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Submanifolds of a Conformal Sasakian Manifold

Esmaiel Abedi and Mohammad Ilmakchi

abstract: In the present paper, some results on geometry of conformal Sasakian
manifolds and their associated submanifolds are provided. Besides these an example
of a three-dimensional conformal Sasakian manifold is constructed to illustrate the
argument for non-Sasakian manifolds.
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1. Introduction

A (2n+1)-dimensional Riemannian manifold (M, g) said to be a Sasakian man-
ifold if it admits an endomorphism φ of its tangent bundle TM , a vector field ξ

and a 1-form η satisfying

φ2 = −Id+ η ⊗ ξ, η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

(∇Xφ)Y = g(X,Y )ξ − η(Y )X,

for all vector fields X,Y on M , where ∇ denotes the Riemannian connection [1].
The close relationship between Kaehler manifolds and Sasakian manifolds natu-
rally leads to the question which objects, methods and theorems can be transfered
from one to the other. The locally conformal Kaehler manifold is one of the sixteen
classes of almost Hermitian manifolds [7]. Libermann did the first study on locally
conformal Kaehler manifolds [3]. Vaisman, put down some geometrical conditions
for locally conformal Kaehler manifolds [4], and Tricerri mentioned different ex-
amples about the locally conformal Kaehler manifolds [5].
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We introduced conformal Sasakian manifolds by using an idea of conformal Kaehler
manifolds in [2].
The paper is organized as follows. In Section 2, we recall som preliminary defini-
tions about conformal Sasakian manifolds. Furthermore, we give some basic results
on conformal Sasakian manifolds and their submanifolds. In Section 3, we obtain
a necessary and sufficient condition for the invariant submanifolds of a conformal
Sasakian manifold to be minimal. In Section 4, we study anti-invariant subman-
ifolds of a conformal Sasakian manifold and obtain the conditions under which
these type submanifolds have a flat normal connection. Section 5 considers CR-
submanifolds of a conformal Sasakian manifold with distributions D and D⊥. we
find the conditions under which D⊥ is integrable or totally geodesic. In the final
section, we give an example of a three-dimensional conformal Sasakian manifold
that is not Sasakian.

2. Riemannian geometry of conformal Sasakian manifolds

A differentiable manifold M2n+1 is said an almost contact manifold if it admits
a vector field ξ, a one-form η and a (1,1)-tensor field ϕ with the following properties

ϕ2 = −Id+ η ⊗ ξ, η(ξ) = 1, ϕξ = 0, ηoϕ = 0. (2.1)

Furthermore, if M be a Riemannian manifold with the Riemannian metric g such
that

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

for all X,Y on M , then (ϕ, ξ, η, g) is called an almost contact metric structure on
M and M is said an almost contact metric manifold.
A Sasakian manifold is a normal contact metric manifold, that is, an almost contact
metric manifold such that dϕ = 0 and [ϕ, ϕ](X,Y ) = −2dη(X,Y )ξ for all X,Y on
M , where [ϕ, ϕ] is the Nijenhuis torsion of ϕ.
An almost contact metric manifold (M2n+1, ϕ, ξ, η, g) is said a Sasakian manifold
if and only if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X, (2.2)

for all vector fields X,Y on M , where ∇ denotes the Levi-Civita connection with
respect to g [1].
Let (Ḿm, ǵ) be a Riemannian (sub)manifold into Riemannian manifold (Mn, g),
m < n, with isometric immersion ι : (Ḿ, ǵ) −→ (M, g). Then the Gauss and
Weingarten formulas are given by

∇XY = ∇́XY + h(X,Y ),

∇XN = −ANX +∇⊥
XN,

for all X,Y tangent to Ḿ and normal vector field N on Ḿ , where ∇́ and ∇ are the
Levi-Civita connections of Ḿ and M , respectively, also h and AN are the second
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fundamental form and the shape operator corresponding to N , respectively and
∇⊥ is the normal connection on T⊥Ḿ . Let Ŕ and R denote the curvature tensors
on Ḿ and M , respectively, then the Gauss and Codazzi equations are given by

g(R(X,Y )Z,W ) = ǵ(Ŕ(X,Y )Z,W ) + h(Y, Z)h(X,W ) (2.3)

