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1. Introduction

The concept of statistical convergence was introduced by Steinhaus [37] and
Fast [17]. Schoenberg [32] established some basic properties of statistical conver-
gence and studied the concept as a summability method. Later on it was further
investigated from the sequence space point of view and linked with summability
theory by Altınok et al. ( [2], [3]), Bhardwaj and Dhawan [4], Caserta et al. [5],
Çınar et al. [9], Connor [12], Çakallı et al. ( [6], [7], [8]), Çolak et al. ( [10], [11],
[23]), Et et al. ( [13], [14], [15], [16]), Fridy [19], Gadjiev and Orhan [21], Işık and
Akbaş [22], Salat [29], Savaş and Et [31], Şengül [34], Taylan [38], and many
others. Nuray and Rhoades [28] extended the notion to statistical convergence of
sequences of sets and gave some basic theorems. Ulusu et al. ( [39], [40]) defined
Wijsman lacunary statistical convergence of sequence of sets, and considered its
relation with Wijsman statistical convergence.

By a lacunary sequence we mean an increasing integer sequence θ = (kr) of
non-negative integers such that k0 = 0 and hr = (kr − kr−1) → ∞ as r → ∞. The
intervals determined by θ will be denoted by Ir = (kr−1, kr] and the ratio kr

kr−1

will be abbreviated by qr, and q1 = k1 for convenience. In recent years, lacunary
sequences have been studied in ( [6], [18], [20], [33], [35], [36], [39], [40], [41]).

The notion of a modulus was given by Nakano [26]. A modulus f is a function
from [0,∞) to [0,∞) such that

i) f(x) = 0 if and only if x = 0,
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ii) f(x+ y) ≤ f(x) + f(y) for x, y ≥ 0,
iii) f is increasing,
iv) f is continuous from the right at 0.
It follows that f must be continuous in everywhere on [0,∞). A modulus may

be unbounded or bounded.
Aizpuru et al. [1] defined f−density of a subset E ⊂ N for any unbounded

modulus f by

df (E) = lim
n→∞

f (|{k ≤ n : k ∈ E}|)
f (n)

, if the limit exists

and defined f−statistical convergence for any unbounded modulus f by

df ({k ∈ N : |xk − ℓ| ≥ ε}) = 0

and we write it as S (f)− limxk = ℓ or xk → ℓ (S (f)) .
Let X be a non-empty set. Then a family of sets I ⊆ 2X (power sets of X) is

said to be an ideal if I is additive i.e. A, B ∈ I implies A ∪B ∈ I and hereditary,
i.e. A ∈ I, B ⊂ A implies B ∈ I.

A non-empty family of sets F ⊆ 2X is said to be a filter of X if and only if
(i) φ /∈ F, (ii) A, B ∈ F implies A∩B ∈ F and (iii) A ∈ F, A ⊂ B implies B ∈ F.

An ideal I ⊆ 2X is called non-trivial if I 6= 2X .
A non-trivial ideal I is said to be admissible if I ⊃ {{x} : x ∈ X} .
If I is a non-trivial ideal in X (X 6= φ) then the family of sets

F (I) = {M ⊂ X : (∃A ∈ I) (M = X \A)} is a filter of X, called the filter associ-
ated with I.

Let (X, d) be a metric space. For any non-empty closed subset Ak of X, we say
that the sequence {Ak} is bounded if supk d (x,Ak) < ∞ for each x ∈ X. In this
case we write {Ak} ∈ L∞.

Throughout the paper I will stand for a non-trivial admissible ideal of N.
The idea of I−convergence of real sequences was introduced by Kostyrko et al.

[24] and also independently by Nuray and Ruckle [27] (who called it generalized
statistical convergence) as a generalization of statistical convergence. Later on
I−convergence was studied in ( [7], [25], [30], [35], [40]).

2. Main Results

In this section, we give relations between the concepts of Wijsman (f, I)−
lacunary statistical convergence of order α and Wijsman strongly (f, I)−lacunary
statistical convergence of order α of sequences of sets.

