

(3s.) **v. 39** 1 (2021): 189–200. ISSN-00378712 IN PRESS doi:10.5269/bspm.37840

On Ternary Left Almost Semigroups

Pairote Yiarayong

ABSTRACT: A ternary LA-semigroup is a nonempty set together with a ternary multiplication which is non associative. Analogous to the theory of LA-semigroups, a regularity condition on a ternary LA-semigroup is introduced and the properties of ternary LA-semigroups are studied. Some characterizations of quasi-prime and quasi-ideals were obtained.

Key Words: Ternary LA-semigroup, Quasi-prime ideal, Quasi-ideal, Ternary LA-subsemigroup, Left ideal.

Contents

1	Introduction	189
2	Preliminaries	189
3	Left ideals of ternary LA-semigroups	193
4	Quasi-ideals of ternary LA-semigroups	197

1. Introduction

The theory of ternary algebraic systems was introduced by Lehmer [3] in 1932. The notion of ternary semigroup was known to Banach [4] who is credited with example of a ternary semigroup which can not reduce to a semigroup. The quasiideal theory in ternary semigroups was studied by Sioson [5] in the year 1965. Los [4] studied some properties of ternary semigroup and proved that every ternary semigroup can be embedded in a semigroup. Dixit and Dewan [1,2] studied quasiideals and bi-ideals in ternary semigroups. Recently, Bashir and Shabir [4] defined the concepts of weakly pure ideal and purely prime ideal in a ternary semigroup without order.

In this study we followed lines as adopted in [7,8,9] and established the notion of ternary LA-semigroups. Specifically we characterize the quasi-prime and quasiideals in ternary LA-semigroups with left identity.

2. Preliminaries

In this section, we give some preliminary results of ternary LA-semigroups which will be required for our later discussions.

Typeset by $\mathcal{B}^{s}\mathcal{A}_{M}$ style. © Soc. Paran. de Mat.

²⁰¹⁰ Mathematics Subject Classification: 20M10, 20N99.

Submitted June 26, 2017. Published February 19, 2018

Definition 2.1. Let S be a nonempty set. Then S is called a ternary left almost semigroup (or simply a ternary LA-semigroup) if there exists a ternary operation $S \times S \times S \to S$, written as $(x_1, x_2, x_3) \mapsto x_1 x_2 x_3$, such that

$$((x_1x_2)x_3)(x_4x_5) = ((x_4x_5)x_3)(x_1x_2) = ((x_3x_2)x_1)(x_4x_5)$$

for all $x_1, x_2, x_3, x_4, x_5 \in S$.

Example 2.2. Let $S = \{0, i, -i\}$. Then by defining $S \times S \times S \to S$, as $(x_1, x_2, x_3) \mapsto x_1 x_2 x_3$, for all $x_1, x_2, x_3 \in S$. It can be easily verified that S is a ternary LA-semigroup under complex number multiplication while S is not an LA-semigroup.

Example 2.3. Let $S = \mathbb{Z}$. Define a mapping $S \times S \times S \to S$ by $(x_1, x_2, x_3) \mapsto -x_1 + x_2 - x_3$, for all $x_1, x_2, x_3 \in S$, where - is a usual subtraction of integers. Then S is a ternary LA-semigroup while S is not a ternary semigroup. Indeed

$$\begin{aligned} ((x_1x_2)x_3)(x_4x_5) &= (-x_1+x_2-x_3)(x_4x_5) \\ &= -(-x_1+x_2-x_3)+x_4-x_5 \\ &= x_1-x_2+x_3+x_4-x_5 \\ &= -(-x_4+x_5-x_3)+x_1-x_2 \\ &= (-x_4+x_5-x_3)(x_1x_2) \\ &= ((x_4x_5)x_3)(x_1x_2) \end{aligned}$$

and

$$((x_1x_2)x_3)(x_4x_5) = (-x_1 + x_2 - x_3)(x_4x_5)$$

= $-(-x_1 + x_2 - x_3) + x_4 - x_5$
= $x_1 - x_2 + x_3 + x_4 - x_5$
= $-(-x_3 + x_2 - x_1) + x_4 - x_5$
= $(-x_3 + x_2 - x_1)(x_4x_5)$
= $((x_3x_2)x_1)(x_4x_5)$

which implies $((x_1x_2)x_3)(x_4x_5) = ((x_4x_5)x_3)(x_1x_2) = ((x_3x_2)x_1)(x_4x_5)$, for all $x_1, x_2, x_3, x_4, x_5 \in S$.

