
Bol. Soc. Paran. Mat. (3s.) v. 38 7 (2020): 59–67.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v38i7.44282

On Binary Operation Graphs

Manal N. Al-Harere and Ahmed A. Omran

abstract: Labeled graphs are the the graphs that their vertices or edges or to
both assigned labels of integers according to a certain conditions. Given a graph
G = (V, E), a vertex labeling is a function of V to a set of labels. A graph with such
a function defined is called a vertex-labeled graph. The concept of labeled graph
generally refers to a vertex-labeled graph with all labels distinct. In this work,
new results of graph labeling ” binary operation labeling ” are determined. Binary
operation labeling is a type of labeling graphs by vertices.
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1. Introduction

Let G = (V,E) be a finite and simple undirected graph of order p and and size
q. In any graph deg(v) is, the number of edges that incident on v in G. Any notion
or definition which is not found here could be found in [14].

A graph G is said to be labeled (numbered) if each vertex u in G is assigned
to a non negative integer f(u) . Such a graph may equivalently be labeled by the
consecutive integers {1, · · · , p}. For many applications, the edges or vertices are
given labels that are meaningful in the associated domain. For example, the edges
may be assigned weights representing the ”cost” of traversing between the incident
vertices. The work here is focus on studing vertex labeling.
Rosa [18] in 1967 started graph labeling principles. Graham and Sloane [13] have
also contributed into these principles. For a survey on graph labeling see Gallian
[10]. See also, [6], [7], [11], [12], [15], [19], [20], [21] and [1].

Binary operation labeling was defined in [2] which is a vertices labeling scheme.
Let G = (V,E) be a (p, q)-graph and let f : V (G) → 1, 2, · · · , p be a bijection
function. Binary operation graphs are graphs admits a binary operation labeling.
When a binary operation graph has a maximum number of edge then it is a maximal
binary operation graph. In this paper, new results of “Binary operation graphs ”are
introduced.
Labeled graphs can be use as a modeling tool for numerous applications such as:
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circuit design, coding theory, x-ray crystallography, radar , communication network
addressing, secret sharing schemes, and models for constraint programming over
finite domains,for more details–see [3], [4], [5], [8], [9], [16], [17], [22] , [23]and [24].

2. Binary operation labeling

Definition 2.1. , [2] Let G = (V,E) be a graph of order p be a binary operation
graph if there exists a bijection function f : V (G) → 1, 2, . . . , p, where the induced
edge function f∗ : E(G) → N is defined as

f∗(vu) =











(f(v) + f(u))/2; if f(v) and f(u) are both odd or both are even (a)

(f(v)f(u))/2; if f(v) is odd and f(u) is even or vice versa (b)











(2.1)

Remark 2.2. [2] Let u be any vertex in a graph having a maximal binary operation
labeling where the adjacent vertices to u are divided into two sets, the first contains
all vertices which are adjacent to u expressed by 1(a) and denoted by Su, and the
second contains all vertices that are adjacent to u which expressed by 1(b) and
denoted by Mu. That means

Su =











(f(u)/2) + i; i = 0, . . . , ⌈p/2⌉ − 1, i 6= f(u)/2; if f(u) and f(v) are even

(f(u) + (2i+ 1))/2; i = 1, . . . , ⌈p/2⌉, i 6= ⌊f(u)/2⌋; if f(u) and f(v) are odd











and

Mu =











f(u)/2 + if(u); i = 0, . . . , ⌈p/2⌉ − 1; if f(v) is odd and f(u) is even

2if(u); i = 1, . . . , ⌊p/2⌋; if f(v) is even and f(u) is odd











3. Main results

Theorem 3.1. In any binary operation graph G, u ∈ G the maximum degree
△(G) ≤ p− t− 1, where

t =

{

⌊p/2f(u)⌋; if f(u) is even (a)

⌊(p+ f(u))/2f(u)⌋ − 1; if f(u) is odd (b)

}

(3.1)

Proof. Let uj be any vertex in G such that f(uj) = j; j = 1, 2, . . . , n. To calculate
the maximum degree of this vertex there are two cases as follows.
(i) If f(uj) is even, then all vertices of even labels which are adjacent to vertex
uj are expressed by Eq.(1(a)). So all edge labels are increasing, then there are
no repeated edge labels. Also all vertices of odd labels adjacent to vertex uj are
expressed by Eq.(1(b)), so labels of these edges are also increasing; again there are
no repeated edge labels. The repeated edge labels can occur when two adjacent
vertices to vertex uj one is even labeled, and the other is odd labeled.
Now, if vertex uj joins with vertex u1 then we get f∗(ujv1) = j/2 and f∗(ujuh) 6=
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j/2 ∀ h , where h is even. So, in this case there are no repeated edge labels. Next
join occurs when we join vertex uj with vertex u3 then we get f∗(uju3) = 3j/2 =
f∗(uju2j), therefore, we get the first repeated edge label. By the same procedure
we can get the second repeated edge labelf∗(ujv5) = 5j/2 = f∗(ujv4j). Thus, in
general

