

(3s.) **v. 39** 1 (2021): 157–167. ISSN-00378712 IN PRESS doi:10.5269/bspm.40448

Hausdorff Measure of Noncompactness of Matrix Mappings on Cesàro Spaces *

G. Canan Hazar Güleç and M. Ali Sarigöl

ABSTRACT: In this study we establish some identities or estimates for operator norms and the Hausdorff measure of noncompactness of certain operators on the spaces $|C_{\alpha}|_{k}$, which have more recently been introduced in [22]. Further, by applying the Hausdorff measure of noncompactness, we determine the necessary and sufficient conditions for such operators to be compact and so the some well known results are generalized.

Key Words: Sequence spaces, Absolute Cesàro summability, Matrix transformations, BK spaces, Compact operator, Hausdorff measure of noncompactness.

Contents

1	Background,	notation a	and	preliminaries	157
---	-------------	------------	-----	---------------	-----

2 Main results and their applications 161

1. Background, notation and preliminaries

Any vector subspace of w is called a sequence space, where w is the set of all sequences of complex numbers. For ℓ_k $(k \ge 1, \ell_1 = \ell) \subset w$, we write the sets of all k-absolutely convergent series. Let X and Y be arbitrary subspaces of w and $A = (a_{nv})$ be an arbitrary infinite matrix of complex numbers. If $x = (x_v) \in w$, then we denote A-transform of the sequence x as the sequence $A(x) = (A_n(x))$, i.e., $A_n(x) = \sum_{v=0}^{\infty} a_{nv} x_v$, provided that the series converges for $v, n \ge 0$. Then, it is called that A defines a matrix transformation from X into Y, which is denoted by $A \in (X, Y)$ or $A : X \to Y$ if $Ax = (A_n(x)) \in Y$ for every $x \in X$, and also the sets

$$X_A = \{ x \in w : A(x) \in X \}$$
(1.1)

is said to be the domain of the matrix A in X. Also, X is said to be an BKspace if it is a complete normed space with continuous coordinates $p_n : X \to \mathbb{C}$ defined by $p_n(x) = x_n$ for $n \ge 0$. Further, if X and Y are Banach spaces, then we write $\mathcal{B}(X, Y)$ for the set of all bounded linear operators $L : X \to Y$, which is a Banach space with the operator norm given by $||L|| = \sup_{x \in S_X} ||L(x)||_Y$ for all $L \in$ $\mathcal{B}(X, Y)$, where S_X denotes the unit sphere in X, that is $S_X = \{x \in X : ||x|| \le 1\}$. A linear operator $L : X \to Y$ is called compact if its domain is all of X and every bounded sequence (x_n) in X, the sequence $(L(x_n))$ has a convergent subsequence in Y. We denote the class of such operators by $\mathcal{C}(X, Y)$.

2010 Mathematics Subject Classification: 40C05, 40D25, 40F05, 46A45.

Typeset by $\mathcal{B}^{s}\mathcal{M}_{M}$ style. © Soc. Paran. de Mat.

^{*} The project is partially supported by...

Submitted November 13, 2017. Published February 06, 2018

G. C. HAZAR AND M. A. SARIGÖL

Absolute Cesàro spaces

Let Σx_n be an infinite series with partial sum s_n . Let (σ_n^{α}) and (t_n^{α}) be the nth Cesàro mean (C, α) of order α with $\alpha > -1$ of the sequence (s_n) and (na_n) respectively, *e.i.*,

$$\sigma_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=0}^n A_{n-v}^{\alpha-1} s_v,$$

and

$$t_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=1}^n A_{n-v}^{\alpha-1} v a_v$$

where

$$A_0^{\alpha} = 1, \ A_n^{\alpha} = {\alpha+n \choose n}, \ A_{-n}^{\alpha} = 0, \ n \ge 1,$$

 $|A_n^{\alpha}| \leq M(\alpha)n^{\alpha}$ for all α , and $A_n^{\alpha} \geq m(\alpha)n^{\alpha}$ for $\alpha > -1$. The series Σx_n is said to be summable $|C, \alpha|_k$ with index $k \geq 1$ if (see [7])

$$\sum_{n=1}^{\infty} n^{k-1} \left| \Delta \sigma_n^{\alpha} \right|^k < \infty, \tag{1.2}$$

where $\Delta \sigma_n^{\alpha} = \sigma_n^{\alpha} - \sigma_{n-1}^{\alpha}$ for $n \ge 0$, $\sigma_{-1}^{\alpha} = 0$. By using well known identity $t_n^{\alpha} = n (\Delta \sigma_n^{\alpha})$ [10], condition (1.2) can be stated by

$$\sum_{n=1}^{\infty} \frac{1}{n} \left| t_n^{\alpha} \right|^k < \infty.$$
(1.3)

In the special case k = 1 and $\alpha = 0$, summability $|C, \alpha|_k$ reduces to summability $|C, \alpha|_k$ [6] and summability $|C, 0|_k$, respectively.

