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Involute-Evolute D-Curves in Minkowski 3-Space E3
1

Fatma Almaz and Mihriban Alyamaç Külahci

abstract: In this paper, we examine the notion of the involute-evolute curves for
the curves lying the surfaces in Minkowski 3-space E3

1
. We call these new associated

curves as involute-evolute and by using the Darboux frame of the curves. We give
the representation formulae for spacelike curves in Minkowski 3-space E3

1
and using

this formulae we give some characterizations of these curves. Besides, we find the
relations between the normal curvatures, the geodesic curvatures and the geodesic
torsions of these curves.

KeyWords: Involute-evolute curve, darboux frame, normal curvature, geodesic
curvature.
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1. Introduction

The theory of curves has been one of the exciting subject because of having
many application area from geometry to the different branch of science. In dif-
ferential gometry, there are many important consequences and properties in the
theory of the curves. Hence a lot of researchers follow labours about the curves.
C. Huygens, who is also known for his works in optics, discovered involutes while
trying to build a more accurate clock, [4]. In [5], the relations Frenet apparatus of
involute-evolute curve couple in the space E3 were given. In [11], A. Turgut and
E. Erdoğan examined involute-evolute curve couple in the space En. In [3], O.
Bektas and S. Yuce examined special involute-evolute curve couple by taking into
account the Darboux frames of them and gived some examples in the space E3.

In this study, we consider the notion of the involute-evolute curves in Minkowski
3−space E3

1
. We give the representation formulae for spacelike curves in Minkowski

3−space E3
1
. By using the Darboux frame of the curves we obtain the necessary

and sufficient conditions between kg, kn, τ g and kg∗ , kn∗
and we also give some

theorems, results and example.
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2. Preliminaries

The Minkowski 3-space E3
1
is real vector space R

3 provided with the standart
flat metric given as following

〈, 〉 = dy2
1
+ dy2

2
− dy2

3
,

where (y
1
, y

2
, y

3
) is a coordinate system of E3

1
. A vector V on E3

1
is called spacelike

if 〈V, V 〉 > 0 or V = 0, timelike if 〈V, V 〉 < 0 and null if 〈V, V 〉 = 0 and V 6= 0.
Let M be an oriented surface in 3-dimensional Minkowski space E3

1
, and let

consider a non-null curve y(s) lying on M fully. Since the curve y(s) is also in

space, there exists Frenet frame {T,N,B} at each points of the curve where
−→
T

is unit tangent vector,
−→
N is principal normal vector and

−→
B is binormal vector,

respectively. Since the curve y(s) lies on the surface M , there exists another frame
of the curve y(s) which is called Darboux frame and denoted by {T, g, n}. In this

frame
−→
T is the unit tangent of the curve, −→n is the unit normal of the surface M

and −→g is a unit vector given by −→g = −→n ×
−→
T . Since the unit tangent

−→
T is common

in both Frenet frame and Darboux frame, the vectors
−→
N,

−→
B,−→g and −→n lie on the

same plane.
Suppose that the surface M is an oriented spacelike surface, then the curve y(s)

lying on M is a spacelike curve. So, the relations between the frames can be given
as follows:





T

g

n



 =





1 0 0
0 coshϕ sinhϕ
0 sinhϕ coshϕ









T

N

B





in all cases, ϕ is the angle between the vectors −→g and
−→
N .

Thus, the derivative formulae of the Darboux frame of y(s) is given by




T ′

g′

n′



 =





0 k
g

k
n

−k
g

0 τ
g

k
n

τ
g

0









T

g

n



 (2.1)

〈T, T 〉 = 〈g, g〉 = 1, 〈n, n〉 = −1. (2.2)

In this formulae, kg, kn, τg are called the geodesic curvature, the normal curva-
ture and geodesic torsion, respectively. Furthermore, the relations between geodesic
curvature, the normal curvature and geodesic torsion and κ, τ are given as follows:

i) kg = κ cosϕ, kn = κ sinϕ, τ g = τ + dϕ
ds

if both M and y(s) are timelike or
spacelike.

ii) kg = κ coshϕ, kn = κ sinhϕ, τg = τ + dϕ
ds

if M is timelike and y(s) is
spacelike, [9].

