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abstract: In this paper, a general theorem on the local property of |A, pn; δ|k
summability of factored Fourier series has been proved. This new theorem also
includes several new and known results.
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1. Introduction

Let
∑

an be a given infinite series with partial sums (sn). By (un) and (tn) we
denote the n-th (C, 1) means of the sequences (sn) and (nan), respectively. The
series

∑

an is said to be summable |C, 1|k, k ≥ 1, if (see [16])

∞
∑

n=1

nk−1|un − un−1|
k =

∞
∑

n=1

1

n
|tn|

k < ∞. (1.1)

Let (pn) be a sequence of positive numbers such that

Pn =
n
∑

v=0

pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1) . (1.2)

The sequence-to-sequence transformation

σn =
1

Pn

n
∑

v=0

pvsv (1.3)
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defines the sequence (σn) of the Riesz mean or simply the
(

N̄ , pn
)

mean of the
sequence (sn), generated by the sequence of coefficients (pn) (see [17]). The series
∑

an is said to be summable
∣

∣N̄, pn
∣

∣

k
, k ≥ 1, if (see [3])

∞
∑

n=1

(

Pn

pn

)k−1

|∆σn−1|
k < ∞, (1.4)

where

∆σn−1 = −
pn

PnPn−1

n
∑

v=1

Pv−1av, n ≥ 1.

In the special case, when pn = 1 for all values of n (resp. k = 1), |N̄ , pn|k summa-
bility is the same as | C, 1 |k (resp. |N̄ , pn|) summability. If we take k = 1
and pn = 1/(n+ 1), then summability |N̄ , pn|k is equivalent to the summability
|R, logn, 1|.
Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero di-
agonal entries. Then A defines the sequence-to-sequence transformation, mapping
the sequence s = (sn) to As = (An(s)), where

An(s) =
n
∑

v=0

anvsv, n = 0, 1, ... (1.5)

The series
∑

an is said to be summable |A|k , k ≥ 1, if (see [31])

∞
∑

n=1

nk−1
∣

∣∆̄An(s)
∣

∣

k
< ∞, (1.6)

and it is said to be summable |A, pn; δ|k, k ≥ 1 and δ ≥ 0, if (see [26])

∞
∑

n=1

(

Pn

pn

)δk+k−1

|∆̄An(s)|
k < ∞, (1.7)

where

∆̄An(s) = An(s)−An−1(s).

If we take anv = pv

Pn

and δ = 0, then |A, pn; δ|k summability reduces to |N̄ , pn|k
summability. Also, if we take δ = 0, then |A, pn; δ|k summability reduces to |A, pn|k
summability (see [30]). In the special case δ = 0 and pn = 1 for all n, |A, pn; δ|k
summability is the same as |A|k summability. Furthermore, if we take anv = pv

Pn

,

then |A, pn; δ|k summability is the same as |N̄ , pn; δ|k summability (see [7]).
A sequence (λn) is said to be convex if ∆2λn ≥ 0 for every positive integer n, where
∆2λn = ∆(∆λn) and ∆λn = λn − λn+1 (see [33]).
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Let f(t) be a periodic function with period 2π, and integrable (L) over (−π, π).
Without any loss of generality we may assume that the constant term in the Fourier
series of f(t) is zero, so that

∫ π

−π

f(t)dt = 0 (1.8)

and

f(t) ∼
∞
∑

n=1

(ancosnt+ bnsinnt) =
∞
∑

n=1

Cn(t), (1.9)

where (an) and (bn) denote the Fourier coefficients. It is well known that the
convergence of the Fourier series at t = x is a local property of the generating
function f(t) (i.e. it depends only on the behaviour of f in an arbitrarily small
neighbourhood of x), and hence the summability of the Fourier series at t = x by
any regular linear summability method is also a local property of the generating
function f(t) (see [32]).
Before stating the main theorem, let us introduce some further notations.
Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv)
and Â = (ânv) as follows:

ānv =

n
∑

i=v

ani, n, v = 0, 1, ... (1.10)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (1.11)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively. Then, we have

An(s) =

n
∑

v=0

anvsv =

n
∑

v=0

ānvav (1.12)

and

∆̄An(s) =

n
∑

v=0

ânvav. (1.13)

2. Known Results

Mohanty [22] has demonstrated that the summability |R, logn, 1| of

∑ Cn(t)

log(n+ 1)
, (2.1)



204 H. S. ÖZARSLAN

at t = x, is a local property of the generating function of
∑

Cn(t). In [20],
Matsumoto has improved this result by replacing the series (2.1) by

∑ Cn(t)

{loglog(n+ 1)}1+ǫ
, ǫ > 0. (2.2)

Bhatt [2] has generalized the above result in the following form.