In a more recent paper Sarıgöl [22] has introduced the space $|C_{\alpha}|_{k}$ for the case $\alpha > -1$, $k \ge 1$ as the set of all series summable by the method $|C, \alpha|_{k}$, and shown that it is also the domain of the matrix $T^{\alpha,k} = (t_{nv}^{\alpha,k})$ in the space l_{k} , the space of all k-absolutely convergent series, where $t_{00}^{\alpha,k} = 1$ and

$$t_{nv}^{\alpha,k} = \begin{cases} \frac{vA_{n-v}^{\alpha-1}}{n^{1/k}A_n^{\alpha}}, 1 \le v \le n, \\ 0, \quad v > n. \end{cases}$$
(1.4)

And also some topological structures of the space $|C_{\alpha}|_k$ have been investigated and some related matrix mappings have been characterized. We refer the reader to [22] for relevant terminology, which also extend some well known results of Flett [7], Orhan & Sarıgöl [17], Bosanquet [3], Mehdi [16], Mazhar [15]. Besides, the problems of absolute summability factors and comparison of these methods is studied by many authors in [3-7, 15-17, 25-30] and the important sequence spaces on the matrix domains have been examined by several authors in [1-2, 8-9, 12, 18-20]. Further, Das [5] defined a matrix A to be absolutely kth power conservative, $k \ge 1$, if $A \in B(\mathcal{A}_k, \mathcal{A}_k)$, where

$$\mathcal{A}_{k} = \left\{ s = (s_{v}) : \sum_{v=1}^{\infty} v^{k-1} \left| \Delta s_{v} \right|^{k} < \infty \right\},$$

and proved every conservative Hausdorff matrix $H \in B(\mathcal{A}_k, \mathcal{A}_k)$. Note that there exists a relation between \mathcal{A}_k and $|C_0|_k$ obtained in the special case $\alpha = 0$ if A lower triangular matrix. In fact, $x \in |C_0|_k$ if and only if $s \in \mathcal{A}_k$, and so $A \in (\mathcal{A}_k, \mathcal{A}_k)$ iff $\widetilde{A} \in (|C_0|_k, |C_0|_k)$, where

$$\widetilde{a}_{nv} = \begin{cases} \sum_{r=v}^{n} (a_{nr} - a_{n-1,r}), & 0 \le v \le n \\ 0, & v > n. \end{cases}$$
(1.5)

For real number α and nonnegative integers n we use the notation

$$\Delta^{\alpha} x_n = \sum_{v=n}^{\infty} A_{v-n}^{-\alpha-1} x_v,$$

whenever the series convergent and throughout the paper k^* denotes the conjugate of k > 1, i.e., $1/k + 1/k^* = 1$, and $1/k^* = 0$ for k = 1.

The following known results play important roles in our investigation. Lemma 1.1. [31] Let $1 < k < \infty$. Then, $A \in (\ell_k, \ell)$ if and only if

$$||A||_{(\ell_k,\ell)} = \sup_{N} \left\{ \sum_{v=0}^{\infty} \left| \sum_{n \in N} a_{nv} \right|^{k^*} \right\}^{1/k^*} < \infty,$$

where N is any finite set of positive numbers.

However following lemma is more useful in many cases, which gives equivalent norm.

Lemma 1.2. [23] Let $1 < k < \infty$. Then, $A \in (\ell_k, \ell)$ if and only if

$$||A||^*_{(\ell_k,\ell)} = \left\{ \sum_{v=0}^{\infty} \left(\sum_{n=0}^{\infty} |a_{nv}| \right)^{k^*} \right\}^{1/k^*} < \infty,$$

and there exists $1 \leq \xi \leq 4$ such that $\|A\|_{(\ell_k,\ell)} = \frac{1}{\xi} \|A\|_{(\ell_k,\ell)}^*$.

The second part of this lemma is easily seen by following the lines in [23] that

$$||A||_{(\ell_k,\ell)} \le ||A||^*_{(\ell_k,\ell)} \le 4 ||A||_{(\ell_k,\ell)}$$

Lemma 1.3. [11] Let $1 \le k < \infty$. Then, $A \in (\ell, \ell_k)$ if and only if

$$||A||_{(\ell,\ell_k)} = \sup_{v} \left\{ \sum_{n=0}^{\infty} |a_{nv}|^k \right\}^{1/k} < \infty.$$

Lemma 1.4. Let $\alpha > -1$ and $1 \le k < \infty$, then, $|C_{\alpha}|_k$ is norm isomorphic to the space l_k , i.e., $|C_{\alpha}|_k \cong l_k$.