Proposition 2.4. If S is a ternary LA-semigroup, then $((x_1x_2)x_3)((x_4x_5)x_6) = ((x_1x_2)(x_4x_5))(x_3x_6)$, for all $x_1, x_2, x_3, x_4, x_5, x_6 \in S$.

Proof: Let $x_1, x_2, x_3, x_4, x_5, x_6 \in S$. Then by Definition of ternary LA-semigroup, we get

$$\begin{aligned} ((x_1x_2)x_3)((x_4x_5)x_6) &= (((x_4x_5)x_6)x_3)(x_1x_2) \\ &= ((x_3x_6)(x_4x_5))(x_1x_2) \\ &= ((x_1x_2)(x_4x_5))(x_3x_6). \end{aligned}$$

Hence $((x_1x_2)x_3)((x_4x_5)x_6) = ((x_1x_2)(x_4x_5))(x_3x_6).$

Proposition 2.5. If S is a ternary LA-semigroup, then

$$[((x_1x_2)x_3)(x_4x_5)][(x_6x_7)((x_8x_9)x_{10})] = [((x_1x_2)x_3)(x_6x_7)][(x_4x_5)((x_8x_9)x_{10})],$$

for all $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10} \in S$.

Proof: Let $x_1, x_2, x_3, x_4, x_5, x_6 \in S$. Then by Definition of ternary LA-semigroup, we have

$$[((x_1x_2)x_3)(x_4x_5)][(x_6x_7)((x_8x_9)x_{10})] = [[x_6x_7)((x_8x_9)x_{10})](x_4x_5)] ((x_1x_2)x_3) = [[(x_4x_5)((x_8x_9)x_{10})](x_6x_7)] ((x_1x_2)x_3) = [((x_1x_2)x_3)(x_6x_7)] [(x_4x_5)((x_8x_9)x_{10})].$$

Definition 2.6. An element e of a ternary LA-semigroup S is called a left identity if (ee)x = x, for all $x \in S$.

Note 1. By (AB)C(A(BC)) we mean the set

x

$$\{(ab)c : a \in A, b \in B, c \in C\} \ (\{a(bc) : a \in A, b \in B, c \in C\})$$

for non empty subsets A, B, C of S. If $A = \{a\}$, then we write $(\{a\} B) C$ as (aB)Cand similarly if $B = \{b\}$ or $C = \{c\}$, we write (Ab)C and (AB)c respectively.

Lemma 2.7. If S is a ternary LA-semigroup with left identity e, then (SS)S = S and (ee)S = S.

Proof: Let $x \in S$. Then $x = (ee)x \in (SS)S$ so $S \subseteq (SS)S$. Hence S = (SS)S. Now as e is left identity in S, it is obvious that (ee)S = S.

Lemma 2.8. If S is a ternary LA-semigroup with left identity, then $x_1(x_2x_3) = x_2(x_1x_3)$, for all $x_1, x_2, x_3 \in S$.

Proof: Let $x_1, x_2, x_3 \in S$. Then by Definition of ternary LA-semigroup, we get

$$\begin{array}{rcl} (x_2x_3) &=& ((ee)x_1)(x_2x_3) \\ &=& ((x_2x_3)x_1)(ee) \\ &=& ((x_1x_3)x_2)(ee) \\ &=& ((ee)x_2)(x_1x_3) \\ &=& x_2(x_1x_3). \end{array}$$

Hence $x_1(x_2x_3) = x_2(x_1x_3)$.