Theorem 2.1. If (λn) is a convex sequence such that
∑

n−1λn is convergent, then
the summability |R, logn, 1| of the series

∑

Cn(t)λnlogn at a point can be ensured
by a local property.

Also, Mishra [21] has proved the following most general theorem.

Theorem 2.2. Let the sequence (pn) be such that

Pn = O(npn), (2.3)

Pn∆pn = O(pnpn+1). (2.4)

Then the summability |N̄ , pn| of the series

∑ Cn(t)λnPn

npn
(2.5)

at a point can be ensured by local property, where (λn) is a convex sequence such
that

∑

n−1λn is convergent.

Many works dealing with Fourier series have been done (see [1]- [2], [5]- [14],
[18]- [29]). Few of them are given above. Furthermore, Bor [4] has proved the
following theorem.

Theorem 2.3. Let k ≥ 1 and (pn) be a sequence such that the conditions (2.3)
and (2.4) of Theorem 2.2 are satisfied. Then the summability |N̄ , pn|k of the series
(2.5) at a point can be ensured by local property, where (λn) is as in Theorem 2.2.

3. Main Result

The aim of this paper is to generalize Theorem 2.3 for |A, pn; δ|k summability.
Now, we shall prove the following theorem.

Theorem 3.1. Let k ≥ 1 and 0 ≤ δ < 1/k. Let A = (anv) be a positive normal
matrix such that

an0 = 1, n = 0, 1, ..., (3.1)

an−1,v ≥ anv, for n ≥ v + 1, (3.2)
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ann = O

(

pn
Pn

)

, (3.3)

|ân,v+1| = O (v |∆v ânv|) . (3.4)

If all the conditions of Theorem 2.3 and the conditions

m
∑

v=1

(

Pv

pv

)δk
1

v
(λv)

k = O(1) as m → ∞, (3.5)

m
∑

v=1

(

Pv

pv

)δk

∆λv = O(1) as m → ∞, (3.6)

m+1
∑

n=v+1

(

Pn

pn

)δk

|∆v ânv| = O

{

(

Pv

pv

)δk−1
}

as m → ∞, (3.7)

m+1
∑

n=v+1

(

Pn

pn

)δk

|ân,v+1| = O

{

(

Pv

pv

)δk
}

as m → ∞ (3.8)

are satisfied, then the summability |A, pn; δ|k of the series
∑ Cn(t)λnPn

npn

at a point
can be ensured by local property.

It should be noted that if we take δ = 0 and anv = pv

Pn

, then we get Theorem
2.3. In this case, the conditions (3.1)-(3.6) are obvious and the conditions (3.7)
and (3.8) reduce to

m+1
∑

n=v+1

|∆v ânv| = O

(

pv
Pv

)

as m → ∞, (3.9)

and

m+1
∑

n=v+1

|ân,v+1| = O(1) as m → ∞, (3.10)

which always hold.
We need the following lemmas for the proof of Theorem 3.1.

Lemma 3.2. [21]. If the sequence (pn) is such that the conditions (2.3) and (2.4)
of Theorem 2.2 are satisfied, then

∆

(

Pn

npn

)

= O

(

1

n

)

. (3.11)
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Lemma 3.3. [15]. If (λn) is a convex sequence such that
∑

n−1λn is convergent,
then (λn) is non-negative and decreasing, and n∆λn → 0 as n → ∞.

Lemma 3.4. Let k ≥ 1 and 0 ≤ δ < 1/k. If (sn) is bounded and all conditions of
Theorem 3.1 are satisfied, then the series

∞
∑

n=1

anλnPn

npn
, (3.12)

is summable |A, pn; δ|k, where (λn) is as in Theorem 2.2.