Proof. To prove the theorem, we need a linear bijection preserving the norm between $|C_{\alpha}|_k$ and l_k . Now, consider transformation $T^{\alpha,k} : |C_{\alpha}|_k \to l_k$ defined by

$$T_0^{\alpha,k}(x) = x_0, T_n^{\alpha,k}(x) = \frac{1}{n^{1/k} A_n^{\alpha}} \sum_{v=1}^n A_{n-v}^{\alpha-1} v x_v.$$
(1.6)

The linearity of $T^{\alpha,k}$ is obvious. Furthermore, it is trivial that if $T^{\alpha,k}(x) = 0$, then $x = \theta$. So, $T^{\alpha,k}$ is injective. Let $T^{\alpha,k}(x) = y \in l_k$ be given, and take the sequence x as

$$x_0 = y_0, \ x_n = \frac{1}{n} \sum_{v=1}^n v^{1/k} A_{n-v}^{-\alpha-1} A_v^{\alpha} y_v, \ n \ge 1.$$

Then we have $||x||_{|C_{\alpha}|_{k}} = ||y||_{l_{k}} < \infty, 1 \le k < \infty$, which gives $x \in |C_{\alpha}|_{k}$. Thus, $T^{\alpha,k}$ is surjective and norm preserving, which completes the proof.

Hausdorff measure of noncompactness

If S and H are subsets of a metric space (X, d) and $\varepsilon > 0$ then S is called an ε -net of H, if, for every $h \in H$, there exists an $s \in S$ such that $d(h, s) < \varepsilon$; if S is finite, then the ε -net S of H is called a finite ε -net of H. If Q is a bounded subset of the metric space X, then the Hausdorff measure of noncompactness of Q is defined by

$$\chi(Q) = \{ \varepsilon > 0 : Q \text{ has a finite } \varepsilon \text{-net in } X \},\$$

and χ is called the Hausdorff measure of noncompactness.

The following result is an important tool to compute the Hausdorff measure of noncompactness of a bounded subset of the BK space $\ell_k, k \ge 1$.

Lemma 1.5. [21] Let Q be a bounded subset of the normed space X where $X = \ell_k$, for $1 \le k < \infty$ or $X = c_0$. If $P_n : X \to X$ is the operator defined by $P_r(x) = (x_0, x_1, ..., x_r, 0, ...)$ for all $x \in X$, then

$$\chi(Q) = \lim_{r \to \infty} \left(\sup_{x \in Q} \left\| (I - P_r) \left(x \right) \right\| \right),$$

where I is the identity operator on X.

If X and Y be Banach spaces and χ_1 and χ_2 be Hausdorff measures on X and Y, then, the linear operator $L : X \to Y$ is said to be (χ_1, χ_2) -bounded if L(Q) is bounded subset of Y for every bounded subset of X and there exists a positive constant M such that $\chi_2(L(Q)) \leq M \chi_1(Q)$ for every bounded Q of X. If an operator L is (χ_1, χ_2) -bounded then the number $||L||_{(\chi_1, \chi_2)} =$ inf $\{M > 0 : \chi_2(L(Q)) \leq M\chi_1(Q) \text{ for all bounded } Q \subset X\}$ is called the (χ_1, χ_2) measure of noncompactness of L. In particular, we write $||L||_{(\chi,\chi)} = ||L||_{\chi}$ for $\chi_1 = \chi_2 = \chi$.

160

Lemma 1.6. [14] Let X and Y be Banach spaces, $L \in B(X, Y)$ and $S_X = \{x \in X : ||x|| \le 1\}$ denote the unit sphere in X. Then,

$$\left\|L\right\|_{\chi} = \chi\left(L\left(S_X\right)\right)$$

and

$$L \in \mathcal{C}(X, Y)$$
 if and only if $||L||_{\gamma} = 0$

Lemma 1.7. [13] Let X be normed sequence space and χ_T and χ denote the Hausdorff measures of noncompactness on \mathcal{M}_{x_T} and \mathcal{M}_X , the collections of all bounded sets in X_T and X, respectively. Then, $\chi_T(Q) = \chi(T(Q) \text{ for all } Q \in \mathcal{M}_{x_T})$, where $T = (t_{nv})$ is a triangular infinite matrix.