Proposition 2.9. If S is a ternary LA-semigroup with left identity, then

$$(x_1x_2)((x_3x_4)x_5) = (x_5(x_3x_4))(x_2x_1),$$

for all $x_1, x_2, x_3, x_4, x_5 \in S$.

Proof: Let $x_1, x_2, x_3, x_4, x_5 \in S$. Then by Definition of ternary LA-semigroup, we get $(x, x_1)((x, x_2)x_3) = (((x_1, x_2)x_3)((x, x_2)x_3))$

$$\begin{aligned} (x_1x_2)((x_3x_4)x_5) &= (((ee)x_1)x_2)((x_3x_4)x_5) \\ &= ((x_2x_1)(ee))((x_3x_4)x_5) \\ &= (((x_3x_4)x_5)(ee))(x_2x_1) \\ &= (((ee)x_5)(x_3x_4))(x_2x_1) \\ &= (x_5(x_3x_4))(x_2x_1). \end{aligned}$$

Hence $(x_1x_2)((x_3x_4)x_5) = (x_5(x_3x_4))(x_2x_1).$

Lemma 2.10. If S is a ternary LA-semigroup with left identity, then

$$(x_1x_2)(x_3x_4) = (x_1x_3)(x_2x_4),$$

for all $x_1, x_2, x_3, x_4 \in S$.

Proof: Let $x_1, x_2, x_3, x_4 \in S$. Then by Definition of ternary LA-semigroup, we have

$$\begin{aligned} (x_1x_2)(x_3x_4) &= & (((ee)x_1)x_2)(x_3x_4) \\ &= & ((x_3x_4)x_2)((ee)x_1) \\ &= & ((x_2x_4)x_3)((ee)x_1) \\ &= & (((ee)x_1)x_3)(x_2x_4) \\ &= & (x_1x_3)(x_2x_4). \end{aligned}$$

Hence $(x_1x_2)(x_3x_4) = (x_1x_3)(x_2x_4).$

Lemma 2.11. If S is a ternary LA-semigroup with left identity, then

$$(x_1x_2)(x_3x_4) = (x_4x_3)(x_2x_1),$$

for all $x_1, x_2, x_3, x_4 \in S$.

Proof: Let $x_1, x_2, x_3, x_4 \in S$. Then by Definition of ternary LA-semigroup, we have $(x_1 x_2)(x_3 x_4) = (((ee) x_1) x_2)(x_2 x_4)$

Hence $(x_1x_2)(x_3x_4) = (x_4x_3)(x_2x_1).$

Lemma 2.12. If S is a ternary LA-semigroup with left identity, then

$$(x_1x_2)x_3 = (x_3x_2)x_1,$$

for all $x_1, x_2, x_3 \in S$.

192

Proof: Let $x_1, x_2, x_3 \in S$. Then by Definition of ternary LA-semigroup, we have

 $\begin{array}{rcl} (x_1x_2)x_3 &=& (x_1x_2)((ee)x_3) \\ &=& (x_1(ee))(x_2x_3) \\ &=& (x_3x_2)((ee)x_1) \\ &=& (x_3x_2)x_1. \end{array}$

Hence $(x_1x_2)x_3 = (x_3x_2)x_1$.

3. Left ideals of ternary LA-semigroups

The results of the following lemmas seem to play an important role to study ternary LA-semigroups; these facts will be used frequently and normally we shall make no reference to this definition.

Definition 3.1. A non-empty subset A of a ternary LA-semigroup S is said to be a

- 1. ternary LA-subsemigroup if $(AA)A \subseteq A$;
- 2. left ideal if $(SS)A \subseteq A$.

Remark 3.2. It is easy to see that every left ideal is ternary LA-subsemigroup.