Remark 3.5. Since (λn) is a convex sequence, therefore (λn)
k is also convex

sequence and

∑ 1

n
(λn)

k < ∞. (3.13)

4. Proof of Lemma 3.4

Let (In) denotes the A-transform of the series
∑

anλnPn

npn

. Then, by (1.12) and

(1.13), we have

∆̄In =

n
∑

v=1

ânv
avλvPv

vpv
.

Applying Abel’s transformation to this sum, we get that

∆̄In =
n−1
∑

v=1

∆v

(

ânvλvPv

vpv

) v
∑

r=1

ar +
ânnPnλn

npn

n
∑

v=1

av

=

n−1
∑

v=1

∆v

(

ânvλvPv

vpv

)

sv +
annPnλn

npn
sn

=

n−1
∑

v=1

Pvλv∆v(ânv)

vpv
sv +

n−1
∑

v=1

ân,v+1∆λvPv

vpv
sv

+

n−1
∑

v=1

ân,v+1λv+1∆

(

Pv

vpv

)

sv +
annPnλn

npn
sn

= In,1 + In,2 + In,3 + In,4.
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To complete the proof of Lemma 3.4, it is sufficient to show that

∞
∑

n=1

(

Pn

pn

)δk+k−1

| In,r |k< ∞, for r = 1, 2, 3, 4. (4.1)

First, by applying Hölder’s inequality, we have

m+1
∑

n=2

(

Pn

pn

)δk+k−1

|In,1|
k =

m+1
∑

n=2

(

Pn

pn

)δk+k−1
∣

∣

∣

∣

∣

n−1
∑

v=1

Pvλv∆v(ânv)

vpv
sv

∣

∣

∣

∣

∣

k

≤
m+1
∑

n=2

(

Pn

pn

)δk+k−1
{

n−1
∑

v=1

(

Pv

vpv

)

|∆v(ânv)| (λv)|sv|

}k

≤
m+1
∑

n=2

(

Pn

pn

)δk+k−1
{

n−1
∑

v=1

(

Pv

vpv

)k

|∆v(ânv)|(λv)
k|sv|

k

}

×

{

n−1
∑

v=1

|∆v(ânv)|

}k−1

.

By (1.10) and (1.11), we have that

∆v(ânv) = ânv − ân,v+1 = ānv − ān−1,v − ān,v+1 + ān−1,v+1 = anv − an−1,v.

Thus using (1.10), (3.1) and (3.2)

n−1
∑

v=1

|∆v(ânv)| =

n−1
∑

v=1

(an−1,v − anv) ≤ ann.

Hence,

m+1
∑

n=2

(

Pn

pn

)δk+k−1

|In,1|
k = O(1)

m+1
∑

n=2

(

Pn

pn

)δk+k−1

× ak−1
nn

{

n−1
∑

v=1

(

Pv

pv

)k
1

vk
|∆v(ânv)|(λv)

k

}

=O(1)

m
∑

v=1

(

Pv

pv

)k
1

vk
(λv)

k

m+1
∑

n=v+1

(

Pn

pn

)δk

|∆v(ânv)|

=O(1)
m
∑

v=1

(

Pv

pv

)k
1

vk
(λv)

k

(

Pv

pv

)δk−1
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=O(1)

m
∑

v=1

(

Pv

pv

)k−1
1

vk
(λv)

k

(

Pv

pv

)δk

=O(1)

m
∑

v=1

vk−1 1

vk
(λv)

k

(

Pv

pv

)δk

=O(1)

m
∑

v=1

(

Pv

pv

)δk
1

v
(λv)

k = O(1) as m → ∞,

by virtue of the hypotheses of Lemma 3.4.