Furthermore, the geodesic curvature kg and geodesic torsion τ g of the curve
y(s) can be calculated as follows:

kg = 〈
dy

ds
,
d2y

ds2
× n〉, τ g = 〈

dy

ds
, n×

dn

ds
〉.
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In the differential geometry of surfaces, for a curve y(s) lying on a surface M,

the followings are well-known
i) y(s) is a geodesic curve kg = 0,
ii) y(s) is an asymptotic line kn = 0,
iii) y(s) is a principal line τ g = 0, [9].

3. Representation Formulae of Spacelike Curves in Minkowski 3-Space
E3

1

Theorem 3.1. Let y(s) be a spacelike curve in Minkowski 3−space E3
1
with arc

length parameter s. Then y = (y1, y2, y3) can be given as follows

y(s) = (
1

2
µ(s)(g − g−1) + ag−1, a− µ(s), ag−1 −

1

2
µ(s)(g + g−1)) (3.1)

µ(s) = g(
1

2a
−1)

(

−
1

2a

∫

g2−
1

2a

gs
ds+ k

)

, (3.2)

where a, k ∈ R
0
and g(s) 6= cons tan t.

Proof. Let y(s) be a spacelike curve in Minkowski 3−space E3
1
with arc length

parameter s. We write y = (y
1
, y

2
, y

3
) and have

y2
1
+ y2

2
− y2

3
= a2

where a ∈ R
0
. From y2

1
− y2

3
= a2 − y2

2
, we can write

y
1
− y

3

a− y
2

=
a+ y

2

y
1
+ y

3

. (3.3)

Furthermore, for a curve y with y(s) = (y
1
, y

2
, y

3
), we can suppose that

y
1
− y

3

a− y
2

=
a+ y

2

y
1
+ y

3

= g(s), (3.4)

and

y
2
= a− µ(s). (3.5)

By considering 3.4 and 3.5, we get

y
1
=

1

2
µ(s)(g − g−1) + g−1.a,

y
3
= g−1.a−

1

2
µ(s)(g + g−1). (3.6)

That is, we can write the curve y as following

y(s) = (
1

2
µ(s)(g − g−1) + ag−1, a− µ(s), ag−1 −

1

2
µ(s)(g + g−1)).
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If s is the arc length parameter of the curve y(s), we have

µs + µ(
2a− 1

2a
)gsg

−1 +
1

2a
gg−1

s = 0. (3.7)

Therefore, we obtain

µ = g(
1

2a
−1)

(

−
1

2a

∫

g2−
1

2a

gs
ds+ k

)

,

for non constant function g(s) and where k ∈ R
+
0
. ✷

4. Involute-Evolute D-Curves in Minkowski 3-Space E3
1

In this section, we define involute-evolute spacelike curves and give some char-
acterizations of these curves by considering the Darboux frame.

Definition 4.1. Let M and M∗ be oriented surfaces in Minkowski 3-space E3
1
and

let consider the arc length parameter spacelike curves y(s) and y
∗
(s

∗
) lying fully

on M and M∗, respectively. Denote the Darboux frames of y(s) and y∗(s∗) by
{T, g, n} and {T∗, g∗, n∗}, respectively. If there exists a corresponding relationship
between the curves y and y∗ such that at the corresponding points of the curves,
the Darboux frame element T of y coincides with the Darboux frame element g

∗
of

y∗(s∗). Then y∗(s∗) is called the involute D-curve of y(s) ( y is called the evolute
D-curve of y∗(s∗)) if 〈T ,T∗〉 = 0, then {y(s),y∗(s∗)} is said to be a involute-evolute
D-pair.