Definition 2.1. Let f be an unbounded modulus, (X, d) be a metric space, θ be a
lacunary sequence, α ∈ (0, 1] and I ⊆ 2N be an admissible ideal of subsets of N. For
any non-empty closed subsets A,Ak ⊂ X, we say that the sequence {Ak} is Wijsman
(f, I)−lacunary statistically convergent to A of order α ( or Sα

θ (f, Iw)−convergent
to A ) if for each ε > 0, δ > 0 and x ∈ X,

{

r ∈ N :
1

f (hr)
α f (|{k ∈ Ir : |d (x,Ak)− d (x,A)| ≥ ε}|) ≥ δ

}
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belongs to I. In this case, we write Ak −→ A (Sα
θ (f, Iw)) . For θ = (2r) , we shall

write Sα (f, Iw) instead of Sα
θ (f, Iw) and in the special cases α = 1 and θ = (2r)

we shall write S (f, Iw) instead of Sα
θ (f, Iw) .

As an example, consider the following sequence:

Ak =

{

{2x} , kr−1 < k < kr−1 +
√
hr

{0} , otherwise
.

Let (R, d) be a metric space such that for x, y ∈ X, d (x, y) = |x− y| , A =
{1} , x > 1, f (x) = x and α = 1. Since

1

f (hr)
α f (|{k ∈ Ir : |d (x,Ak)− d (x, {1})| ≥ ε}|) ≥ δ

belongs to I, the sequences {Ak} is Wijsman (f, I)−lacunary statistically conver-
gent to {1} of order α.

Definition 2.2. Let f be an unbounded modulus, (X, d) be a metric space, θ be
a lacunary sequence, α ∈ (0, 1] and I ⊆ 2N be an admissible ideal of subsets of N.
For any non-empty closed subsets A,Ak ⊂ X, we say that the sequence {Ak} is
said to be Wijsman strongly (f, I)−lacunary statistically convergent to A of order
α ( or Nα

θ [f, Iw]−convergent to A ) if for each ε > 0 and x ∈ X,

{

r ∈ N :
1

f (hr)
α

∑

k∈Ir

f (|d (x,Ak)− d (x,A)|) ≥ ε

}

belongs to I. In this case, we write Ak −→ A (Nα
θ [f, Iw ]) . For θ = (2r) , we shall

write Nα [f, Iw] instead of Nα
θ [f, Iw] and in the special cases α = 1 and θ = (2r)

we shall write N [f, Iw] instead of Nα
θ [f, Iw] .

As an example, consider the following sequence:

Ak =

{ {

3xk
4

}

, kr−1 < k < kr−1 +
√
hr

{0} , otherwise
.

Let (R, d) be a metric space such that for x, y ∈ X, d (x, y) = |x− y| , A = {1} , x >
1, f (x) = x and α = 1. Since

1

f (hr)
α

∑

k∈Ir

f (|d (x,Ak)− d (x, {1})|) ≥ ε,

the sequences {Ak} is Wijsman strongly (f, I)−lacunary statistically convergent
to {1} of order α.

Theorem 2.1. Let f be an unbounded modulus, (X, d) be a metric space, θ = (kr)
be a lacunary sequence, α ∈ (0, 1] and A,Ak (for all k ∈ N) be non-empty closed
subsets of X, then Nα

θ [f, Iw] is a proper subset of Sα
θ (f, Iw) .
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Proof. The inclusion part of proof is easy. In order to show that the inclusion
Nα

θ [f, Iw] ⊆ Sα
θ (f, Iw) is proper, let θ be given and we define a sequence {Ak} as

follows

Ak =

{ {

x2
}

, k = 1, 2, 3, ...,
[√

hr

]

{0} , otherwise
.

Let (R, d) be a metric space such that for x, y ∈ X, d (x, y) = |x− y| , f (x) =
√
x.

We have for every ε > 0, x > 0 and 1
2 < α ≤ 1,

1

f (hr)
α f (|{k ∈ Ir : |d (x,Ak)− d (x, {0})| ≥ ε}|) ≤ f

([√
hr

])

f (hr)
α =

[√
hr

]
1

2

√
hr

α =

[√
hr

]
1

2

h
α
2

r

,

and for any δ > 0 we get
{

r ∈ N :
1

f (hr)
α f (|{k ∈ Ir : |d (x,Ak)− d (x, {0})| ≥ ε}|) ≥ δ

}

⊆






r ∈ N :

[√
hr

]
1

2

h
α
2

r

≥ δ







.