Example 3.3. Let $S = \{0, -1, -2, -3, -4\}$ the binary operation \cdot be defined on S as follows:

	0	-1	-2	-3	-4		0	-1	-2	-3	-4
0	0	0	0 2	0 3	0	0	0	0	0 -2	0	0 -4
-1	0	1		3	4 3	1	0	-1	-2	-3	-4
-2	0	2	4	1	3	$\mathcal{2}$	0	-2	-4	0 -3 -1	-3 -2
-2 -3 -4	0	3	1	4 2	2	2 3	0	-1 -2 -3 -4	-1 -3	-4 -2	-2
-4	0	4	3	$\mathcal{2}$	1	4	0	-4	-3	-2	-1
							•				
				0	1	\mathcal{Z}	3	4			
			0	0	0	0 -2	0 -3	0 -4 -3	-		
			-1	0	-1	-2	-3	-4			
			-2 -3	0	-2	-4	-1	-3			
			-3	0	-3	-1	-4	-2			
			-4	0	-4	-3	-2	-1			

Define a mapping $S \times S \times S \to S$ by $(x_1, x_2, x_3) \mapsto x_1^{-1} \cdot x_2 \cdot x_3^{-1}$, for all $x_1, x_2, x_3 \in S$ and $x_1 \cdot x_1^{-1} = x_1^{-1} \cdot x_1 = 1 = x_3 \cdot x_3^{-1} = x_3^{-1} \cdot x_3$. Then S is a ternary LA-semigroup. It is easy to see that $\{0, -1\}$ is a ternary LA-subsemigroup of S. But $\{0, -1\}$ is not a left ideal of S, since $(SS) \{0, -1\} = S \not\subseteq \{0, -1\}$.

Example 3.4. Let $S = \{0, -a, -b, -c\}$ the binary operation \cdot be defined on S as follows:

193

```
PAI. YIARAYONG
```

	0	- <i>a</i>	- <i>b</i>	- <i>C</i>	•	0	a	b	С		0	- <i>a</i>	-b	- <i>C</i>
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- <i>a</i>	0	a	b	С	- <i>a</i>	0	- <i>a</i>	-b	- <i>C</i>	a	0	- <i>a</i>	- <i>b</i>	- <i>C</i>
- <i>b</i>	0	b	0	b	- <i>b</i>	0	- <i>b</i>	0	- <i>b</i>	b	0	- <i>b</i>	0	- <i>b</i>
- <i>C</i>	0	c	b	a	- <i>C</i>	0	- <i>C</i>	- <i>b</i>	0 -c -b -a	С	0	- <i>C</i>	- <i>b</i>	- <i>a</i>

Define a mapping $S \times S \times S \to S$ by

$$(x_1, x_2, x_3) \mapsto \left\{ \begin{array}{ll} x_1^{-1} \cdot x_2 \cdot x_3^{-1} & ; \ \exists x_1^{-1}, x_3^{-1} \in S\left[x_1 \cdot x_1^{-1} = a = x_3 \cdot x_3^{-1}\right] \\ 0 & ; otherwise. \end{array} \right.$$

Then S is a ternary LA-semigroup. It is easy to see that $\{0, -b\}$ is a left ideal of S.

Lemma 3.5. Let S be a ternary LA-semigroup with left identity. If A is a left ideal of S, then B(AA) is a left ideal of S, where $\emptyset \neq A \subseteq S$.

Proof: Suppose that S is a ternary LA-semigroup with left identity. Let A be a left ideal of S. Then by Lemma 2.12, we have

$$(SS)(B(AA)) = B((SS)(AA))$$

= $B(A((SS)A))$
 $\subseteq B(AA)$

By Definition of left ideal, we get B(AA) is a left ideal of S.

Corollary 3.6. Let S be a ternary LA-semigroup with left identity. If A is a left ideal of S, then a(AA) is a left ideal of S, where $a \in S$.

Proof: It is straightforward by Lemma 3.5.

Definition 3.7. If A is a left ideal of a ternary LA-semigroup S and $\emptyset \neq B, C \subseteq S$, then

$$(A:B:C) = \{s \in S : (BC)s \subseteq A\}$$

and it is called the extension of A by B, C. Let (A : a : b) stand for $(A : \{a\} : \{b\})$.