Now, by using (2.3), and Hölder’s inequality we have

m+1
∑

n=2

(

Pn

pn

)δk+k−1

|In,2|
k =

m+1
∑

n=2

(

Pn

pn

)δk+k−1
∣

∣

∣

∣

∣

n−1
∑

v=1

ân,v+1∆λvPv

vpv
sv

∣

∣

∣

∣

∣

k

= O(1)

m+1
∑

n=2

(

Pn

pn

)δk+k−1
{

n−1
∑

v=1

|ân,v+1|∆λv|sv|

}k

= O(1)

m+1
∑

n=2

(

Pn

pn

)δk+k−1
{

n−1
∑

v=1

|ân,v+1|∆λv|sv|
k

}

×

{

n−1
∑

v=1

|ân,v+1|∆λv

}k−1

= O(1)

m+1
∑

n=2

(

Pn

pn

)δk+k−1

ak−1
nn

n−1
∑

v=1

|ân,v+1|∆λv

×

{

n−1
∑

v=1

∆λv

}k−1

by using (3.3), we get

m+1
∑

n=2

(

Pn

pn

)δk+k−1

|In,2|
k = O(1)

m+1
∑

n=2

(

Pn

pn

)δk
{

n−1
∑

v=1

|ân,v+1|∆λv

}

= O(1)

m
∑

v=1

∆λv

m+1
∑

n=v+1

(

Pn

pn

)δk

|ân,v+1|

= O(1)
m
∑

v=1

(

Pv

pv

)δk

∆λv

= O(1) as m → ∞,
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by using (3.6), (3.8) and hypotheses of Lemma 3.3. Now, since ∆
(

Pv

vpv

)

= O
(

1
v

)

by Lemma 3.2, we have

m+1
∑

n=2

(

Pn

pn

)δk+k−1

|In,3|
k =

m+1
∑

n=2

(

Pn

pn

)δk+k−1
∣

∣

∣

∣

∣

n−1
∑

v=1

ân,v+1λv+1∆

(

Pv

vpv

)

sv

∣

∣

∣

∣

∣

k

= O(1)
m+1
∑

n=2

(

Pn

pn

)δk+k−1
{

n−1
∑

v=1

1

v
|ân,v+1|(λv+1)|sv|

}k

= O(1)
m+1
∑

n=2

(

Pn

pn

)δk+k−1

×

n−1
∑

v=1

1

v
|ân,v+1|(λv+1)

k|sv|
k

{

n−1
∑

v=1

|∆v(ânv)|

}k−1

= O(1)

m+1
∑

n=2

(

Pn

pn

)δk+k−1

ak−1
nn

n−1
∑

v=1

1

v
|ân,v+1|(λv+1)

k

= O(1)

m
∑

v=1

1

v
(λv+1)

k

m+1
∑

n=v+1

(

Pn

pn

)δk

|ân,v+1|

= O(1)

m
∑

v=1

(

Pv

pv

)δk
1

v
(λv+1)

k = O(1) as m → ∞,

by using (3.3), (3.4), (3.5) and (3.8). Finally, we have

m
∑

n=1

(

Pn

pn

)δk+k−1

|In,4|
k =

m
∑

n=1

(

Pn

pn

)δk+k−1 ∣
∣

∣

∣

annPnλn

npn
sn

∣

∣

∣

∣

k

= O(1)
m
∑

n=1

(

Pn

pn

)δk+k−1 (
pn
Pn

)k

×
1

nk

(

Pn

pn

)k

(λn)
k|sn|

k

= O(1)
m
∑

n=1

(

Pn

pn

)δk
1

n
(λn)

k = O(1) as m → ∞,

by using (2.3), (3.3) and (3.5).
This completes the proof of Lemma 3.4.

5. Proof of Theorem 3.1

The convergence of the Fourier series at t = x is a local property of f (i.e.,
it depends only on the behaviour of f in an arbitrarily small neighbourhood of
x), and hence the summability of the Fourier series at t = x by any regular linear
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summability method is also a local property of f . Since the behaviour of the Fourier
series, as far as convergence is concerned, for a particular value of x depends on
the behaviour of the function in the immediate neighbourhood of this point only,
hence the truth of Theorem 3.1 is a consequence of Lemma 3.4.

If we take δ = 0, then we obtain a theorem on |A, pn|k summability method. If
we take δ = 0 and pn = 1 for all n, then we obtain a result for |A|k summability
method.
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23. H. S. Özarslan, A note on |N̄, pn; δ|k summability factors. Erc. Unv. J. Inst. Sci and Tech.
16, 95-100, (2000).
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