Since the set on the right-hand side is a finite set and so belongs to I, it follows
that for 1

2 < α ≤ 1, Ak → {0} (Sα
θ (f, Iw)) .

On the other hand, for α = 1 and x > 0,

1

f (hr)
α

∑

k∈Ir

f (|d (x,Ak)− d (x, {0})|) =
f
(

x2 − 2x
) [√

hr

]

f (hr)
α

=

√

(x2 − 2x)
[√

hr

]

√
hr

α → 1

and for 0 < α < 1
√

(x2 − 2x)
[√

hr

]

√
hr

α → ∞.

Hence we have
{

r ∈ N :
1

f (hr)
α

∑

k∈Ir

f (|d (x,Ak)− d (x, {0})|) ≥ 0

}

=

{

r ∈ N :

√

(x2 − 2x)
[√

hr

]

√
hr

α ≥ 0

}

= {a, a+ 1, a+ 2, ...}

for some a ∈ N which belongs to F (I) , since I is admissible. So,

Ak 9 {0} (Nα
θ [f, Iw]) .

�
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From Theorem 2.1 we have the following results.

Corollary 2.2. i) Let α and β be two fixed real numbers such that 0 < α ≤ β ≤ 1,
then Nα [f, Iw] ⊆ Sβ (f, Iw) ,

ii) Let α be a fixed real numbers such that 0 < α ≤ 1, then Nα [f, Iw] ⊆
S (f, Iw) ,

iii) Let θ be a lacunary sequence, then Nθ [f, Iw ] ⊆ Sθ (f, Iw) .

Theorem 2.3. Let θ = (kr) be a lacunary sequence and α be a fixed real number

such that 0 < α ≤ 1. If limr→∞

f (hr)
α

f (kr)
α > 0, then Sα (f, Iw) ⊂ Sα

θ (f, Iw) .

Proof. If Ak → A (Sα (f, Iw)) , then for every ε > 0, for each x ∈ X, and for
sufficiently large r, we have

1

f (kr)
α f (|{k ≤ kr : |d (x,Ak)− d (x,A)| ≥ ε}|) ≥

f (hr)
α

f (kr)
α

1

f (hr)
α f (|{k ∈ Ir : |d (x,Ak)− d (x,A)| ≥ ε}|) .

For δ > 0, we have

{

r ∈ N :
1

f (hr)
α f (|{k ∈ Ir : |d (x,Ak)− d (x,A)| ≥ ε}|) ≥ δ

}

⊆
{

r ∈ N :
1

f (kr)
α f (|{k ≤ kr : |d (x,Ak)− d (x,A)| ≥ ε}|) ≥ δf (hr)

α

f (kr)
α

}

∈ I.

This completes the proof. �

Theorem 2.4. Let θ = (kr) be a lacunary sequence and the parameters α and β
be fixed real numbers such that 0 < α ≤ β ≤ 1, then the inclusion Nα

θ [f, Iw ] ⊆
Nβ

θ [f, Iw] is strict.

Proof. The inclusion part of proof is easy. To show that the inclusion is strict
define {Ak} such that for (R, d), x > 1, f (x) = x and A = {0} ,

Ak =

{

{5x+ 2} , kr−1 < k < kr−1 +
√
hr

{0} , otherwise
.

Then {Ak} ∈ Nβ
θ [f, Iw] for

1
2 < β ≤ 1 but {Ak} /∈ Nα

θ [f, Iw] for 0 < α ≤ 1
2 . �

Theorem 2.5. Let θ = (kr) be a lacunary sequence and the parameters α and β
be fixed real numbers such that 0 < α ≤ β ≤ 1, then the inclusion Sα

θ (f, Iw) ⊆
Sβ
θ (f, Iw) is strict.
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Proof. The inclusion part of proof is easy. To show that the inclusion is strict
define {Ak} such that for X = R

2 and f (x) = x

Ak =

{

(x, y) ∈ R
2, x2 + (y − 1)

2
= k2, if k is square

{(0, 0)} , otherwise
.

Then {Ak} ∈ Sβ
θ (f, Iw) for

1
2 < β ≤ 1 but {Ak} /∈ Sα

θ (f, Iw) for 0 < α ≤ 1
2 . �

Theorem 2.6. Let θ = (kr) be a lacunary sequence and α be a fixed real number

such that 0 < α ≤ 1. If limr→∞ inf
f (hr)

α

f (kr)
> 0, then S (f, Iw) ⊆ Sα

θ (f, Iw) .

