the existing literature.

Theorem 2.13. Let (X, d) be a complete metric space and T, S : X → X be two
given self-maps. Assume that there exists ζ ∈ Z such that

ζ(d(Tx, T y), β(M(x, y))M(x, y)) ≥ 0

for all x, y ∈ X with Sx 6= Sy, where β : [0,∞) → (0, 1) is a Geraghty function
and

M(x, y) = max

{

d(Sx, Sy), d(Sx, Tx), d(Sy, T y),
d(Sx, T y) + d(Sy, Tx)

2

}

.

Suppose that, there exists a Picard-Jungck sequence {xn} of (T, S). Also assume
that, at least, one of the following conditions holds:

(i) (TX, d) or (SX, d) is complete;

(ii) (X, d) is complete, S is continuous and T and S are compatible.

Then T and S have a unique point of coincidence. Moreover if T and S are weakly
compatible, then T and S have a unique common fixed point in X.

Theorem 2.14. Let (X, d) be a complete metric space and T, S : X → X be two
given mappings. Assume that there exists ζ ∈ Z such that

ζ(d(Tx, T y), β(M(x, y))M(x, y)) ≥ 0

for all x, y ∈ X with Sx 6= Sy, where β : [0,∞) → (0, 1) is a Geraghty function
and

M(x, y) = max

{

d(Sx, Sy),
d(Sx, Tx) + d(Sy, T y)

2
,
d(Sx, T y) + d(Sy, Tx)

2

}

.

Also assume that, at least, one of the following conditions holds:
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(i) (TX, d) or (SX, d) is complete;

(ii) (X, d) is complete, S is continuous and T and S are compatible.

Then T and S have a unique point of coincidence. Moreover if T and S are weakly
compatible, then T and S have a unique common fixed point in X.

Now we secure another main result of this manuscript.

Theorem 2.15. Let (X, d) be a metric space and T, S : X → X be two given
mappings. Assume that there exists ζ ∈ Z such that

ζ(d(Tx, T y), β(E(x, y))E(x, y)) ≥ 0 (2.17)

for all x, y ∈ X, where

E(x, y) = d(Sx, Sy) + |d(Sx, Tx)− d(Sy, T y)|

and β : [0,∞) → (0, 1) is a Geraghty function. If TX ⊆ SX and TX or SX is
a complete subset of X, then T and S have a unique point of coincidence in X.

Moreover, if T and S are weakly compatible, then T and S have a unique common
fixed point in X.

Proof: Firstly, we prove that T and S have a unique point of coincidence, if it
exists. Suppose that ω1 and ω2 are distinct points of coincidence of T and S. This
means that there exist two points u1 and u2 (u1 6= u2) such that Tu1 = Su1 = ω1

and Tu2 = Su2 = ω2. Then we have

E(u1, u2) =d(Su1, Su2) + |d(Su1, T u1)− d(Su2, T u2)|

=d(ω1, ω2) + |d(ω1, ω1)− d(ω2, ω2)|

=d(ω1, ω2).

Since d(ω1, ω2) > 0, we can conclude that E(u1, u2) and β(d(ω1, ω2))d(ω1, ω2) are
positive. Hence, using (2.17) and (ζ2), we get

0 ≤ζ(d(Tu1, T u2), β(E(u1, u2))E(u1, u2))

=ζ(d(ω1, ω2), β(E(u1, u2))E(u1, u2))

=ζ(d(ω1, ω2), β(d(ω1, ω2))d(ω1, ω2))

<β(d(ω1, ω2))d(ω1, ω2)− d(ω1, ω2)

<d(ω1, ω2)− d(ω1, ω2)

=0,

which is a contradiction.
Since TX ⊆ SX , there is at least one Picard-Jungck sequence pn = Txn =

Sxn+1, where n ∈ N0 and x0 ∈ X is an arbitrary element. Also, as in the proof
of Theorem 2.10, without loss of generality, we can suppose that pn 6= pn+1 for all
n ∈ N0.
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Putting x = xn, y = xn+1 in (2.17), we obtain that

0 ≤ζ(d(Txn, T xn+1), β(E(xn, xn+1))E(xn, xn+1))

=ζ(d(pn, pn+1), β(d(pn−1, pn) + |d(pn−1, pn)− d(pn, pn+1)|)

(d(pn−1, pn) + |d(pn−1, pn)− d(pn, pn+1)|)).

