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Recent Results for the Logarithmic Keller-Segel-Fisher/KPP System ∗
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abstract: We consider a Keller-Segel type chemotaxis model with logarithmic
sensitivity and logistic growth. It is a 2 × 2 system describing the interaction of
cells and a chemical signal. We study Cauchy problem with finite initial data, i.e.,
without the commonly used smallness assumption on initial perturbations around a
constant ground state. We survey a sequence of recent results by the authors on the
existence of global-in-time solution, long-time behavior, vanishing coefficient limit
and optimal time decay rates of the solution.
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1. Introduction

We consider a Keller-Segel type chemotaxis model with logarithmic sensitivity
and logistic growth:

{

ct = εcxx − µuc− σc,

ut + χ[u(ln c)x]x = Duxx + au(1− u
K ).

(1.1)

Here the unknown functions c = c(x, t) and u = u(x, t) are functions of the space
variable x ∈ R and time variable t ∈ R

+, representing the concentration of a
chemical signal and the density of a cellular population, respectively. The system
parameters are interpreted as follows.

• ε ≥ 0: diffusion coefficient of chemical signal;

• µ 6= 0: coefficient of density-dependent production/degradation rate of chem-
ical signal;

• σ ≥ 0: natural degradation rate of chemical signal;

• χ 6= 0: coefficient of chemotactic sensitivity;

• D > 0: diffusion coefficient of cellular population;

• a > 0: natural growth rate of cellular population;

• K > 0: typical carrying capacity of cellular population.

The system describes the dynamics when certain biological organism releases or
consumes a chemical signal in the local environment while both entities are nat-
urally diffusing and reacting. The system includes logarithmic chemotactic re-
sponse of cells to the signal, and some or all of the following mechanisms: random
walk/diffusion, consumption/deposition of the chemical by cells, natural degrada-
tion of the chemical, and the logistic growth of cells. In particular, the logarithmic
sensitivity function in (1.1) accounts for the Fechner’s law, which states that sub-
jective sensation is proportional to the logarithm of the stimulus intensity. Such a
sensitivity function was used in the original Keller-Segel model [1].

The model was first proposed without the logistic growth term by Othmer and
Stevens to describe the movement of a chemotactic population that deposits a
chemical signal to modify the local environment for succeeding passages [7]:

{

ct = εcxx − µuc− σc,

ut + χ[u(ln c)x]x = Duxx.
(1.2)

That is, χ < 0 and µ < 0 were assumed in (1.2). Such a model has found ap-
plications in cancer research [3]. Biologically, the sign of χ dictates whether the
chemotactic movement is attractive (χ > 0) or repulsive (χ < 0). Therefore, it
makes perfect sense to have χ > 0 and µ > 0 in (1.2), as it describes that the
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cells are attracted to and consume the chemical. Since there is no difference in the
analysis of these two scenarios, we assume χµ > 0 throughout this paper. Mathe-
matically, the non-diffusive part of the transformed system to be discussed below
is hyperbolic in biologically relevant regimes when χµ > 0, while it may change
type when χµ < 0 [15].

For Othmer-Stevens’ model (1.2), the logarithmic function can be removed by
the inverse Hopf-Cole transformation [2]:

v = (ln c)x =
cx
c
. (1.3)

Under the new variables, (1.2) is converted into a system of hyperbolic-parabolic
conservation laws:

{

vt + (µu − εv2)x = εvxx,

ut + χ(uv)x = Duxx,
(1.4)

noting ε ≥ 0 and D > 0.
Similarly, the inverse Hopf-Cole transformation (1.3) converts the Keller-Segel-

Fisher/KPP model (1.1) into a system of hyperbolic-parabolic balance laws:

{

vt + (µu − εv2)x = εvxx,

ut + χ(uv)x = Duxx + au(1− u
K ).