Proof. The proof is similar to that of Theorem 2.3. �

Theorem 2.7. Let (X, d) be a metric space and A,Ak (for all k ∈ N) be non-
empty closed subsets of X and α be a fixed real number such that 0 < α ≤ 1. If

θ = (kr) is a lacunary sequence with lim sup
f(kj−kj−1)

α

f(kr−1)
α < ∞ (j = 1, 2, ..., r), then

Ak → A (Sα
θ (f, Iw)) implies Ak → A (Sα (f, Iw)) .

Proof. If lim sup
f(kj−kj−1)

α

f(kr−1)
α < ∞, then without any loss of generality, we can

assume that there exists a 0 < Bj < ∞ such that
f(kj−kj−1)

α

f(kr−1)
α < Bj, (j = 1, 2, ..., r)

for all r ≥ 1. Suppose that Ak → A (Sα
θ (f, Iw)) and for ε, δ, δ1 > 0 define the sets

C =

{

r ∈ N :
1

f (hr)
α f (|{k ∈ Ir : |d (x,Ak)− d (x,A)| ≥ ε}|) < δ

}

and

T =

{

r ∈ N :
1

f (n)
α f (|{k ≤ n : |d (x,Ak)− d (x,A)| ≥ ε}|) < δ1

}

.

It is obvious from our assumption that C ∈ F (I), the filter associated with the
ideal I. Further observe that

Ai =
1

f (hi)
α f (|{k ∈ Ii : |d (x,Ak)− d (x,A)| ≥ ε}|) < δ

for all i ∈ C. Let n ∈ N be such that kr−1 < n < kr for some r ∈ C. Now we can
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write

1

f (n)
α f (|{k ≤ n : |d (x,Ak)− d (x,A)| ≥ ε}|)

≤ 1

f (kr−1)
α f (|{k ≤ kr : |d (x,Ak)− d (x,A)| ≥ ε}|)

≤ 1

f (kr−1)
α f (|{k ∈ I1 : |d (x,Ak)− d (x,A)| ≥ ε}|) + ...

+
1

f (kr−1)
α f (|{k ∈ Ir : |d (x,Ak)− d (x,A)| ≥ ε}|)

=
f (k1)

α

f (kr−1)
α

1

f (h1)
α f (|{k ∈ I1 : |d (x,Ak)− d (x,A)| ≥ ε}|)

+
f (k2 − k1)

α

f (kr−1)
α

1

f (h2)
α f (|{k ∈ I2 : |d (x,Ak)− d (x,A)| ≥ ε}|)

+...+
f (kr − kr−1)

α

f (kr−1)
α

1

f (hr)
α f (|{k ∈ Ir : |d (x,Ak)− d (x,A)| ≥ ε}|)

≤ sup
i∈C

Ai.
f (k1)

α
+ f (k2 − k1)

α
+ ...+ f (kr − kr−1)

α

f (kr−1)
α

≤ sup
i∈C

Ai (B1 +B2 + ...+Br) < δ

r
∑

j=1

Bj .

Choosing δ1 = δ
r∑

j=1

Bj

and in view of the fact that ∪{n : kr−1 < n < kr, r ∈ C} ⊂ T

where C ∈ F (I). This completes the proof of the theorem. �

Theorem 2.8. Suppose θ′ = (sr) is a lacunary refinement of the lacunary sequence
θ = (kr) and α, β ∈ (0, 1] be fixed real numbers such that α ≤ β. Let Ir = (kr−1, kr]
and Jr = (sr−1, sr] , (r = 1, 2, 3, ...). If there exists ǫ > 0 such that

f (|Jj |)β

f (|Ii|)α
≥ ǫ for every Jj ⊆ Ii ,

then Ak → A (Sα
θ (f, Iw)) implies Ak → A

(

Sβ

θ
′ (f, Iw)

)

.
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Proof. For any ε > 0 and every Jj , we can find Ii such that Jj ⊆ Ii; then we have

1

f (|Jj |)β
f (|{k ∈ Jj : |d (x,Ak)− d (x,A)| ≥ ε}|)

=

(

f (|Ii|)α

f (|Jj |)β

)