2. Main results and their applications

In this study, we establish some identities or estimates for operator norms and the Hausdorff measure of noncompactness of certain matrix operators on $|C_{\alpha}|_k$ and also give the necessary and sufficient conditions for such operators to be compact by applying the Hausdorff measure of noncompactness, and so the some well known results are generalized.

Theorem 2.1. Let $\alpha > -1, \delta > -1, 1 \le k < \infty$ and $D = (d_{nv})$ be given by

$$d_{nv} = \begin{cases} \frac{1}{n^{1/k} A_n^{\delta}} \sum_{j=1}^n j A_{n-j}^{\delta-1} a_{j0}, & n \ge 1, v = 0\\ \frac{v A_v^{\alpha}}{n^{1/k} A_n^{\delta}} \sum_{j=1}^n j A_{n-j}^{\delta-1} \Delta^{\alpha} \left(\frac{a_{jv}}{v}\right), n \ge 1, v \ge 1. \end{cases}$$
(2.1)

If $A \in (|C_{\alpha}|, |C_{\delta}|_k)$, then

$$||A||_{\left(|C_{\alpha}|,|C_{\delta}|_{k}\right)} = \sup_{v} \left\{ \sum_{n=0}^{\infty} |d_{nv}|^{k} \right\}^{1/k}$$
(2.2)

and

$$||A||_{\chi} = \lim_{r \to \infty} \sup_{v} \left\{ \sum_{n=r+1}^{\infty} |d_{nv}|^k \right\}^{1/k}.$$
 (2.3)

Proof. Consider the map $T^{\alpha,1}: |C_{\alpha}| \to l$ and $T^{\delta,k}: |C_{\delta}|_k \to l_k$ defined by (1.4) for k = 1 and

$$T_0^{\delta,k}(x) = x_0, T_n^{\delta,k}(x) = \frac{1}{n^{1/k} A_n^{\delta}} \sum_{v=1}^n A_{n-v}^{\delta-1} v x_v$$
(2.4)

respectively. Then, by Lemma 1.4, $x \in |C_{\alpha}|$ iff $y = T^{\alpha,1}(x) \in l$, and so $||x||_{|C_{\alpha}|} = ||y||_{l}$. Hence, since $A = (T^{\delta,k})^{-1} oDoT^{\alpha,1}$, it is clear that for all $x \in |C_{\alpha}|$ and $y \in l$,

$$\|A\|_{(|C_{\alpha}|,|C_{\delta}|_{k})} = \sup_{x \neq \theta} \frac{\|(DoT^{\alpha,1})(x)\|_{l_{k}}}{\|x\|_{|C_{\alpha}|}} \\ = \sup_{y \neq \theta} \frac{\|D(y)\|_{l_{k}}}{\|y\|_{l}} = \|D\|_{(\ell,\ell_{k})}$$

which completes the asserted by Lemma 1.3.

Finally, let $S = \{x \in |C_{\alpha}| : ||x|| \le 1\}$. Then, by Lemma 1.5-Lemma 1.7, it follows that

$$||A||_{\chi} = \chi (AS) = \chi (T^{\delta,k}AS) = \chi (DT^{\alpha,1}S)$$

=
$$\lim_{r \to \infty} \sup_{y \in T^{\alpha,1}S} ||(I - P_r) D(y)||_{l_k} = \lim_{r \to \infty} \sup_{v} \left\{ \sum_{n=r+1}^{\infty} |d_{nv}|^k \right\}^{1/k}$$

where $P_r : l_k \to l_k$ is defined by $P_r(y) = (y_0, y_1, ..., y_r, 0, ...)$. This proves the theorem together with Lemma 1.3.

Now, by combining this theorem with Lemma 1.6, we can characterize the compact operators in the class $(|C_{\alpha}|, |C_{\delta}|_{k})$.

Corollary 2.2. Under hypotheses of Theorem 2.1,

$$A \in \mathcal{C}\left(\left|C_{\alpha}\right|, \left|C_{\delta}\right|_{k}\right) \text{ if and only if } \lim_{r \to \infty} \sup_{v} \sum_{n=r+1}^{\infty} \left|d_{nv}\right|^{k} = 0.$$

If A is chosen as a diagonal matrix, i.e., $a_{nn} = \varepsilon_n$, zero otherwise, then $A \in (|C_{\alpha}|, |C_{\delta}|_k)$ states the form of summability factors that $\Sigma \varepsilon_v x_v$ is summable $|C_{\delta}|_k$ when Σx_v is summable $|C_{\alpha}|$, and also $I \in (|C_{\alpha}|, |C_{\delta}|_k)$ means the comparisons of these methods, i.e., $|C_{\alpha}| \subset |C_{\delta}|_k$, where I is identity matrix. For the case $\alpha, \delta > -1$ and A = I, Theorem 2.1 reduces to the following result, which includes the norm of operators characterizing the class of Flett [7] and shows that this operators are not compact.