(1.5)

Equation (1.5) can be further simplified by using re-scaled and/or dimensionless
variables:

t̃ =
χµK

D
t, x̃ =

√
χµK

D
x, ṽ = sign(χ)

√

χ

µK
v, ũ =

u

K
. (1.6)

After dropping the tilde accent, we arrive at

{

vt + (u− ε2v
2)x = ε1vxx,

ut + (uv)x = uxx + ru(1− u),
(1.7)

where the new parameters are

r =
aD

χµK
> 0, ε1 =

ε

D
≥ 0, ε2 =

ε

χ
. (1.8)

1.1. Cauchy Problem

Now we consider the Cauchy problem of (1.1):

{

ct = εcxx − µuc− σc,

ut + χ[u(ln c)x]x = Duxx + au(1− u
K ),

x ∈ R, t ∈ R
+,

(c, u)(x, 0) = (c0, u0)(x), x ∈ R,

(1.9)
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or equivalently, the Cauchy problem of (1.7) (after the change of variables and
rescaling):

{

vt + (u− ε2v
2)x = ε1vxx,

ut + (uv)x = uxx + ru(1 − u),
x ∈ R, t ∈ R

+,

(v, u)(x, 0) = (v0, u0)(x), x ∈ R.

(1.10)

The Cauchy datum (v0, u0) is assumed to be a perturbation of a constant equilib-
rium state (v̄, ū).

To be an equilibrium state we need ū = 0 or ū = 1. It is clear that the former
is unstable. Therefore, we set ū = 1. To discuss v̄ we recall the definition of v in
(1.3), which gives us

v0 =
c′0
c0
, c0(x) = c0(0)e

∫
x

0
v0(y) dy with c0(0) > 0, (1.11)

where for simplicity we have omitted the scaling constant sign(χ)
√

χ/µK from
(1.6). If v0 − v̄ ∈ L1(R) while v̄ ≷ 0, we have

∫ ∞

0

v0(y) dy = ±∞,

∫ 0

−∞

v0(y) dy = ±∞.

Therefore, from (1.11) we have c0(x) → ∞ either as x → ∞ or as x → −∞,
depending on v̄ > 0 or v̄ < 0. For physically interesting problems we consider
limx→±∞ c0(x) = c± with 0 < c± <∞. Therefore, we take v̄ = 0. In summary,

lim
x→±∞

(v0, u0) = (v±, u±) = (0, 1). (1.12)

1.2. Small Data Solutions

Cauchy problem (1.10) fits in the general framework of hyperbolic-parabolic
balance laws:

wt + f(w)x = [B(w)wx]x + q(w), x ∈ R, t ∈ R
+,

w(x, 0) = w0(x), x ∈ R,
(1.13)

where w, f, q ∈ R
n, and B ∈ R

n×n. The unknown function w = w(x, t) represents
density functions of physical quantities; f is the flux function; B is the viscosity
matrix, representing viscosity, heat conduction, and species diffusion; and q is for
external force, relaxation, chemical reaction, etc. We assume that f , B and q are
smooth functions of w. In applications, B and q′ (the Jacobian matrix of q) are
usually rank deficient. The system can be extended to multi space dimensions:

wt +
m
∑

j=1

fj(w)xj
=

m
∑

j,k=1

[

Bjk(w)wxk

]

xj
+ q(w), x ∈ R

m, t ∈ R
+,

w(x, 0) = w0(x), x ∈ R
m

(1.14)
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for m ≥ 1, where w, fj , q ∈ R
n and Bjk ∈ R

n×n.
When writing (1.10) in the form of (1.13), we have n = 2,

w =

(

v
u

)

, f(w) =

(

u− ε2v
2

uv

)

, B =

(

ε1 0
0 1

)

, q(w) =

(

0
ru(1 − u)

)

.

It is clear that B is rank one if ε1 = 0, and q′ is rank one.
A set of structural conditions has been proposed by the first author to (1.14),

which includes (1.13), see [10]. This set of conditions is able to capture com-
mon properties of several important systems, such as Navier-Stokes equations for
compressible flows, Euler equations with damping, equations for gas flows in trans-
lational and vibrational non-equilibrium, and in particular, the logarithmic Keller-
Segel-Fisher/KPP model (1.10). The set contains an extended concept of entropy
condition, which implies symmetrization of (1.14). (Therefore, (1.10) is symmetriz-
able.) The rest of the set consists of block structures of the viscosity terms and
the lower order term, respectively, and the Kawashima-Shizuta condition on strong
coupling [9]. Under this set of conditions we are able to answer basic questions in
PDE theory in the case of small data solutions, as to be detailed below.