Theorem 4.2. Let y(s) and y∗(s∗) be two spacelike curves in the Minkowski 3-
space E3

1 . If the {y(s), y∗(s∗)} is a involute-evolute D-pair, then

y∗(s∗) = y(s(s∗)) + (−s+ c)T (s(s∗)), c ∈ R
0
. (4.1)

Proof. Suppose that the pair {y, y∗} is an involute-evolute D-pair. Denote the
Darboux frames of y(s) and y

∗
(s) by {T ,g,n} and {T∗, g∗, n∗}, respectively. From

the definition, we can assume that

y∗(s∗) = y(s(s∗)) + λ(s(s∗))T (s(s∗)) (4.2)

for function λ(s(s∗)). By taking the derivative of 4.2 with respect to s∗ and applying
the Darboux formulaes, we have

dy∗

ds∗
=

dy

ds

ds

ds∗
+ λ′(s)T (s∗) + λ

dT

ds

ds

ds∗
,

T∗(s∗) = T (s)
ds

ds∗
+ λ′T (s) + λ(kg

−→g + kn
−→n )

ds

ds∗
,

T∗(s∗) = (λ′(s∗) +
ds

ds∗
)T (s∗) + λkg

ds

ds∗

−→g + λkn
ds

ds∗

−→n . (4.3)
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Since the curves y and y∗ are involute-envolute curves, we get

〈T, T∗〉 = 0.

Furthermore, exposing the inner product T to the both sides of 4.3, we obtain

λ′(s∗) +
ds

ds∗
= 0,

λ(s) = −s+ c, c ∈ R
+
0
. (4.4)

This means that λ is a nonzero function. ✷

Theorem 4.3. Let y(s) and y∗(s∗) be two spacelike curves in the Minkowski 3-
space E3

1
. If the {y(s), y∗(s∗)} is an involute-evolute D-pair, then the curve y∗ is

given as

y∗(s∗) =





µ+λµ
s

2 (g − g−1) + ag−1 + λgs(
µ
2 (1 + g−2) + ag−2),

a− µ(s) + λµs,

ag−1 − µ+λµ
s

2 (g + g−1)− λgs(
µ
2 (1− g−2) + ag−2)



 , a ∈ R
0
.

Proof. It is obvious from 3.1 and 4.2. ✷

Conclusion 4.1. Let y(s) and y
∗
(s

∗
) be two spacelike D-curves in the Minkowski

3−space E3
1 . If the {y∗(s∗), y(s)} is an involute-evolute D-pair, then the between

the curves y(s) and y∗(s∗) is λ(s) = |−s+ c| , c ∈ R
+
0
.

Theorem 4.4. Let M and M∗ be oriented surfaces in Minkowski 3-space E3
1

and the arc length spacelike curves y(s) and y∗(s∗) lying fully on M and M∗,
respectively. y∗(s∗) is involute D-curve of y(s) if and if only satisfy the following
equations

i) The geodesic curvature kg and the normal curvature kn of y(s) satisfy the
following equations

kg = −
cosh θ

λλ′

kn = −
sinh θ

λλ′

k2g − k2n =
1

(λλ′)2
(

kn

kg

)′(
kn

kg

)

=
dθ

ds
.

ii) The geodesic curvature kg
∗

and the geodesic normal kn
∗

of y∗(s) satisfy the
following equations

kg∗ = −
1

λ
= −

1

−s+ c
; c ∈ R0

kn∗
=

(

(

kn

kg

)′ (
kn

kg

)

− λ′τ g

)

,
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where θ is the angle between the vectors T∗ and g at the corresponding points of
y(s) and y∗(s∗).