Corollary 2.3. If $\alpha > -1$, $\delta > \alpha + 1/k^*$ and $k \ge 1$, then $|C_{\alpha}| \subset |C_{\delta}|_k$, *i.e.*, $I \in (|C_{\alpha}|, |C_{\delta}|_k)$,

$$\|I\|_{\left(|C_{\alpha}|,|C_{\delta}|_{k}\right)} = \sup_{v} vA_{v}^{\alpha} \left\{ \sum_{n=v}^{\infty} \left(\frac{A_{n-v}^{\delta-\alpha-1}}{n^{1/k}A_{n}^{\delta}} \right)^{k} \right\}^{1/k}$$

and

$$I \notin \mathfrak{C}\left(\left| C_{\alpha} \right|, \left| C_{\delta} \right|_{k} \right).$$

Proof. Let r be given and $\sigma(v,r) = vA_v^{\alpha} \left\{ \sum_{n=r+1}^{\infty} \left(\frac{A_{n-v}^{\delta-\alpha-1}}{n^{1/k}A_n^{\delta}} \right)^k \right\}^{1/k}$ for $v \ge 1$.

Then, by Theorem 2.1, $||L_I||_{\chi} = \lim_{r \to \infty} \sup_v \sigma(v, r)$. Now, take into account $A_n^{\alpha} \leq M(\alpha) n^{\alpha}$ for all α and $A_n^{\alpha} \geq m(\alpha) n^{\alpha}$ for $\alpha > -1, n \geq 1$, and $\delta > \alpha + 1/k^*$, we get, for v = r + 1,

$$\sigma\left(v,v-1\right) \ge m_1 \sum_{n=v}^{\infty} \frac{A_{n-v}^{(\delta-\alpha-1)k}}{nA_n^{(\delta k)}}$$

162

Absolute Cesàro Means

$$= m_1 \int_0^1 (1-x)^{\delta k} x^{\nu-1} \sum_{n=\nu}^\infty A_{n-\nu}^{(\delta-\alpha-1)k} x^{n-\nu} dx \qquad (2.5)$$
$$= m_1 \int_0^1 (1-x)^{\delta k} x^{\nu-1} (1-x)^{-\delta k+\alpha k+k-1} dx \ge \frac{m_1}{v^{\alpha k+k}}$$

which gives $\sigma(v, r) \ge m_1$, where m_1 is a positive constant not always the same in (2.5) different occasion. The term-by-term integration is legitimate, since everything is positive. Thus, we obtain $||L_I||_{\chi} \ne 0$, which proves the result by Lemma 1.6.

If it is chosen that $\delta \geq 0$ and α is nonnegative integer, $k \geq 1$ and A is a diagonal matrix with $a_{nn} = \varepsilon_n$, zero otherwise, in Theorem 2.1, then we can obtain following result, in which matrix transformation also characterized by Bosanquet [4] and Mehdi [16] for k = 1 and $k \geq 1$, respectively.

Corollary 2.4. [16] If $A \in (|C_{\alpha}|, |C_{\delta}|_k)$ for $k \ge 1, \delta \ge 0$ and nonnegative integer α , then

$$\|L_A\|_{(|C_{\alpha}|,|C_{\delta}|_k)} = \sup_{v} v A_v^{\alpha} \left\{ \sum_{n=v}^{\infty} \left| \sum_{j=v}^n \frac{A_{n-j}^{\delta-1} A_{j-v}^{-\alpha-1} \varepsilon_j}{n^{1/k} A_n^{\delta}} \right|^k \right\}^{1/k}.$$

Now, from a different point of view, let (p_n) and (q_n) be two positive sequence with $P_n = p_0 + p_1 + \cdots + p_n \to \infty$ and $Q_n = q_0 + q_1 + \cdots + q_n \to \infty$ as $n \to \infty$. By following lines in [17], it is easy to see that $|R_p| \subset |R_q|_k$ if and only if $A \in (|C_0|, |C_0|_k)$, where A defined by

$$a_{nv} = \begin{cases} \frac{q_n}{Q_n Q_{n-1}} \left(Q_v - \frac{q_v P_v}{p_v} \right), \ 1 \le v \le n-1 \\ \frac{q_v P_v}{Q_v p_v}, \ v = n \\ 0, \ n > v. \end{cases}$$
(2.6)

and $|R_q|_k$ is the set of series summable absolute weighted mean, i.e.,

$$|R_p|_k = \left\{ x = (a_v) : \sum_{n=1}^{\infty} n^{k-1} \left| \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v \right|^k < \infty \right\}, k \ge 1$$

So, by Theorem 2.1, we determine exactly or estimate the norms and Hausdorff measure of noncompactness of bounded matrix operators characterized by Orhan and Sarıgöl [17], which includes that of Bosanquet [3] and Sunouchi [32] for the case k = 1.