Suppose that the aforementioned structural conditions are satisfied. We con-
sider the Cauchy datum w0 as a perturbation of a constant equilibrium state w̄:
q(w̄) = 0. Existence of (unique) solution to (1.14) global-in-time is established
in [10] if w0 − w̄ is small in Hs(Rm), s > m/2 + 1. For multi space dimen-
sions m ≥ 2, optimal L2 time decay rates are obtained in [11]: If w0 − w̄ is
small in Hs(Rm) ∩ L1(Rm), s > m/2 + 1, then ‖Dl

x(w − w̄)‖L2(t) has decay rate
(t+1)−m/4−l/2 for 0 ≤ l ≤ s−2. Also for multi space dimensions m ≥ 2 and under
the same assumptions, we can show that w is time-asymptotically approximated in
L2 by w∗, the solution of the corresponding linear system with the same initial da-
tum [12]. Optimal L2 decay rates can be obtained for one space dimension m = 1
as well [13]: If w0 − w̄ is small in Hs(R) ∩ L1(R), s ≥ 4, then ‖Dl

x(w − w̄)‖L2(t)
has decay rate (t + 1)−1/4−l/2 for 0 ≤ l ≤ s − 2. We note that all L2 results can
be extended to Lp results, 2 ≤ p ≤ ∞, in a straightforward manner by applying
Gagliardo-Nirenberg inequality [6].

The direct application of results under the general setting (1.13) or (1.14) to
Keller-Segel-Fisher/KPPmodel (1.10) gives us the following: If (v0, u0−1) is small
in Hs(R), s ≥ 2, then (1.10) has a unique solution (v, u)(x, t) global-in-time. If
(v0, u0 − 1) is small in Hs(R) ∩ L1(R), s ≥ 4, then ‖Dl

xv‖L2(t) has decay rate
(t+ 1)−1/4−l/2 for 0 ≤ l ≤ s− 2. The variable u actually has better rates towards
ū = 1: ‖Dl

x(u − 1)‖L2(t) decays at the rate (t+ 1)−3/4−l/2 for 0 ≤ l ≤ s− 4. This
is because u is the faster decaying part in the solution resulted from the logistic
growth term. In the general setting (1.13) or (1.14), there is also a faster decaying
part in w towards w̄ due to the lower order term q(w). For a discussion and
the formulation of this part readers are referred to [10,11,13]. The construction
of asymptotic solutions in one space dimension is intrinsically different from multi
space dimensions, and is necessary to contain nonlinear Burgers waves if the system
is nonlinear in nature. While we do not have a general theory for (1.13), we are
able to obtain an asymptotic solution for (1.10) by ad hoc consideration [14], again,
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under smallness assumption on the initial perturbation. The asymptotic solution
for v is a heat kernel or a Burgers wave (depending on ε = 0 or ε > 0), carrying
the same mass as v0, while for u − 1 it is a constant multiple of the first spatial
derivative of that wave. Recently, the study has been extended to the pointwise
sense, both in space and in time, for the case of non-diffusive chemical, ε = 0, [8].

1.3. Large Data Solutions

It is challenging to remove the smallness assumption on the initial perturbation.
For instance, there is no general global existence theory for (1.14) or (1.13) if
w0 − w̄ is finite in Hs(Rm) for an appropriate s. In fact, for many important
physical systems in the form of (1.14) or (1.13), such as Navier-Stokes equations for
compressible flows, the global existence of solutions with finite initial perturbations
is a long standing obstacle. As an effort in this direction, in recent years there are
a few studies on this issue for specific, simpler systems, such as the Keller-Segel
model (1.4) with ε ≥ 0. In particular, the results reported in [4,5] showed that for
any given constant state (0, ū) with ū > 0, and any initial datum (v0, u0) such that
u0 ≥ 0 and (v0, u0 − ū) ∈ H2(R) (no smallness assumption on the perturbation),
1) there exists a unique global-in-time classical solution to the Cauchy problem of
(1.4) with either ε = 0 or ε > 0; 2) the solution converges to the constant state
asymptotically as time goes to infinity; and 3) the chemically diffusive solution
(ε > 0) converges to the non-diffusive solution (ε = 0) as ε → 0 with certain
convergence rate. Moreover, under smallness assumptions on the low frequency
part of the initial perturbations, the explicit (algebraic) decay rates of the solutions
to (1.4) toward the constant state are identified by the method of weighted energy
estimate.