−h(X,Z)h(Y,W ),

ǵ(Ŕ(X,Y )Z,Na) = g((∇́XAa)Y − (∇́Y Aa)X,Z)

+

p∑

b=1

{Sba(X)g′(AbY, Z)− Sba(Y )g′(AbX,Z)}, (2.4)

for all X,Y, Z,W ∈ TḾ and Na ∈ T⊥Ḿ , where Aa is the shape operator with
respect to Na, a : 1, · · · , p = n − m and the sab are the coefficients of the third
fundamental form of Ḿ in M . Also, let R⊥ be the normal curvature tensor of Ḿ
then we will have the Ricci equation by following

g(R(X,Y )N1, N2) = g(R⊥(X,Y )N1, N2)− g([A1, A2]X,Y ), (2.5)

where N1, N2 are unit normal vector fields on Ḿ and A1, A2 are the shape operators
with respect to N1, N2.
A smooth manifold M2n+1 with an almost contact metric structure (ϕ, η, ξ, g) is
called a conformal Sasakian manifold if there is a positive smooth function f :
M −→ R such that

g̃ = exp(f)g, ϕ̃ = ϕ, η̃ = exp(f)
1

2 η, ξ̃ = exp(−f)
1

2 ξ (2.6)

is a Sasakian structure on M [6].

Let ∇̃ and ∇ denote connections of M related to metrics g̃ and g, respectively.
Using Koszul formula, we derive the following relation between the connections ∇̃
and ∇

∇̃XY = ∇XY +
1

2
{ω(X)Y + ω(Y )X − g(X,Y )ω♯}, (2.7)

for all vector fields X,Y on M , so that ω(X) = X(f) and ω♯ is vector field of
metrically equavalente to one form of ω, that is, g(ω♯, X) = ω(X). Vector field
ω♯ = gradf is called the Lee vector field of conformal Sasakian manifold M .
Then with a straightforward computation we will have

exp(−f)R̃(X,Y, Z,W ) = R(X,Y, Z,W )

+
1

2
{B(X,Z)g(Y,W )−B(Y, Z)g(X,W )

+ B(Y,W )g(X,Z)−B(X,W )g(Y, Z)}

+
1

4
‖ω♯‖2{g(X,Z)g(Y,W )− g(Y, Z)g(X,W )},(2.8)

for all vector fields X,Y, Z,W on M , where B := ∇ω − 1
2ω ⊗ ω and R, R̃ are the

curvature tensors of M related to connections of ∇ and ∇̃, respectively. Also, from
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(2.2) and (2.6) we have

(∇Xϕ)Y = (exp(f))
1

2 {g(X,Y )ξ − η(Y )X} (2.9)

−
1

2
{ω(ϕY )X − ω(Y )ϕX + g(X,Y )ϕω♯ − g(X,ϕY )ω♯},

∇Xξ = (exp(−f))
1

2ϕX +
1

2
{η(X)ω♯ − ω(ξ)X}, (2.10)

for all vector fields X,Y on M . Let (Ḿm, ǵ) be a Riemannian submanifold in
conformal Sasakian manifold M2n+1 with isometric immersion ι : (Ḿm, ǵ) −→
(M, g). Suppose ∇́ and Ŕ are the Levi-Civita connection and curvature tensor on
Ḿm, respectively. We set

PX = tan(ϕX) , FX = nor(ϕX),

tN = tan(ϕN) , fN = nor(ϕN),

for each X ∈ TM ′ and N ∈ TM ′⊥. Then from (2.9) we get

∇X(ϕY ) = ϕ∇XY + (exp(f))
1

2 {g(X,Y )ξ − η(Y )X}

−
1

2
{ω(ϕY )X − ω(Y )ϕX + g(X,Y )ϕω♯ − g(X,ϕY )ω♯}, (2.11)

for all vector field X,Y on Ḿ . Separating the tangential and normal parts from
the above equation we will have

(∇́XP )Y = (exp(f))
1

2 {g(X,Y )ξ⊤ − η(Y )X}+AFY X + th(X,Y )

−
1

2
{ω(ϕY )X − ω(Y )PX + g(X,Y )(ϕω♯)⊤

−g(X,ϕY )ω♯⊤}, (2.12)

(∇́XF )Y = fh(X,Y )− h(X,PY )