Corollary 2.5. If $1 \le k < \infty$ and $I \in (|R_p|, |R_q|_k)$, *i.e.* $|R_p| \subset |R_q|_k$, then,

$$\|L_I\|_{\left(|R_p|,|R_q|_k\right)} = \sup_{v} \left\{ \sum_{n=v}^{\infty} \left| n^{1/k^*} a_{nv} \right|^k \right\}^{1/k}, \qquad (2.7)$$

$$\|L_I\|_{\chi} = \lim_{r \to \infty} \sup_{v} \left\{ \sum_{n=r+1}^{\infty} \left| n^{1/k^*} a_{nv} \right|^k \right\}^{1/k}.$$
 (2.8)

Proof. Take $\alpha = \delta = 0$ in Theorem 2.1. If $I \in (|R_p|, |R_q|_k)$, then $A \in (|C_0|, |C_0|_k)$, where A is defined by (2.6), and so, (2.2) and (2.3) reduce to (2.7) and (2.8), respectively.

Corollary 2.6. [24] If A is a triangular infinite matrix, then $A \in (\mathcal{A}_1, \mathcal{A}_k)$, $k \geq 1$, if and only if

$$\|L_A\|_{(\mathcal{A}_1, \mathcal{A}_k)} = \sup_{v} \left\{ \sum_{n=v}^{\infty} n^{k-1} \left| \hat{a}_{nv} \right|^k \right\}^{1/k} < \infty,$$
(2.9)

and

$$\|L_{\widehat{A}}\|_{\chi} = \lim_{r \to \infty} \sup_{v} \sum_{n=r+1}^{\infty} n^{k-1} |\hat{a}_{nv}|^k.$$

Proof. In Theorem 2.1, take $\alpha = \delta = 0$. If \widetilde{A} is defined by (1.5), then, $A \in (\mathcal{A}_1, \mathcal{A}_k)$ iff $\widetilde{A} \in (|C_0|, |C_0|_k)$. On the other hand, it is obvious that the condition (2.2) are reduced to (2.9), which completes the proof.

Theorem 2.7. Let $\alpha, \delta > -1, 1 < k < \infty$ and $\widetilde{D} = (\widetilde{d}_{nv})$ be given by

$$\widetilde{d}_{nv} = \begin{cases} \frac{1}{nA_n^{\delta}} \sum_{i=1}^n A_{n-i}^{\delta-1} i a_{i0}, & n \ge 1, v = 0\\ \frac{v^{1/k} A_v^{\alpha}}{nA_n^{\delta}} \sum_{i=1}^n A_{n-i}^{\delta-1} i \Delta^{\alpha} \left(\frac{a_{iv}}{v}\right), & n \ge 1, v \ge 1. \end{cases}$$
(2.10)

If $A \in (|C_{\alpha}|_{k}, |C_{\delta}|)$, then there exists $1 \leq \xi \leq 4$ such that

$$||A||_{\left(|C_{\alpha}|_{k},|C_{\delta}|\right)} = \frac{1}{\xi} \left\{ \sum_{\nu=0}^{\infty} \left(\sum_{n=0}^{\infty} \left| \widetilde{d}_{n\nu} \right| \right)^{k^{*}} \right\}^{1/k^{*}}, \qquad (2.11)$$

$$\|A\|_{\chi} = \frac{1}{\xi} \lim_{r \to \infty} \left\{ \sum_{\nu=0}^{\infty} \left(\sum_{n=r+1}^{\infty} \left| \tilde{d}_{n\nu} \right| \right)^{k^*} \right\}^{1/k^*}.$$
 (2.12)