(

1

f (|Ii|)α
)

f (|{k ∈ Jj : |d (x,Ak)− d (x,A)| ≥ ε}|)

≤
(

f (|Ii|)α

f (|Jj |)β

)

(

1

f (|Ii|)α
)

f (|{k ∈ Ii : |d (x,Ak)− d (x,A)| ≥ ε}|)

≤
(

1

ǫ

)(

1

f (|Ii|)α
)

f (|{k ∈ Ii : |d (x,Ak)− d (x,A)| ≥ ε}|) ,

and so
{

r ∈ N :
1

f (|Jj |)β
f (|{k ∈ Jj : |d (x,Ak)− d (x,A)| ≥ ε}|) ≥ δ

}

⊆
{

r ∈ N :

(

1

f (|Ii|)α
)

f (|{k ∈ Ii : |d (x,Ak)− d (x,A)| ≥ ε}|) ≥ δǫ

}

∈ I.

The proof completes immediately. �

Theorem 2.9. Suppose θ = (kr) and θ′ = (sr) are two lacunary sequences and
α, β ∈ (0, 1] be fixed real numbers such that α ≤ β. Let Ir = (kr−1, kr], Jr =
(sr−1, sr] , (r = 1, 2, 3, ...) and Iij = Ii ∩ Jj , i, j = 1, 2, 3, .... If there exists ǫ > 0

f (|Iij |)β

f (|Ii|)α
≥ ǫ for every i, j = 1, 2, 3, ..., provided Iij 6= ∅,

then Ak → A (Sα
θ (f, Iw)) implies Ak → A

(

Sβ

θ
′ (f, Iw)

)

.

Proof. Let θ
′′

= θ′ ∪ θ. Then θ
′′

is a lacunary refinement of the lacunary sequence
θ′, also θ. Then interval sequence of θ

′′

is {Iij = Ii ∩ Jj : Iij 6= ∅} . From Theorem

2.8, if Ak → A (Sα
θ (f, Iw)), then Ak → A

(

Sβ

θ
′′ (f, Iw)

)

. Since θ
′′

is also a lacunary

refinement of the lacunary sequence θ′, we have that Ak → A
(

Sα
θ
′′ (f, Iw)

)

implies

Ak → A
(

Sβ
θ′ (f, Iw)

)

. �

Theorem 2.10. Let θ = (kr) and θ′ = (sr) be two lacunary sequences such that
Ir ⊂ Jr for all r ∈ N and let α and β be such that 0 < α ≤ β ≤ 1,

(i) If

lim
r→∞

inf
f (hr)

α

f (ℓr)
β

> 0 (1)

then Sβ

θ
′ (f, Iw) ⊆ Sα

θ (f, Iw) ,



On (f, I)−Lacunary Statistical Convergence of Order α 93

(ii) If

lim
r→∞

f (ℓr)

f (hr)
α = 0 (2)

then Sα
θ (f, Iw) ⊆ Sβ

θ
′ (f, Iw) .

Proof. i) Omitted.
(ii) Let (2) be satisfied. Since Ir ⊂ Jr, for ε > 0 we may write

1

f (ℓr)
β
f (|{k ∈ Jr : |d (x,Ak)− d (x,A)| ≥ ε}|)

=
1

f (ℓr)
β
f(|{sr−1 < k ≤ kr−1 : |d (x,Ak)− d (x,A)| ≥ ε}|

+ |{kr < k ≤ sr : |d (x,Ak)− d (x,A)| ≥ ε}|
+ |{kr−1 < k ≤ kr : |d (x,Ak)− d (x,A)| ≥ ε}|)

≤ 1

f (ℓr)
β
f (kr−1 − sr−1 + sr − kr)

+
1

f (ℓr)
β
f (|{k ∈ Ir : |d (x,Ak)− d (x,A)| ≥ ε}|)

≤ f (ℓr − hr)

f (ℓr)
β

+
1

f (ℓr)
β
f (|{k ∈ Ir : |d (x,Ak)− d (x,A)| ≥ ε}|)

≤ f (ℓr + hr)

f (ℓr)
β

+
1

f (ℓr)
β
f (|{k ∈ Ir : |d (x,Ak)− d (x,A)| ≥ ε}|)

≤ f (ℓr) + f (hr)

f (hr)
β

+
1

f (hr)
α f (|{k ∈ Ir : |d (x,Ak)− d (x,A)| ≥ ε}|)