Proof. i) Suppose that the pair {y, y∗} is an involute-evolute D-pair. Denote the
Darboux frames of y(s) and y∗(s) by {T ,g,n} and {T∗, g∗, n∗}, respectively. From
4.3, we can write

−→
T ∗(s∗) = λkg

ds

ds∗

−→g + λkn
ds

ds∗

−→n . (4.5)

Furthermore, from 4.5 we say that
−→
T

∗
∈ Sp{−→g ,−→n } and using this representation

we say that
−→
T∗(s∗) = cosh θ−→g + sinh θ−→n (4.6)

where θ is the angle between the vectors T∗ and −→g at the corresponding points of
y and y

∗
. By differentiating 4.6 with respect to s∗, we get

kg∗
−→g∗ + kn∗

−→n∗ = (−kg cosh θ + kn sinh θ)
ds

ds∗

−→
T

+ (
dθ

ds
+ τ g)

ds

ds∗
sinh θ−→g + (

dθ

ds
+ τg)

ds

ds∗
cosh θ−→n . (4.7)

Furthermore, from equation 4.7 and the fact that
−→
T ⊥ (−→n × −→g ) we can say that

−→
T ∈ Sp{−→n∗,

−→g∗} and −→n ∗ ∈ Sp{−→g ,−→n }, we write

−→n∗ = sinh θ−→g + cosh θ−→n , (4.8)

from 4.7 and 4.8, we have

kg∗
−→g∗ + kn∗

sinh θ−→g + kn∗
cosh θ−→n = (−kg cosh θ + kn sinh θ)

ds

ds∗

−→
T

+ (
dθ

ds
+ τ g)

ds

ds∗
sinh θ−→g + (

dθ

ds
+ τg)

ds

ds∗
cosh θ−→n . (4.9)

By considering 4.5 and 4.6, we get

1 =
λkg

cosh θ

ds

ds∗
=

λkn

sinh θ

ds

ds∗
. (4.10)

By solving the previous equation, we obtain

kg

kn
= coth θ or

kn

kg
= tanh θ.

Furthermore, from 4.9 we have

kg∗ = (−kg cosh θ + kn sinh θ)
ds

ds∗
(4.11)

kn∗
sinh θ = (

dθ

ds
+ τ g)

ds

ds∗
sinh θ (4.12)
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kn∗
cosh θ = (

dθ

ds
+ τ g)

ds

ds∗
cosh θ, (4.13)

or since ds
ds∗

= −λ′, we can write

kg∗ = (−kg cosh θ + kn sinh θ)
(

−λ′
)

(4.14)

kn∗
= (

dθ

ds
+ τ g)

(

−λ′
)

. (4.15)

By using 4.10, 4.11, 4.12, 4.13 and ds
ds∗

= −λ′, we can write as follows

kg = −
cosh θ

λλ′ (4.16)

kn = −
sinh θ

λλ′ . (4.17)

By considering 4.16 and 4.17, we have

k2g − k2n =
1

(λλ′)2
. (4.18)

ii) From 4.12 and 4.13 and using the previous equations, we have

kg∗ = −
1

λ
= −

1

−s+ c
; c ∈ R0. (4.19)

By taking the derivative of the equation kn

kg

= tanh θ with respect to s∗, we get

(

kn

kg

)′(
kn

kg

)

=
dθ

ds
. (4.20)

By subsitituting 4.20 in 4.15 and making necessary calculations, we obtain

kn∗
=

(

(

kn

kg

)′ (
kn

kg

)

− λ′τ g

)

. (4.21)

✷

Theorem 4.5. Let the pair {y(s), y∗(s∗)} be an involute-evolute D-pair in the
Minkowski 3-space E3

1 . Then the relation between the geodesic curvature kg and
the normal curvature kn of y(s) is given as follows:

(

kn

kg

)′(
kn

kg

)

kg +
kn

−s+ c
− k′n = 0

or
(

kn

kg

)′(
kn

kg

)

kn +
kn

−s+ c
− k′g = 0.
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Proof. By taking the derivative of the equation 4.5, we have

kg∗
−→g∗ + kn∗

−→n∗ = (k2n − k2g)λ
ds

ds∗

−→
T

+((λ
d2s

ds2∗
− (

ds

ds∗
)2)kn + λ

ds

ds∗
k′n + λ

ds

ds∗
kgτ g)

−→n

+(λ
ds

ds∗
(k′g + knτ g)− kn(

ds

ds∗
)2 + knλ

d2s

ds2∗
)−→g .