+
1

2
{ω(Y )FX − g(X,Y )(ϕω♯)⊥ + g(X,ϕY )ω♯⊥}, (2.13)

(∇́Xt)N = AfNX − PANX −
1

2
{−ω(N)PX + ω(ϕN)X

−g(X,ϕN)ω♯⊤}, (2.14)

(∇́Xf)N = −h(X, tN)− FANX +
1

2
{ω(N)FX + g(X,ϕN)ω♯⊥},(2.15)

for all X,Y ∈ TM ′ and N ∈ TM ′⊥.
We need the equations of Gauss, Codazzi and Ricci between manifolds Ḿm and
M2n+1 conformal Sasakian manifold M , thus from (2.3), (2.4), (2.5) and (2.8) we



Submanifolds of a Conformal Sasakian Manifold 27

get

exp(−f)R̃(X,Y, Z,W ) = Ŕ(X,Y, Z,W )−
1

2
{B(X,Z)ǵ(Y,W )

− B(Y, Z)ǵ(X,W ) +B(Y,W )ǵ(X,Z)

− B(X,W )ǵ(Y, Z)}

−
1

4
‖ω♯‖2{ǵ(X,Z)ǵ(Y,W )

− ǵ(Y, Z)ǵ(X,W )}

+

p∑

a=1

{ǵ(AaY, Z)ǵ(AaX,W )

− ǵ(AaX,Z)ǵ(AaY,W )}, (2.16)

exp(−f)R̃(X,Y, Z,Na) = ǵ((∇́XAa)Y − (∇́Y Aa)X,Z)

+

p∑

b=1

{Sba(X)ǵ(AbY, Z)− Sba(Y )ǵ(AbX,Z)}

+
1

2
{ǵ(X,Z)g(∇Y ω

♯, Na)

− ǵ(Y, Z)g(∇Xω♯, Na)}, (2.17)

exp(−f)R̃(X,Y,Na, Nb) = ǵ([A2, A1]X,Y ) + g(R⊥(X,Y )N1, N2),

for all X,Y, Z ∈ TḾ and Na ∈ T⊥Ḿ , where Aa is the shape operator with respect
to Na, a : 1, · · · , p = 2n−m+ 1.

3. Invariant submanifolds

A submanifold Ḿ of a conformal Sasakian manifold M is called an invariant
submanifold of M if ϕTḾ ⊂ TḾ . Hence, ϕN ∈ T⊥Ḿ for each N ∈ T⊥Ḿ , that
is, tN ≡ 0.

Theorem 3.1. Let Ḿm be an invariant submanifold of a conformal Sasakian man-
ifold M2n+1 tangent to ξ. Then Ḿ is minimal if ω♯ is tangent to Ḿ .

Proof: By relation (2.9) and the Gauss formula we have

h(X,ϕY ) = ϕh(X,Y )− (∇́Xϕ)Y + exp(f)
1

2 {g(X,Y )ξ − η(Y )X}

−
1

2
{ω(ϕY )X − ω(Y )ϕX − g(X,ϕY )ω♯ + g(X,Y )ϕω♯}, (3.1)

for all X,Y ∈ TḾ . Since Ḿ is invariant, comparing tangential and normal parts
we get

h(X,ϕY ) = ϕh(X,Y )−
1

2
{g(X,Y )(ϕω♯)⊥ − g(X,ϕY )ω♯⊥}. (3.2)

Since ξ ∈ TḾ , taking X = ϕX in (3.2) we obtain

h(ϕX,ϕY ) + h(X,Y ) = {ǵ(X,Y )−
1

2
η(X)η(Y )}ω♯⊥,
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for all X,Y on Ḿ . Again, since ξ ∈ TḾ, we put X = Y = ξ in (3.2) then we find

h(ξ, ξ) =
1

2
ω♯⊥.

Let {Eα, ϕEα, ξ|α = 1, ..., n = m−1
2 } be an orthonormal frame on Ḿ and suppose

H is the mean curvature vector. Then from the above relation we have

H =
1

m

n∑

α=1

{h(ξ, ξ) + h(Eα, Eα) + h(ϕEα, ϕEα)}

=
1

m
{
1

2
+

n∑

α=1

g(Eα, Eα)}ω
♯⊥.