Let there exists n ∈ N such that d(pn−1, pn) ≤ d(pn, pn+1). In this case, we have

E(xn, xn+1) = d(pn−1, pn) + d(pn, pn+1)− d(pn−1, pn) = d(pn, pn+1).

From this, (ζ2) and the fact that d(pn, pn+1) > 0, we obtain

0 ≤ζ(d(pn, pn+1), β(d(pn, pn+1))d(pn, pn+1))

<β(d(pn, pn+1))d(pn, pn+1)− d(pn, pn+1)

<d(pn, pn+1)− d(pn, pn+1)

=0,

which is a contradiction.

Hence,

d(pn, pn+1) < d(pn−1, pn)

for all n ∈ N0. From this, it follows that there exists

lim
n→∞

d(pn, pn+1) = p∗ ≥ 0.

Let us suppose, p∗ > 0. Then, choosing two sequences {tn} and {sn}, where tn =
d(pn, pn+1) and sn = β(2d(pn−1, pn) − d(pn, pn+1))(2d(pn−1, pn) − d(pn, pn+1)),
with same positive limit, we obtain that

0 ≤ lim
n→∞

ζ(d(pn, pn+1), β(2d(pn−1, pn)− d(pn, pn+1))(2d(pn−1, pn)− d(pn, pn+1)))

< lim
n→∞

[β(2d(pn−1, pn)− d(pn, pn+1))(2d(pn−1, pn)− d(pn, pn+1))− d(pn, pn+1)]

< lim
n→∞

[(2d(pn−1, pn)− d(pn, pn+1))− d(pn, pn+1)]

= lim
n→∞

[2(d(pn−1, pn)− d(pn, pn+1))] → 2(p∗ − p∗) = 0.

But this is a contradiction with (ζ3). Hence we have, lim
n→∞

d(pn, pn+1) = 0.

Using Lemma 1.6 and the arguments as Theorem 2.10, we can prove that the
sequence {pn} is a Cauchy sequence.

Suppose that (SX, d) is a complete metric space. Therefore,

lim
n→∞

pn = Sp

lim
n→∞

d(pn, Sp) = 0 (2.18)
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for some p ∈ X . We prove that Tp = Sp. On the contrary, let Tp 6= Sp. In this
case, put x = xn, y = p in (2.17), we get

0 ≤ ζ(d(Txn, T p), β(E(xn, p))E(xn, p)),

where E(xn, p) = d(Sxn, Sp) + |d(Sxn, T xn)− d(Sp, T p)| → d(Sp, T p) as n → ∞.

Now since Sp 6= Tp, we have

d(Tp, Sp) = δ > 0.

Again from (2.18), we can find k ∈ N such that

d(pn, Sp) =d(Txn, Sp)

<δ

=d(Tp, Sp)

for all n ≥ k. This implies Txn 6= Tp for all n ≥ k and hence

d(Txn, T p) > 0.

Now considering two sequences {tn} and {sn} with same positive limit d(Tp, Sp) >
0, where tn = d(Txn, T p), sn = β(E(xn, p))E(xn, p), we obtain

0 ≤ lim
n→∞

ζ(d(Txn, T p), β(E(xn, p))E(xn, p))

< lim
n→∞

[β(E(xn, p))E(xn, p)− d(Txn, T p)]

< lim
n→∞

[E(xn, p)− d(Txn, T p)] → 0,

which contradicts with (ζ3). This implies that w = Sp = Tp is a (unique) point of
coincidence of T and S.

Using similar arguments, we can easily prove that u = Sp = Tp is a (unique)
point of coincidence of T and S, when TX is a complete subset of X .

The rest of the result follows from Theorem 1.5. ✷

Finally, we have the following open question.
Problem: Let (X, d) be a complete metric space and T, S : X → X be two given
mappings. Assume that there exists ζ ∈ Z such that

ζ (d (Tx, T y) , d (Sx, T y) + d (Sy, Tx)) ≥ 0

for all x, y ∈ X . If TX ⊆ SX and TX or SX is a complete subset of X , then T

and S have a unique point of coincidence in X. Moreover if T and S are weakly
compatible, then T and S have a unique common fixed point in X.
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17. A. Nastasi, P. Vetro, and S. Radenović. Some fixed point results via R-functions. Fixed Point
Theory Appl., 2016:81, 2016.
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