Proof. Consider the maps $T^{\alpha,k} : |C_{\alpha}|_k \to l_k$ and $T^{\delta,1} : |C_{\delta}| \to l$ defined by (1.4) and (2.4) for k = 1, respectively. Then, $x \in |C_{\alpha}|_k$ iff $y = T^{\alpha,k}(x) \in l_k$, and so $||x||_{|C_{\alpha}|_k} = ||y||_{l_k}$. Hence, since $A = (T^{\delta,1})^{-1} o \widetilde{D} o T^{\alpha,k}$, it is clear from Lemma 1.4 for all $x \in |C_{\alpha}|_k$ and $y \in l_k$,

$$\begin{split} \|A\|_{\left(|C_{\alpha}|_{k},|C_{\delta}|\right)} &= \sup_{x\neq\theta} \frac{\left\|\left(T^{\delta,1}\right)^{-1} o \widetilde{D} o T^{\alpha,k}(x)\right\|_{|C_{\delta}|}}{\|T^{\alpha,k}(x)\|_{l_{k}}} \\ &= \left\|\widetilde{D}\right\|_{(l_{k},l)} = \frac{1}{\xi} \left\|\widetilde{D}\right\|_{(\ell_{k},\ell)}^{*} = \frac{1}{\xi} \left\{\sum_{v=0}^{\infty} \left(\sum_{n=0}^{\infty} \left|\widetilde{d}_{nv}\right|\right)^{k^{*}}\right\}^{1/k^{*}} \end{split}$$

164

which is desired by Lemma 1.2.

Finally, $S = \{x \in |C_{\alpha}|_k : ||x|| \le 1\}$. Then, by considering Lemma 1.5-Lemma 1.7, and Lemma 1.2, we get that there exists $1 \le \xi \le 4$ such that

$$\begin{split} \|A\|_{\chi} &= \chi \left(T^{\delta,1}AS\right) = \chi \left(\widetilde{D}T^{\alpha,k}S\right) \\ &= \lim_{r \to \infty} \sup_{y \in T^{\alpha,k}S} \left\| (I - P_r) \, \widetilde{D}(y) \right\|_l \\ &= \lim_{r \to \infty} \left\| \widetilde{D}^{(r)} \right\|_{(l_k,l)} = \frac{1}{\xi} \lim_{r \to \infty} \left\| \widetilde{D}^{(r)} \right\|_{(l_k,l)}^* \\ &= \frac{1}{\xi} \lim_{r \to \infty} \left\{ \sum_{v=0}^{\infty} \left(\sum_{n=r+1}^{\infty} \left| \widetilde{d}_{nv} \right| \right)^{k^*} \right\}^{1/k^*} \end{split}$$

where $P_r: l \to l$ is defined by $P_r(y) = (y_0, y_1, ..., y_r, 0, ...)$ and $\widetilde{D}^{(r)} = \left(\widetilde{d}_{nv}^{(r)}\right)$ is defined by

$$\widetilde{d}_{nv}^{(r)} = \begin{cases} 0, & 0 \le n \le r \\ \widetilde{d}_{nv}, & n > r \end{cases},$$

which proves the theorem together with Lemma 1.2. From Theorem 2.7 we have

Corollary 2.8. Under hypotheses of Theorem 2.7, $A \in \mathcal{C}(|C_{\alpha}|_{k}, |C_{\delta}|)$ if and only if

$$||A||_{\chi} = \lim_{r \to \infty} \left\{ \sum_{v=0}^{\infty} \left(\sum_{n=r+1}^{\infty} \left| \tilde{d}_{nv} \right| \right)^{k^*} \right\}^{1/k^*} = 0.$$

By Theorem 2.7, we determine exactly or estimate the norms and Hausdorff measure of noncompactness of bounded matrix operators characterized by Mazhar [15].

Corollary 2.9. Let $\alpha \ge 0$, k > 1. If $A \in (|C_{\alpha}|_k, |C_1|)$, then there exists $1 \le \xi \le 4$ such that

a /1 *

$$\|L_W\|_{\left(|C_{\alpha}|_k,|C_1|\right)} = \frac{1}{\xi} \left\{ \sum_{j=1}^{\infty} \left(\sum_{n=j}^{\infty} \left| \sum_{v=j}^{n} \frac{j^{1/k} A_j^{\alpha} A_{v-j}^{-\alpha-1} \varepsilon_v}{n(n+1)} \right| \right)^{k^*} \right\}^{1/k^*} < \infty,$$

where A is a diagonal matrix.

References

- 1. M. Başarır, E.E. Kara and Ş. Konca, On some new weighted Euler sequence spaces and compact operators, Math. Inequal. Appl., 17 (2) (2014), 649-664.
- M. Başarır and E.E. Kara, On the mth order difference sequence space of generalized weighted mean and compact operators, Acta Math. Sci., 33 (2013), 797-813.
- L.S. Bosanquet, Rewiev on G. Sunouchi's paper "Notes on Fourier Analysis, 18, absolute summability of a series with constant terms", Math. Rev., 11 (1950), 654.