Furthermore, using equations ds
ds∗

= −λ′, d2s
ds2

∗

= −λ′′ and λ′ = −1, λ′′ = 0, we get

kg
∗

−→g∗ + kn∗

−→n∗ = (k2n − k2g)(−λλ′)
−→
T

+ (−(λ′)2kn + (−λλ′)k′n − λλ′kgτ g)
−→n + (−λλ′(k′g + knτ g)− kn(λ

′)2)−→g . (4.22)

By the help of 4.7 and 4.22, we can write as follows,

(k2n − k2g)(−λλ′) = (−kg cosh θ + kn sinh θ)
(

−λ′
)

(4.23)

(−(λ′)2kn + (−λλ′)k′n − λλ′kgτg) = (
dθ

ds
+ τ g)

(

−λ′
)

cosh θ (4.24)

(−λλ′(k′g + knτg)− kn(λ
′)2) = (

dθ

ds
+ τ g)

(

−λ′
)

sinh θ. (4.25)

By considering 4.23, 4.24 and 4.25, we have

(k2n − k2g)λ = (kn sinh θ − kg cosh θ) (4.26)

(λ′kn + λk′n + λkgτ g) = (
dθ

ds
+ τ g) cosh θ (4.27)

(λ(k′g + knτg) + knλ
′) = (

dθ

ds
+ τ g) sinh θ. (4.28)

By substituting 4.16 and 4.20 in 4.27, we can obtain

(

kn

kg

)′(
kn

kg

)

kg +
kn

−s+ c
− k′n = 0. (4.29)

By using 4.17 and 4.20 in 4.28, we can obtain

(

kn

kg

)′(
kn

kg

)

kn +
kn

−s+ c
− k′g = 0. (4.30)

✷

Corollary 4.6. Let M and M∗ be oriented surfaces in Minkowski 3-space E3
1

and the arc length spacelike curves y(s) and y∗(s∗) lying fully on M and M∗,
respectively. Denote the Darboux frames of y(s) and y∗(s∗) by {T , g, n} and {T∗,
g∗, n∗}, respectively. If the pair {y, y∗} is an involute-evolute D-pair. Then the
following relations hold:
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1) If y is an asymptotic line, then kg = θ = cons tan t, kn∗
= τ g, kg∗ = −1

−s+c
.

2) If y is a principal line, then kn∗
=
(

kn

kg

)′ (
kn

kg

)

and kg∗ = −1
−s+c

.

3) If y is a geodesic curve, then there is not {y(s),y∗(s∗)} involute-evolute D-pair
in the Minkowski 3-space E3

1
.

Where θ is the angle between the vectors T∗ and g at the corresponding points
of y(s) and y∗(s∗) and kg, kn, τ g are called the geodesic curvature, the normal
curvature and geodesic torsion, respectively.

Example 4.7. The curve

y(s) = ((es + 1) sinh s+
e−s

2
,
3

2
− es,

e−s

2
− (es + 1) cosh s)

is spacelike in the Minkowski 3-space E3
1
with arc length parameter s and this curve

is an evolute of y∗(s), for a = 1
2 , k = 1, the curve y∗(s) is given as following

y∗(s) =





(1 + (d− s)es) sinh s+ e−s

2 + (−s+ c)es(cosh s+ 1
2 + e−2s),

(−s+m)es − 1
2 ,

e−s

2 − (1 + (d− s)es) cosh s− (−s+ c)es(sinh s+ 1
2 )



 ;

with d,m, c ∈ R0.

(a) The curve y (b) The rotated surface of y

(c) The curve y∗ (d) The rotated surface of y∗

Figure 1: Graphics of curves y and y∗
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