Thus the theorem is proved. ✷

4. Anti-invariant submanifolds

A submanifold Ḿm of a conformal Sasakian manifold M is called an anti-
invariant of M if ϕTḾ ⊂ T⊥Ḿ . Then ϕX ∈ T⊥Ḿ , for each X ∈ TḾ , that is,
P ≡ 0.

Lemma 4.1. Let Ḿm be an m-dimensional anti-invariant submanifold of a con-
formal Sasakian manifold M2n+1. Then

AϕY X = −ϕh(X,Y )− (exp(f))
1

2 {g(X,Y )ξ⊤ − η(Y )X}

+
1

2
{ω(ϕY )X + g(X,Y )ϕω♯⊥}, (4.1)

and

ǵ([AϕZ , AϕW ]X,Y ) = g(h(X,W ), h(Y, Z))− g(h(Y,W ), h(X,Z))

−
1

2
{ǵ(Y, Z)ω(h(X,W ))− ǵ(Y,W )ω(h(X,Z)) + ǵ(X,W )ω(h(Y, Z))

−ǵ(X,Z)ω(h(Y,W )) + ω(ϕZ)Φ(Y, h(X,W ))− ω(ϕW )Φ(Y, h(X,Z))

+ω(ϕW )Φ(X,h(Y,W ))− ω(ϕZ)Φ(X,h(Y,W ))}

−
1

4
{ω(ϕW )ω(ϕX)ǵ(Y, Z)− ω(ϕZ)ω(ϕX)ǵ(Y,W )

+ω(ϕZ)ω(ϕY )ǵ(X,W )− ω(ϕW )ω(ϕY )ǵ(X,Z)
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+‖ω♯‖2{ǵ(X,Z)ǵ(Y,W )− ǵ(X,W )ǵ(Y, Z)}}

−
1

2
(exp(f))

1

2 {2η(Z)Φ(Y, h(X,W ))− 2η(W )Φ(Y, h(X,Z))

+2η(W )Φ(X,h(Y, Z))− 2η(Z)Φ(X,h(Y,W ))

+ω(ϕZ)η(Y )ǵ(X,W )− ω(ϕW )η(Y )g′(X,Z)

+ω(ϕX)η(W )ǵ(Y, Z)− ω(ϕX)η(Z)ǵ(Y,W )

+ω(ϕW )η(X)ǵ(Y, Z)− ω(ϕZ)η(X)ǵ(Y,W ) + ω(ϕY )η(Z)ǵ(X,W )

−ω(ϕY )η(W )ǵ(X,Z)}

+exp(f){ǵ(Y, Z)ǵ(X,W )− ǵ(X,Z)ǵ(Y,W ) + ǵ(X,Z)η(Y )η(W )

−ǵ(X,W )η(Y )η(Z) + ǵ(Y,W )η(X)η(Z)− ǵ(Y, Z)η(X)η(W )}, (4.2)

for all X,Y, Z,W ∈ TḾ , where Φ(X,Y ) = g(X,ϕY ).

Proof: Since P ≡ 0 then (4.1) follows from (2.12), easily. Also, substituting (4.1)
in ǵ([AϕZ , AϕW ]X,Y ) = ǵ(AϕWX,AϕZY )− ǵ(AϕZX,AϕWY ), we get (4.2). ✷

Proposition 4.2. Let Ḿm be an anti-invariant submanifold of a conformal Sasa-
kian manifold M2n+1 tangent to ξ. Then Ḿ has a flat normal connection if and
only if

Ŕ(X,Y )Z = η(R(X,Y )Z)ξ

+
1

2
{B́(Y, Z)X − B́(X,Z)Y + ǵ(Y, Z)B́(X, .)♯ − ǵ(X,Z)B́(Y, .)♯

+ B(X,Z)η(Y )ξ −B(Y, Z)η(X)ξ

+ B(Y, ξ)ǵ(X,Z)ξ −B(X, ξ)ǵ(Y, Z)ξ}

+
1

4
‖ώ♯‖2{ǵ(Y, Z)X − ǵ(X,Z)Y }

+
1

4
‖ω♯‖2{ǵ(X,Z)η(Y )ξ − ǵ(Y, Z)η(X)ξ}

+ {ǵ(Y, Z)X − ǵ(X,Z)Y + ǵ(X,Z)η(Y )ξ − ǵ(Y, Z)η(X)ξ}

− exp(f){ǵ(Y, Z)X − ǵ(X,Z)Y }, (4.3)

for all X,Y, Z ∈ TḾ, where ώ♯ = ω♯⊤ and B́ = B + ωoh.