Proposition 3.8. Let A be a left ideal of a ternary LA-semigroup S and $\emptyset \neq B, C, D, E \subseteq S$. Then the following statements hold.

- 1. $A \subseteq (A : a : b)$, where $a, b \in S$.
- 2. If $D \subseteq B$, then $(A : B : C) \subseteq (A : D : C)$.
- 3. If $E \subseteq C$, then $(A : B : C) \subseteq (A : B : E)$.
- 4. If $A \subseteq D$, then $(A : B : C) \subseteq (D : B : C)$.
- 5. If $B \subseteq A$, then (A : B : C) = S.

194

6. If $C \subseteq A$, then (A : B : C) = S.

Proof: It is straightforward by Definition 3.7.

Proposition 3.9. Let A be a left ideal of a ternary LA-semigroup with left identity S and $\emptyset \neq B, C \subseteq S$. Then the following statements hold.

If B ⊆ A, then (A : B : C) = S.
 If C ⊆ A, then (A : B : C) = S.

Proof: It is straightforward by Definition 3.7.

Lemma 3.10. Let S be a ternary LA-semigroup with left identity. If A is a left ideal of S, then (A : a : b) is a left ideal of S, where $a, b \in S$.

Proof: Suppose that S is a ternary LA-semigroup with left identity. Let $r, s \in S$ and $x \in (A : a : b)$. Then $(ab)x \in A$. Then by Lemma 2.12, we have

$$(ab)((rs)x) = (rs)((ab)x) \in (rs)A \subseteq A.$$

Therefore $(rs)x \in (A:a:b)$ so that $(SS)(A:a:b) \subseteq (A:a:b)$. Hence (A:a:b) is a left ideal in S.

Corollary 3.11. Let S be a ternary LA-semigroup with left identity. If A is a left ideal of S, then (A : B : C) is a left ideal of S, where $\emptyset \neq B, C \subseteq S$.

Proof: It is straightforward by Definition 3.10.

Lemma 3.12. Let S be a ternary LA-semigroup with left identity. If A is a left ideal of S, then (SS)a is a left ideal of S, where $a \in S$.

Proof: Suppose that S is a ternary LA-semigroup with left identity. Then by Definition of ternary LA-semigroup, we have

$$(SS)((SS)a) = (((ee)S)S)((SS)a) = ((SS)(ee))((SS)a) = (((SS)a)(ee))(SS) = (((ee)a)(SS))(SS) = ((SS)(SS))((ee)a) = (S((SS)S))((ee)a) = (SS)a$$

where $a \in S$. By Definition of left ideal, we get (SS)a is a left ideal of S. \Box

Definition 3.13. Let S be a ternary LA-semigroup. A left ideal P is called quasiprime if $(AB)C \subseteq P$ implies that $A \subseteq P$ or $B \subseteq P$ or $C \subseteq P$ for all left ideals A, B and C in S.

Example 3.14. By Example 3.15, $S = \{0, -a, -b, -c\}$ is a ternary LA-semigroup with left identity a. Then $\{0, -b\}$ is a quasi-prime ideal of S.

Theorem 3.15. Let S be a ternary LA-semigroup with left identity. Then a left ideal P of S is quasi-prime if and only if $(ab)c \in P$ implies that $a \in P$ or $b \in P$ or $c \in P$, where $a, b, c \in S$.

Proof: Suppose that S is a ternary LA-semigroup with left identity. Let P be a left ideal of S. Then by Definition of left ideal, we get

(((SS)a)((SS)b))((SS)c)	=	((((SS)b)a)(SS))((SS)c)
	=	(((ab)(SS))(SS))((SS)c)
	=	(((SS)(SS))(ab))((SS)c)
	=	(((SS)c)(ab))((SS)(SS))
	=	(((ab)c)(SS))((SS)(SS))
	=	(((SS)(SS))(SS))((ab)c)
	=	((((SS)S)S)(SS))((ab)c)
	=	(((SS)S)S)((ab)c)
	=	(SS)((ab)c)
	\subseteq	(SS)P
	\subseteq	<i>P</i> .