- 4. L.S. Bosanquet, Note on convergence and summability factors I , J. London Math. Soc., ${\bf 20}$ (1945), 39-48.
- G. Das, A Tauberian theorem for absolute summability, Proc. Cambridge Philos., 67 (1970), 321-326.
- M. Fekete, Zur theorie der divergenten reihen., Math. ès Termezs Èrtesitö (Budapest), 29 (1911), 719-726.
- T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957) 113-141.
- E.E. Kara, M. Başarır and M. Mursaleen, Compactness of matrix operators on some sequence spaces derived by Fibonacci numbers, Kragujevac J. Math., 39(2) (2015) 217-230.
- E.E. Kara and M. Basarır, On some Euler B^(m) difference sequence spaces and compact operators, J. Math. Anal. Appl., 379 (2011), 499-511.
- E. Kogbetliantz, Sur lesseries absolument sommables par la methods des moyannes arithmetiques, Bull. Sci. Math., 49 (1925), 234-256.
- I.J. Maddox, *Elements of functional analysis*, Cambridge University Press, London, New York, 1970.
- E. Malkowsky, F. Ozger, and A. Alotaibid, Some Notes on Matrix Mappings and their Hausdorff Measure of Noncompactness, Filomat, 28 (5) (2014), 1059-1072.
- E. Malkowsky and V. Rakočević, On matrix domain of triangles, Appl. Math. Comp., 189(2) (2007), 1146-1163.
- E. Malkowsky and V. Rakočević, An introduction into the theory of sequence space and measures of noncompactness, Zb. Rad. (Beogr), 9 (17) (2000), 143-234.
- S.M. Mazhar, On the absolute summability factors of infinite series, Tohoku Math. J., 23 (1971), 433-451.
- M.R. Mehdi, Summability factors for generalized absolute summability I, Proc. London Math. Soc., (3),10 (1960), 180-199.
- C. Orhan and M.A. Sarıgöl, On absolute weighted mean summability, Rocky Mountain J. Math., 23 (3) (1993), 1091-1097.
- M. Mursaleen, and A.K. Noman, The Hausdorff measure of noncompactness of matrix operators on some BK spaces, Oper. Matrices, 5 (3) (2011), 473-486.
- M. Mursaleen and A.K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal.: TMA, 73 (8) (2010), 2541-2557.
- M. Mursaleen and A.K. Noman, Applications of the Hausdorff measure of noncompactness in some sequence spaces of weighted means, Comp. and Math. with App., 60 (2010), 1245-1258.
- V. Rakočević, Measures of noncompactness and some applications, Filomat, 12 (1998), 87-120.
- M.A. Sarıgöl, Spaces of Series Summable by Absolute Cesàro and Matrix Operators, Commun. Math. Appl., 7(1) (2016), 11-22.
- M.A. Sarıgöl, Extension of Mazhar's theorem on summability factors, Kuwait J. Sci., 42(2) (2015), 28-35.
- 24. M.A. Sarıgöl, Matrix operators on A_k, Math. Comput. Modelling, 55 (2012), 1763-1769.
- M.A. Sarıgöl, Matrix transformations on fields of absolute weighted mean summability, Studia Sci. Math. Hungar., 48 (3) (2011), 331-341.
- M.A. Sarıgöl, On two absolute Riesz summability factors of infinite series, Proc. Amer. Math. Soc., 118, (1993), 485-488.
- 27. M.A. Sarıgöl, A note on summability, Studia Sci. Math. Hungar., 28 (1993), 395-400.

Absolute Cesàro Means

- M.A. Sarıgöl, On absolute weighted mean summability methods, Proc. Amer. Math. Soc., 115 (1) (1992), 157-160.
- 29. M.A. Sarıgöl, Necessary and sufficient conditions for the equivalence of the summability methods $|\overline{N}, p_n|_k$ and $|C, 1|_k$, Indian J. Pure Appl. Math., **22**(6) (1991), 483-489.
- M.A. Sarıgöl, On difference sequence spaces, J. Karadeniz Tech. Univ. Fac. Arts Sci. Ser. Math.-Phys., 10 (1987), 63-71.
- M. Stieglitz and H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnisüberischt, Math Z., 154 (1977), 1-16.
- 32. G. Sunouchi, Notes on Fourier Analysis, 18, absolute summability of a series with constant terms, Tohoku Math. J., 1 (1949), 57-65.

G. Canan Hazar Güleç and M. Ali Sarigöl, Department of Mathematics, Pamukkale University, TURKEY. E-mail address: gchazar@pau.edu.tr, msarigol@pau.edu.tr