Proof: Since (∇̃Xϕ)Y = g̃(X,Y )ξ − η(Y )X from that [1] we have

R̃(X,Y )ϕZ = ϕR̃(X,Y )Z − g̃(Y, Z)ϕX + g̃(X,Z)ϕY

−g̃(ϕY,Z)X + g̃(ϕX,Z)Y, (4.4)
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for all X,Y, Z ∈ TḾ. Replacing (2.8) in (4.4) we can write

R(X,Y )ϕZ = ϕR(X,Y )Z

−
1

2
{B(X,ϕZ)Y −B(Y, ϕZ)X +B(Y, Z)ϕX

− B(X,Z)ϕY +B(Y, .)♯g(X,ϕZ)

− B(X, .)♯g(Y, ϕZ)− ϕB(Y, .)♯g(X,Z) + ϕB(X, .)♯g(Y, Z)}

− (
1

4
‖ω♯‖2 + 1){g(Y, Z)ϕX − g(X,Z)ϕY + g(X,ϕZ)X

− g(Y, ϕZ)X}, (4.5)

for all X,Y, Z,W ∈ TM ′, where B(X,Y ) = g(B(X, .)♯, Y ). Taking the inner
product from (4.5) with ϕW and using the Ricci and Gauss equations, we obtain

g(R⊥(X,Y )ϕZ,ϕW )− ǵ([AϕZ , AϕW ]X,Y )

= ǵ(Ŕ(X,Y )Z,W )− g(h(X,W ), h(Y, Z))

+ g(h(Y,W ), h(X,Z))− η(R(X,Y )Z)η(W )

−
1

2
{B(Y, Z)ǵ(X,W )−B(X,Z)ǵ(Y,W )

+ B(X,W )ǵ(Y, Z)−B(Y,W )ǵ(X,Z) +B(X,Z)η(Y )η(W )

− B(Y, Z)η(X)η(W ) +B(Y, ξ)g(X,Z)η(W )−B(X, ξ)g(Y, Z)η(W )}

− (
1

4
‖ω♯‖2 + 1){ǵ(Y, Z)ǵ(X,W )− ǵ(X,Z)ǵ(Y,W )

+ ǵ(X,Z)η(Y )η(W )− ǵ(Y, Z)η(X)η(W )}, (4.6)

for all X,Y, Z,W ∈ TḾ . From (4.1) we get

Φ(Y, h(X,Z)) = Φ(Z, h(X,Y ))− (exp(f))
1

2 {ǵ(X,Z)η(Y )− ǵ(X,Y )η(Z)}

+
1

2
{ω(ϕZ)ǵ(X,Y )− ω(ϕY )ǵ(X,Z)}, (4.7)

for all X,Y, Z,W ∈ TḾ . Putting (4.2) into (4.6) and using (4.7), we find

−ϕR⊥(X,Y )ϕZ = Ŕ(X,Y )Z − η(R(X,Y )Z)ξ

−
1

2
{B́(Y, Z)X − B́(X,Z)Y + ǵ(Y, Z)B́(X, .)♯

− ǵ(X,Z)B́(Y, .)♯ +B(X,Z)η(Y )ξ −B(Y, Z)η(X)ξ

+ B(Y, ξ)ǵ(X,Z)ξ −B(X, ξ)ǵ(Y, Z)ξ}

−
1

4
‖ώ♯‖2{ǵ(Y, Z)X − ǵ(X,Z)Y }

−
1

4
‖ω♯‖2{ǵ(X,Z)η(Y )ξ − ǵ(Y, Z)η(X)ξ}

− {ǵ(Y, Z)X − ǵ(X,Z)Y + ǵ(X,Z)η(Y )ξ − ǵ(Y, Z)η(X)ξ}

+ exp(f){ǵ(Y, Z)X − ǵ(X,Z)Y }, (4.8)
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for all X,Y, Z,W ∈ TḾ . Thus R⊥ = 0 if and only if (4.3) holds. ✷

Let Ḿm be an anti-invariant submanifold of a conformal Sasakian manifold
M2n+1. The normal curvature tensor R⊥ of Ḿ is called reccurent if

R⊥(X,Y )N = θ(X,Y )N, (4.9)

for all X,Y ∈ TḾand N ∈ TḾ⊥ holds on Ḿ , where θ is a 2-form on Ḿ .