≤ f (ℓr) + f (ℓr)

f (hr)
α +

1

f (hr)
α f (|{k ∈ Ir : |d (x,Ak)− d (x,A)| ≥ ε}|)

≤
(

2f (ℓr)

f (hr)
α

)

+
1

f (hr)
α f (|{k ∈ Ir : |d (x,Ak)− d (x,A)| ≥ ε}|)

for all r ∈ N and so
{

r ∈ N :
1

f (ℓr)
β
f (|{k ∈ Jr : |d (x,Ak)− d (x,A)| ≥ ε}|) ≥ δ

}

⊆
{

r ∈ N :
1

f (hr)
α f (|{k ∈ Ir : |d (x,Ak)− d (x,A)| ≥ ε}|) ≥ δ − 2f (ℓr)

f (hr)
α

}

∈ I.

This gives that Sα
θ (f, Iw) ⊆ Sβ

θ
′ (f, Iw) . �

Theorem 2.11. Let θ = (kr) and θ′ = (sr) be two lacunary sequences such that
Ir ⊆ Jr for all r ∈ N, α and β be fixed real numbers such that 0 < α ≤ β ≤ 1. Then
we have
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(i) If (1) holds then Nβ

θ
′ [f, Iw] ⊂ Nα

θ [f, Iw] ,

(ii) If limr→∞
ℓr

f(hr)
α = 0 holds and {Ak} ∈ L∞ then Nα

θ [f, Iw] ⊂ Nβ

θ
′ [f, Iw] .

Proof. (i) Omitted.
(ii) Let suppose that (2) holds. Since {Ak} ∈ L∞ then there exists some M > 0

such that |d (x,Ak)− d (x,A)| ≤ M for all k. Now, since Ir ⊆ Jr and hr ≤ ℓr for
all r ∈ N, we may write

1

f (ℓr)
β

∑

k∈Jr

f (|d (x,Ak)− d (x,A)|)

=
1

f (ℓr)
β

∑

k∈Jr−Ir

f (|d (x,Ak)− d (x,A)|)

+
1

f (ℓr)
β

∑

k∈Ir

f (|d (x,Ak)− d (x,A)|)

≤ (ℓr − hr) f (M)

f (ℓr)
β

+
1

f (ℓr)
β

∑

k∈Ir

f (|d (x,Ak)− d (x,A)|)

≤ ℓrf (M)

f (hr)
α +

1

f (hr)
α

∑

k∈Ir

f (|d (x,Ak)− d (x,A)|)

for every r ∈ N and so

{

r ∈ N :
1

f (ℓr)
β

∑

k∈Jr

f (|d (x,Ak)− d (x,A)|) ≥ ε

}

⊆
{

r ∈ N :
1

f (hr)
α

∑

k∈Ir

f (|d (x,Ak)− d (x,A)|) ≥ ε− ℓrf (M)

f (hr)
α

}

∈ I.

�

Theorem 2.12. Let θ = (kr) and θ′ = (sr) be two lacunary sequences such that
Ir ⊆ Jr for all r ∈ N, α and β be fixed real numbers such that 0 < α ≤ β ≤
1. Let (1) holds, if a sequence is strongly Nβ

θ
′ [f, Iw]−summable to A, then it is

Sα
θ (f, Iw)−statistically convergent to A.

Proof. Omitted. �

3. Acknowledgments

The authors acknowledge that some of the results were presented at the 2nd
International Conference of Mathematical Sciences, 31 July 2018-6 August 2018,
(ICMS 2018) Maltepe University, Istanbul, Turkey, and the statements of some
results in this paper will be appeared in AIP Conference Proceeding of 2nd Inter-
national Conference of Mathematical Sciences, (ICMS 2018) Maltepe University,
Istanbul, Turkey ( [35]).



On (f, I)−Lacunary Statistical Convergence of Order α 95

References

1. A. Aizpuru, M. C. Listán-Garćıa and F. Rambla-Barreno, Density by moduli and statistical
convergence. Quaest. Math. 37(4) (2014) 525–530.
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Şanlıurfa, Turkey.

E-mail address: hacer.sengul@hotmail.com

and

M. Et,

Department of Mathematics,

Fırat University 23119,
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