f∗(uju2t+1) = (2t+ 1)j/2 = f∗(uju2kj), and these edge labels exist if p ≥ 2tj
that means t ≤ p/2j, so the maximum value of t that satisfies this equation is
t = ⌊p/2j⌋.
(ii) If j is odd, then all vertices of odd labels join with vertex uj by Eq.(1(a)).
So all edge labels are increasing, then there are no repeated edge labels. Also all
vertices of even labels can join with vertex uj according to Eq.(1(b)), so labels
of these edges are also increasing, again there are no repeated edge labels. The
repeated edges can occur when we join vertex uj with two vertices, one of them of
is odd labeled and the other is even labeled. Now, if vertex uj joins with vertex v2
then we get f∗(uju2) = j which can be got only if f∗(ujuj) = j . So, in this case
there are no repeated edge labels, since G is a simple graph. The next join occurs
when vertex uj joins with vertex u4 then we get f∗(ujv4) = 2j = f∗(uju3j),
therefore, we get the first repeated edge label. By the same procedure we can
get the second repeated edge label f∗(uju6) = 3j = f∗(uju5j). Thus, in general
f∗(uju2t) = 2j = f∗(uju(2t−1)j), and these edge labels exist if n ≥ (2t − 1)j
that means (2k − 1) ≤ p/j, so the maximum t which satisfies this equation is
t = ⌊(p+ j)/2j⌋. Thus, the number of repeated edges is ⌊(p+f(uj))/(2f(uj))⌋−1,
since t ≥ 2. �

Theorem 3.2. Let G be a graph having maximal binary operation labeling then G
has at most one vertex of degree p− 1.

Proof. If u is a vertex of even label such that 2f(u) ≤ p, then deg(u) < p − 1,
according to Theorem 3.1. If v is a vertex of odd label such that 3f(v) ≤ p, then
deg(v) < p− 1, according to Theorem 3.1.
Now, consider De = {u; 2f(u) > p and Do = v; 3f(v) > p}
Case 1: If p is even, then there are two cases as follows.
(i) If p/2 is even , then
Claim 1.

1. (p/2) + 1 ∈ Sur ] ∩ Susif ur, us ∈ De.

2.

{

p/2; if f∗(vrvs) 6= p/2

(p/2)− 2; if f∗(vrvs) = p/2

}

∈ Svr ∩ Svs if vr, vs ∈ Do

3. p/2 ∈ Svr ∩ Sus , if vr ∈ Do, up 6= us ∈ De.

4. (p/2) + 2 ∈ Svr ∩ Sup if vr ∈ Do and up ∈ De.

Proof of Claim 1.
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1. |De| = p/4 , since the elements in De = {un−2k; k = 0, . . . , (p/4)− 1}, it is
clear that u2k+2 ∈ G exists for all k and f∗(up−2ku2k+2) = (p/2) + 1 and
∀ur, us ∈ De , f∗(urus) 6= (p/2) + 1, since u2k+2 /∈ De ∀k.

2. |Do| = {⌈n/3⌉} , since the element in Do = vp−1−2k; k = 0, . . . , ⌈n/3⌉ − 1, it
is clear that v2k+1 exists for all k and f∗(vp−1−2kv2k+1) = p/2 . If v2k+1 ∈ Do

for some k then we take f∗(vp−1−2kv2k−3) = (p/2)− 2 .

3. A vertex u2k joins with all vertices up−2k, k = 0, . . . , (n/4) − 1 in De and
f∗(vp−2ku2k) = p/2. A vertex u2k+1 joins with all vertices vp−1−2k, k =
0, . . . , ⌈p/3⌉ − 1inDo and f∗(vp−1−2kv2k+1) = p/2 . A vertex u4 joins with
vertex up in De andf∗(upu4) = (p/2) + 2. A vertex v2k+5 joins with all ver-
tices vp−1−2k in Do and f∗(vp−1−2kv2k+5) = (p/2) + 2.

(ii) If p/2 is odd , then Claim 2.

1.

{

(p/2) + 2; if f∗(urus) 6= (p/2) + 2

p/2; iff∗(urus) = (p/2) + 2

}

∈ Sur ∩ Sus if ur, us ∈ De

2.