Theorem 4.3. Let Ḿm be an anti-invariant submanifold of a conformal Sasakian
manifold M2n+1 normal to ξ with reccurent nomal curvature tensor. Then Ḿ has
a flat normal connection.

Proof: Since R⊥ is reccurent, by (4.9) and using (4.3) in Proposition 4.2 we obtain

Ŕ(X,Y )Z = θ(X,Y )Z − θ(X,Y )η(Z)ξ + η(R(X,Y )Z)ξ

+
1

2
{B́(Y, Z)X − B́(X,Z)Y + ǵ(Y, Z)B́(X, .)♯

−ǵ(X,Z)B́(Y, .)♯ +B(X,Z)η(Y )ξ −B(Y, Z)η(X)ξ

+B(Y, ξ)ǵ(X,Z)ξ −B(X, ξ)ǵ(Y, Z)ξ}

+
1

4
‖ώ♯‖2{ǵ(Y, Z)X − ǵ(X,Z)Y }

+
1

4
‖ω♯‖2{ǵ(X,Z)η(Y )ξ − ǵ(Y, Z)η(X)ξ}

+{ǵ(Y, Z)X − ǵ(X,Z)Y + ǵ(X,Z)η(Y )ξ − ǵ(Y, Z)η(X)ξ}

− exp(f){ǵ(Y, Z)X − ǵ(X,Z)Y }, (4.10)

for all X,Y, Z ∈ TḾ . Since ξ ∈ T⊥Ḿ , taking the inner product from the above
equation with each vector field W ∈ TḾ and Contracting it over Z and W we get

mθ(X,Y ) = 0, (4.11)

for all X,Y on Ḿ . Then (4.9) results R⊥ = 0. Thus, Ḿ has a flat normal
connection. ✷

5. Distribution on submanifolds

Let M2n+1 be a conformal Sasakian manifold. Then Ḿm is said a CR-submani-
fold in M if there exist two orthogonal complementray distributions D and D⊥ of
TḾ such that ξ ∈ TḾ and
(1) D is invariant by ϕ, i.e. ϕ(Dp) ⊂ Dp, ∀p ∈ Ḿ .

(2) D⊥ is anti-invariant by ϕ, i.e. ϕ(D⊥
p ) ⊂ T⊥

p Ḿ∀p ∈ Ḿ .

Theorem 5.1. Let (Ḿm, D) be a CR-submanifold of a conformal Sasakian man-
ifold M2n+1. Then the anti-invariant distribution D⊥ of M ′ is integrable.
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Proof: Since Φ(X,Y ) = g(X,ϕY ) for all X,Y ∈ TḾ , we get Φ(X,Y ) = 0 and

Φ(Z,W ) = 0 for all X ∈ D and Y, Z ∈ D⊥. Since (M2n+1, ϕ, ξ̃, η̃, g̃) is a Sasakian

manifold, we have dΦ̃ = 0, where Φ̃(X,Y ) = g̃(X,ϕY ). Thus, we find

0 = dΦ̃

= d(exp(f)) ∧Φ + exp(f)dΦ

= exp(f)(ω ∧ Φ+ dΦ).

Using (Φ∧ω)(X,Y, Z) = 0 for all X ∈ D and Y, Z ∈ D⊥ in the above equation we
can write

0 = 3(dΦ)(X,Y, Z)

= X(Φ(Y, Z)) + Z(Φ(Z,X)) +W (Φ(X,Y ))

−Φ([X,Y ], Z)− Φ([Z,X ], Y )− Φ([Y, Z], X)

= −g([Y, Z], ϕX),

hence, [Y, Z] ∈ D⊥ for all Y, Z ∈ D⊥. ✷

Let (Ḿm, D) be a CR-submanifold of a conformal Sasakian manifold M2n+1.
Then M ′ is said to be mixed totally geodesic if th(X,Y ) = 0 for each X ∈ D and
Y ∈ D⊥ [2].