By Lemma 3.12, we get (SS)a, (SS)b, (SS)c are left deals S so that $(ee)a \in (SS)a \subseteq P$ or $(ee)b \in (SS)b \subseteq P$ or $(ee)c \in (SS)c \subseteq P$. Conversely, assume that if $(ab)c \in P$, then $a \in P$ or $b \in P$ or $c \in P$, where $a, b, c \in S$. Suppose that $(AB)C \subseteq P$, where A, B and C are left ideals of S such that $A \not\subseteq P$ and $B \not\subseteq P$. Then there exist $a \in A, b \in B$ such that $a, b \in P$. Now consider $(ab)c \in (AB)C \subseteq P$, for all $c \in C$. So by hypothesis, $c \in P$ for all $c \in C$ implies that $C \subseteq P$. Hence P is a quasi-prime ideal in S.

Example 3.16. In the ternary LA-semigroup \mathbb{Z}^- of all negative integers, the ideal $P = \{2x : x \in \mathbb{Z}^-\}$ is a quasi-prime ideal of \mathbb{Z}^- . But the ideal $Q = \{70x : x \in \mathbb{Z}^-\}$ is not a quasi-prime ideal of \mathbb{Z}^- , since $(-2)(-5)(-7) = -70 \in Q$ but $-2 \notin Q, -5 \notin Q$ and $-7 \notin Q$.

Corollary 3.17. Let S be a ternary LA-semigroup with left identity. Then a left ideal P of S is quasi-prime if and only if $a, bc \notin P$, implies that $(ab)c \notin P$, where $a, b, c \in S$.

Proof: It is straightforward by Theorem 3.15.

Theorem 3.18. Let S be a ternary LA-semigroup with left identity. If A is a left ideal of S and P is a quasi-prime ideal of S, then $A \cap P$ is a quasi-prime ideal of A.

Proof: Suppose that S is a ternary LA-semigroup with left identity. Clearly $A \cap P$ is a left ideal of A. Let $(ab)c \in A \cap P$. Then $(ab)c \in P$, since $A \cap P \subseteq P$. Since S is a quasi-prime ideal of S, we have $a \in P$ or $b \in P$ or $c \in P$. Therefore $a \in A \cap P$ or $b \in A \cap P$ or $c \in A \cap P$. Consequently, by Theorem 3.15, we get $A \cap P$ is a quasi-prime ideal in S.

Theorem 3.19. Let S be a ternary LA-semigroup with left identity. If P is a quasi-prime ideal of S, then (P : a : b) is a quasi-prime ideal of S, where $a, b \in S$.

Proof: Assume that P is a quasi-prime ideal of S. By Lemma 3.10, we have (P : a : b) is a left ideal in S. Let $(xy)z \in (P : a : b)$. Then $(xy)((ab)z) = (ab)((xy)z) \in P$. By Theorem 3.15, we get $(ab)x \in (ab)P \subseteq P$ or $(ab)y \in (ab)P \subseteq P$ or $(ab)z \in P$. Therefore $x \in (P : a : b)$ or $y \in (P : a : b)$ or $z \in (P : a : b)$. Hence (P : a : b) is a quasi-prime ideal of S.

Corollary 3.20. Let S be a ternary LA-semigroup with left identity. If P is a quasi-prime ideal of S, then (P : a : b) is a quasi-prime ideal of S, where $a, b \in S$.

Proof: It is straightforward by Definition 3.19.

Theorem 3.21. Let S be a ternary LA-semigroup with left identity. A left ideal P of S is a quasi-prime ideal if and only if S - P is either ternary LA- subsemigroup of S or empty.