{

(p/2) + 1; if f∗(vrvs) 6= p/2 + 1

(p/2)− 1; if f∗(vrvs) = (p/2) + 1

}

∈ Svr ∩ Svs if vr, vs ∈ Do

3. (p/2) + 1 ∈ S(vr) ∩ S(us), if vr ∈ Do, u(p/2)+1 6= us ∈ De

4. (p/2) + 2 ∈ Svr ∩ Su(p/2)+1
, if vr ∈ Do, u(p/2)+1 ∈ De

Proof of Claim 2.

1. |De| = ⌈p/4⌉, since De = {u(p− 2k); k = 0, . . . , ⌈p/4⌉ − 1} , it is clear that
u2k+4 exists for all k and f∗(up−2ku2k+4) = (p/2) + 2. If u2k+4 ∈ De for
some k then we take u2k where f∗(up−2ku2k) = p/2.

2. |Do| = ⌈p/4⌉ , since Do = {vp−1−2k; k = 0, . . . , ⌈p/4⌉ − 1} , it is clear that
v2k+3 exists for all k and f∗(vp−1−2kv2k+3) = (p/2) + 1. If v2k+3 ∈ Do for
some k then we take v2k−1, where f∗(vp−1−2kv2k−1) = (p/2)− 1

3. Vertex v2k+2 joins with all vertices vp−2k in De and f∗(vp−2kv2k+2) = (p/2)+
1. A vertex v2k+3 joins with all vertices up−1−2k in Do, k = 0, . . . , ⌈p/4⌉− 1,
and f∗(vp−1−2kv2k+3) = (p/2) + 1

4. Vertex u(p/2)+3 joins with vertex u(p/2)+1 in De and f∗(up/2+3up/2+1) =
(p/2) + 2. A vertex v2k+5 joins with all vertices vp−1−2k, k = 0, . . . , ⌈p/4⌉ −
1, in Do and f∗(vp−1−2kv2k+5) = (p/2) + 2.

Case 2: If p is odd, then
Claim 3.
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1.

{

⌈p/2⌉+ 1; if f∗(urus) 6= ⌈p/2⌉+ 1

⌈p/2⌉ − 1; if f∗(urus) = ⌈p/2⌉+ 1

}

∈ Sur ∩ Sus if ur, us ∈ De

2.

{

⌈p/2⌉; if f∗(vrvs) 6= ⌈p/2⌉

⌈p/2⌉ − 2; if f∗(vrvs) = ⌈p/2⌉

}

∈ Svr ∩ Svs if vr, vs ∈ Do

3. ⌈p/2⌉ ∈ Svr ∩ Sus , if vr ∈ Do, u⌈p/2⌉ 6= us ∈ De

4. ⌈p/2⌉+ 2 ∈ Svr ∩ Sus , if vr ∈ Do, u⌈p/2⌉ ∈ De

Proof of Claim 3.

1. |De| = ⌈p/4⌉ , since De = {up−1−2k; k = 0, . . . , ⌈p/4⌉ − 1} , it is clear that
u2k+4 exists for all k and f∗(up−1−2ku2k+4) = (n+ 1)/2 + 1 = ⌈p/2⌉+ 1. If
u2k+4 ∈ De for some k then we take f∗(up−1−2ku2k) = ⌊p/2⌋ − 1.

2. |Do| = ⌈n/4⌉, since Do = {v(p− 2k); k = 0, . . . , ⌈p/4⌉}, it is clear that v2k+1

exists for all k and f∗(vp−2kv2k+1) = (p + 1)/2 = ⌈p/2⌉ If v2k+1 ∈ Do for
some k then we take f∗(v2k−3v2k−3) = ⌈p/2⌉ − 2.

3. A vertex u2k+2 joins with all vertices up−1−2k in De and f∗(up−1−2ku2k+2) =
⌈p/2⌉. A vertex v2k+1 joins with all vertices vp−2k inDo and f∗(vp−2kv2k+1) =
⌈p/2⌉.

4. A vertex u⌈p/2⌉+2 joins with vertex u⌈p/2⌉ in De and f∗(u⌈p/2⌉u⌈p/2⌉+4) =
⌈p/2⌉ + 2. A vertex v2k+5 joins with all vertices vp−2k in Do and
f∗(vp−2kv2k+5) = ⌈p/2⌉ + 2. Then if we take any vertex from either De

or Do of degree (p − 1), we cannot find another vertex with degree equal to
(p− 1).

�

Lemma 3.3. Let G the maximal binary operation graph , if deg(u) = 1, u ∈ G
then the vertex labeling f(u) satisfies the following conditions:

(i) f(u) < 2p/(p−2) ; f(u) < p−2, if p is odd and f(u) is even or vice versa
(ii) f(u) < 2p/(p − 3) ; f(u) < p − 3, if p and f(u) are both odd or both are
even.