Theorem 5.2. Let (Ḿm, D) be a CR-submanifold of a conformal Sasakian man-
ifold M2n+1 normal to ω♯. Then Ḿ is mixed totally geodesic if and only if each
leaf of the anti-invariant distribution D⊥ is a totally geodesic submanifold of Ḿ

Proof: Let S be a leaf of D⊥. Making use of the Gauss formula we have

hS(Y, Z) = (∇́Y Z)D, (5.1)

for all Y, Z ∈ T (S) = D⊥ and X ∈ D, where hS is the second fundamental form
of S in Ḿ . Hence we have

−∇́((∇́Y Z)D, ϕX) = ǵ(th(X,Y ), Z)−
1

2
ǵ(Y, Z)ω(ϕX). (5.2)

Since ω♯ is normal to Ḿ , in view of (5.2) we get

g′((∇′
Y Z)D, ϕX) = −g′(th(X,Y ), Z), (5.3)

for all Y, Z ∈ T (S) = D⊥ and X ∈ D. So (5.1) and (5.3) complete the proof of
the theorem. ✷
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6. Example

In this section we construct an example of a conformal Sasakian manifold that
is not Sasakian. We consider the 3-dimensional manifold M = {(x, y, z) ∈ R

3 : z >

0}, where (x, y, z) are the standard coordinates in R
3. The vetore fields

e1 = 2(
∂

∂x
+ y

∂

∂z
), e2 = 2

∂

∂y
, e3 = 2exp(z)

1

2

∂

∂z
,

are linearity independent at each point of M . Let g be the Riemannian metric
defined by

g(e1, e2) = g(e1, e3) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = exp(−z), g(e3, e3) = 1.

Let η be the 1-form defined by

η(e3) = 1, η(e2) = 0, η(e1) = 0.

We define the (1,1) tensor field ϕ as ϕe1 = e2, ϕe2 = −e1 and ϕe3 = 0. Then using
the linearly of ϕ and g we have

ϕ2X = −X + η(X)e3, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

for all X,Y on M . Thus for e3 = ξ, (ϕ, ξ, η, g) defines an almost contact metric
structure on M .
Let ∇ be the Levi-civita connection with respect to g. Then we have

[e1, e2] = −2exp(−z)
1

2 e3, [e1, e3] = ye3, [e2, e3] = 0.

The Riemannian connection ∇ of the metric g is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y, Z]) + g(Y, [X,Z]) + g(Z, [X,Y ]),

which is known as Koszul formula. By using the Koszul formula, we obtain

∇e1e2 = −ye2 − exp(−z)
1

2 e3, ∇e1e3 = −exp(z)
1

2 (e1 − e2),

∇e2e3 = −exp(z)
1

2 (e1 + e2), ∇e2e2 = ye1 + exp(−z)
1

2 e3,

∇e3e3 = yexp(z)e1, ∇e3e2 = −exp(z)
1

2 (e1 + e2),

∇e1e1 = −ye1 + exp(−z)
1

2 e3, ∇e3e1 = −exp(z)
1

2 (e1 − e2)− ye3,

∇e2e1 = −ye2 + exp(−z)
1

2 e3.

By a contact transformation

g̃ = exp(x)g, ξ̃ = exp(−x)
1

2 ξ, η̃ = exp(x)
1

2 η, ϕ̃ = ϕ,
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(M, ϕ̃, ξ̃, η̃, g̃) is a Sasakian manifold [1]. So M is a conformal Sasakian manifold
but is not Sasakian, Since we have

∇Xξ 6= −ϕX,

for each vector field X on M (for instance, ∇e3e3 6= 0). By using above results, we
can easily obtain the following :

R(e1, e2)e2 = −4e1 + yexp(−z)
1

2 e3,

R(e1, e3)e3 = −e1 + 3e2 + yexp(z)
1

2 e3,

R(e2, e3)e3 = exp(z)e1 + exp(z)(1− y2)e2.

In view of above relations, we get the following results:

K(e1, e2) = −4exp(z), K(e1, e3) = −1, K(e2, e3) = exp(z)(1− y).

Note that the sectional curvature of manifold M with almost contact metric struc-
ture (ϕ̃, ξ̃, η̃, g̃) is [1]

K(e1, e2) = −3, K(e1, e3) = −1, K(e2, e3) = −1.
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