Proof: Suppose that P is a quasi-prime ideal of S and $S - P \neq \emptyset$. Let $a, b, c \in S - P$. Then $a, b, c \notin P$. By Corollary 3.17, we get $(ab)c \notin P$ so $(ab)c \in S - P$. Hence S - P is a ternary LA- subsemigroup of S. Conversely suppose that S - P is either ternary LA- subsemigroup of S or empty. If S - P is empty, then S = P and hence P is a quasi-prime ideal of S. Assume that S - P is a ternary LA-subsemigroup of S. Conversely suppose that S = P and hence P is a quasi-prime ideal of S. Assume that S - P is a ternary LA-subsemigroup of S. Let $(ab)c \in P$. Then $(ab)c \notin S - P$. Since S - P is a ternary LA-subsemigroup, we get $a \notin S - P$ or $b \notin S - P$ or $c \notin S - P$. Therefore $a \in P$ or $b \in P$ or $c \in P$. By Theorem 3.15, we have P of S is a quasi-prime ideal of S.

4. Quasi-ideals of ternary LA-semigroups

The results of the following theorems seem to play an important role to study quasi-ideals in ternary LA-semigroups; these facts will be used frequently and normally we shall make no reference to this definition.

Definition 4.1. A non-empty subset Q of a ternary LA-semigroup S is called a quasi-ideal of S if

- 1. $(QS)S \cap (SQ)S \cap (SS)Q \subseteq Q$
- 2. $(QS)S \cap ((SS)Q)(SS) \cap (SS)Q \subseteq Q$.

Remark 4.2. Let S is a ternary LA-semigroup.

- 1. Each quasi-ideal Q of S is a ternary LA-subsemigroup. In fact, $(QQ)Q \subseteq (QS)S \cap (SQ)S \cap (SS)Q \subseteq Q.$
- 2. Every left ideal of S is a quasi-ideal of S.

Proposition 4.3. Let S be a ternary LA-semigroup. If Q_i is a quasi-ideal of S, then $\bigcap_{i \in I} Q_i$ is a quasi-ideal of S.

Proof: Suppose that A_i is a quasi-ideal of S. Then $(Q_iS)S \cap (SQ_i)S \cap (SS)Q_i \subseteq Q_i$ and $(Q_iS)S \cap ((SS)Q_i)(SS) \cap (SS)Q_i \subseteq Q_i$. Then by Definition of quasi-ideal, we get

$$\begin{array}{ll} ((\bigcap_{i\in I}Q_i)S)S\cap (S(\bigcap_{i\in I}Q_i))S\cap (SS)\left(\bigcap_{i\in I}Q_i\right) & = & \bigcap_{i\in I}((Q_iS)S)\cap\bigcap_{i\in I}((SQ_i)S) \\ & \cap\bigcap_{i\in I}((SS)Q_i) \\ & \subseteq & (Q_iS)S\cap (SQ_i)S\cap \\ & (SS)Q_i \\ & \subseteq & Q_i \end{array}$$

and

$$\begin{split} ((\bigcap_{i\in I}Q_i)S)S\cap((SS)\bigcap_{i\in I}Q_i)(SS)\cap(SS)(\bigcap_{i\in I}Q_i) &= \bigcap_{i\in I}((Q_iS)S)\cap\\&\bigcap_{i\in I}(((SS)Q_i)(SS))\cap\\&\bigcap_{i\in I}((SS)Q_i)\\&\subseteq (Q_iS)S\cap((SS)Q_i)\\&\subseteq Q_i. \end{split}$$

Therefore $((\bigcap_{i\in I}Q_i)S)S\cap(S(\bigcap_{i\in I}Q_i))S\cap(SS)(\bigcap_{i\in I}Q_i)\subseteq\bigcap_{i\in I}Q_i \text{ and }$

$$((\bigcap_{i\in I}Q_i)S)S\cap((SS)\bigcap_{i\in I}Q_i)(SS)\cap(SS)(\bigcap_{i\in I}Q_i)\subseteq\bigcap_{i\in I}Q_i.$$

Hence $\bigcap_{i \in I} Q_i$ is a quasi-ideal of S.