Proof. Let f(uj) = j; j = 1, 2, . . . , p. In the previous theorem we proved that the
repeated edges labels belong to Muj ∩ Suj , so if any value in Muj is greater than
the maximum value in Suj , then this value does not belong to the intersection sets.
Let uj ∈ V , and there are two vertices in G such that the values of edges that join
these vertices with the vertex uj are greater than the maximum value of Suj . So
these values are not repeated, thus deg(uj) ≥ 2. Now we have two cases.
Case 1: If j is even then there are two cases as follows.
(i) If p is odd, then if f∗(ujup−2)) does not belong to intersection sets, then we get
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two values which do not belong to intersection sets, that means deg(uj) ≥ 2, and
f∗(ujup−2) ≥ p, since p−1 is the maximum value in Svj , so (j(p−2))/2 ≥ p which
implies that j ≥ 2p/(n− 2).
Therefore, when j < 2p/(p− 2) , the vertex uj can join with at most one vertex.
(ii) If p is even then by same the manner in (i) if f∗(ujup−3) ≥ n then deg(uj) ≥ 2
and (j(p−3))/2 ≥ p, which implies that j ≥ 2n/(n−3). Thus, when j < 2p/(p−3),
the vertex uj can join with at most one vertex.
Case 2: If j is odd then there are two cases as follows.
(i) If p is even, similar to case 1 (i).
(ii) If p is odd, similar to case 1 (ii). �

Note 3.1. deg(u1) ≥ 2; ∀p > 2, since f∗(u2u1) = 1 and the edge with label 2 is
gotten by either f∗(u1u3) or f∗(u1u4).

Theorem 3.4. There is at most one end vertex in any maximal binary operation
graph.

Proof. There are two cases that depend on p as follows.
Case 1: If p is even, then there are two cases as follows.
(i) If j is odd, then (a) If p = 4, then deg(u3) = 1 as shown in Figure 1.

(b) ∀p ≥ 6, according to Lemma 3.1 j < 2n/(p−2) ≤ 3 , thus there is no vertex
of odd label that can join with only one vertex according to Note 3.3.
(ii) If j is even, then:
(a) If p = 4, then deg(u2) = 2 , since f∗(u2v1) = 1 and we get label 3 by joining
either u2 with u4 or u2 with u3. Hence, deg(u4) = 1 as shown in Figure 2.
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(b) ∀n ≥ 6, then by Lemma 3.1 j < 2n/(p − 2) ≤ 4 , so the only vertex that
can join with one vertex is u2. And it is clear that in case i(a) and case ii(a), u3

and u4 cannot get degree one on the same maximal binary operation graph.
Case 2: If p is odd, then there are two cases as follows:
(i) If j is odd, then (a) If p = 3, 5, then there is no vertex of degree one, since
in p = 3 , f∗(u3u1) = 2 and f∗(u3u2) = 3 are not repeated, so deg(u3) = 2 and
in p = 5, f∗(u3u4) = 6 and f∗(u3u5) = 4 are not repeated, so deg(u3) ≥ 2 and
f∗(u5u3) = 4 and f∗(u5u4) = 10 are not repeated so deg(u5) ≥ 2.
(b) If p = 7, then by Lemma 3.1 the only vertex that can join with only one vertex
is u3, since j < 2p/(p− 3) < 4, and in this case deg(u3) = 1 as shown in Figure 3.

(c) ∀p ≥ 9, by Lemma 3.1 there is no vertex of degree one, since j < 2p/(n−3) ≤
3.
(ii) If j is even, then
(a) If p = 3, 5, If p = 3 then there is no vertex of degree one, since f∗(u2u1) = 1 and
f∗(u2u3) = 3 are not repeated, so deg(u2) = 2. If p = 5, then the vertex u2 joins
with at least two vertices, since f∗(u2u1) = 1 and f∗(u2u5) = 5 are not repeated,
so deg(u2) ≥ 2. The vertex u4 joins with at least two vertices, since f∗(u4u5) = 10
and f∗(u4u3) = 6 are not repeated, so deg(u4) ≥ 2.
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(b) ∀p ≥ 7, by Lemma 3.1 the only vertex that can join with only one vertex is
u2 , since j < 2p/(p − 3) < 4. The vertex u2 joins with at least two vertices,
since f∗(u2u1) = 1 and f∗(u2up) = p (by proof of Lemma 3.1) are not repeated,
so deg(u2) ≥ 2.

�
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