Theorem 4.4. Let S be a ternary LA-semigroup with left identity. Then $S^2 a \cap aS^2$ is a quasi-ideals of S, for every $a \in S$.

Proof: Let S be a ternary LA-semigroup with left identity. Then by Definition of quasi-ideal, we get

$$(((SS)a \cap a(SS))S)S = (((SS)a)S)S \cap ((a(SS))S)S$$
$$= ((Sa)S^2)S \cap ((SS^2)a)S$$
$$= (SS^2)(Sa) \cap (Sa)(SS^2)$$
$$= (aS)(S^2S) \cap (S^2S)(aS)$$
$$= (aS)S \cap S(aS)$$
$$= (SS)a \cap a(SS).$$

Therefore $((S^2a \cap aS^2)S)S \cap (S(S^2a \cap aS^2))S \cap S(S(S^2a \cap aS^2)) \subseteq S^2a \cap aS^2$ and $((S^2a \cap aS^2)S)S \cap (S^2(S^2a \cap aS^2))S^2 \cap S(S(S^2a \cap aS^2)) \subseteq S^2a \cap aS^2$. Hence $S^2a \cap aS^2$ is a quasi-ideals of S.

Theorem 4.5. Let S be a ternary LA-semigroup with left identity. Then $A \cup S^2A$ is a quasi-ideals of S, for every $\emptyset \neq A \subseteq S$.

Proof: Let S be a ternary LA-semigroup with left identity. Then

$$(((SS)a \cap a(SS))S)S = (((SS)a)S)S \cap ((a(SS))S)S$$

= $((Sa)S^2)S \cap ((SS^2)a)S$
= $(SS^2)(Sa) \cap (Sa)(SS^2)$
= $(aS)(S^2S) \cap (S^2S)(aS)$
= $(aS)S \cap S(aS)$
= $(SS)a \cap a(SS).$

Therefore $((S^2a \cap aS^2)S)S \cap (S(S^2a \cap aS^2))S \cap S(S(S^2a \cap aS^2)) \subseteq S^2a \cap aS^2$ and $((S^2a \cap aS^2)S)S \cap (S^2(S^2a \cap aS^2))S^2 \cap S(S(S^2a \cap aS^2)) \subseteq S^2a \cap aS^2$. Hence $S^2a \cap aS^2$ is a quasi-ideals of S.

References

- V.N. Dixit and S. Dewan, A note on quasi and bi-ideals in ternary semigroups, Int. J. Math. Sci., 18 (1995), 501 – 508.
- V.N. Dixit and S. Dewan, Minimal quasi-ideals in ternary semigroups, Indian J. Pure Appl. Math., 28 (1997), 255 – 632.
- 3. D. H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math., 59(1932), 329 338.
- 4. J. Los, On the extending of models I, Fundam. Math., 42(1955), 38 54.
- 5. F. M. Sioson, Ideal theory in ternary semigroups, Math. Japonica, 10 (1965), 63 84.
- S. Bashir and M. Shabir, Pure ideals in ternary semigroups, Quasigroups and Related Systems, 17(2009), 149 160.
- M.L. Santiago and S. Sri Bala, *Ternary semigroups*, Semigroup Forum, 81(2010), no. 81, 380

 388.
- M. K. Dubey and R. Anuradha, On generalised quasi-ideals and bi-ideals in ternary semigroups, J. Math. Anal. Appl., 37(2014), 27 – 37.

PAI. YIARAYONG

 V.R. Daddi and Y.S. Pawar, Pseudo-ideals in ternary semigroups, Southeast Asian Bulletin of Mathematics, 35(2011), 379 – 387.

Pairote Yiarayong, Department of Mathematics Faculty of Science and Technology Pibulsongkram Rajabhat University Phitsanuloke 65000, Thailand. E-mail address: pairote0027@hotmail.com