Our contribution in this regard is some recent studies on the Keller-Segel-
Fisher/KPP model (1.10) (hence (1.9)) concerning the existence of global-in-time
solution, long-time behavior, vanishing coefficient limit and optimal time decay
rates of the solution, without or relaxing the smallness assumption on the initial
perturbation [15,16]. The results are to be detailed in next section. We want to
point out that the solution picture in this scenario is completely different from the
one for Keller-Segel model (1.4). The proofs of our results are carefully crafted
by exploring the fine structure of the logistic growth term. We would also like to
remark that we are able to obtain optimal time decay rates for large data solu-
tions of (1.10) when the chemical is non-diffusive (ε = 0). As a comparison, all of
the existing results on (non-optimal) decay rates for (1.4) require some smallness
assumption on the initial perturbation, no matter ε > 0 or ε = 0, [4,5].

2. Main Results and Discussion for the Transformed System

Notation 2.1. Throughout this paper, ‖ · ‖, ‖ · ‖∞ and ‖ · ‖Hs denote the norms

of the usual Lebesgue measurable function spaces L2, L∞ and Hilbert space Hs, re-

spectively, on R. We use ‖(f1, f2, ..., fN )‖2X to denote the sum
∑N

i=1 ‖fi‖2X. Unless

otherwise specified, ci, i ∈ Z
+, denotes a generic positive constant, whose value

may vary line by line according to the context.
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Recall that we are considering (1.10), the Cauchy problem of the transformed
and simplified logarithmic Keller-Segel-Fisher/KPP model, which we copy below
for convenience:

{

vt + (u− ε
χv

2)x = ε
Dvxx,

ut + (uv)x = uxx + ru(1 − u),
x ∈ R, t ∈ R

+,

(v, u)(x, 0) = (v0, u0)(x), x ∈ R.

(2.1)

Here the parameter r > 0 is defined in (1.8), and the Cauchy datum (v0, u0) satisfies
(1.12).

2.1. Global Well-Posedness

The first two theorems are concerned with the existence of global-in-time solu-
tion and its long time behavior when the initial datum has potentially large energy.

Theorem 2.2 (Global Existence [15]). Consider the Cauchy problem (2.1), where
r,D > 0, χ 6= 0 and ε ≥ 0 are fixed constants. Suppose that the initial data satisfy

u0 > 0 and (v0, u0 − 1) ∈ H2(R) ×H2(R). Then there exists a unique solution to

(2.1) for all t > 0, such that u(x, t) > 0 for x ∈ R, t > 0, and

‖(v, u− 1)‖2H2(t) +

∫ t

0

(

ε‖vx‖2H2 + ‖ux‖2H2

)

(τ) dτ ≤ c1,

and

∫ t

0

‖vx‖2H1(τ) dτ ≤ c2(1 + ε),

where the constants c1 and c2 are independent of t and ε, and depend on r,D, χ
and the initial data.

Theorem 2.3 (Long Time Behavior [15]). Let the conditions of Theorem 2.2

hold. Then the unique global-in-time solution to (2.1) enjoys the following long

time behavior:

lim
t→∞

(

‖vx‖H1 + ‖u− 1‖H2 + ‖v‖C1(R) + ‖u− 1‖C1(R)

)

(t) = 0,

for any ε ≥ 0.

We see that there is no more smallness assumption on the initial perturbation
in these theorems. For the restriction u0 > 0 we recall the physical interpretation
of u, which is the density function of a cellular population. Theorem 2.2 states
that if u is positive at the initial time, then it stays positive afterward.

2.2. Zero Diffusion Limit

In many applications the chemical is much less diffusive comparing to the cel-
lular population, ε ≪ D, [1]. Therefore, it is interesting to consider the solution
limit as ε → 0 and investigate whether the chemically non-diffusive model (ε = 0)
is a good approximation of the diffusive one ( ε > 0) in the process of vanishing



44 Y. Zeng and K. Zhao

diffusion coefficient. For this we have our third theorem, which addresses the re-
lationship between the two solutions, and characterizes the difference between the
two in terms of ε.

Theorem 2.4 (Zero Diffusion Limit and Convergence Rate [15]). Let the condi-

tions of Theorem 2.2 hold. Let (vε, uε) and (v0, u0) be the solutions to (2.1) with

ε > 0 and ε = 0, respectively, and with the same initial data. Then for any fixed

t > 0 we have

‖(vε − v0, uε − u0)‖2(t) ≤ ec3tc4 ε
2(ε+ 1),

‖(vεx − v0x, u
ε
x − u0x)‖2(t) ≤ ec5tc6 ε(ε

2 + ε+ 1),

where the constants c3, ..., c6 are independent of t and ε.

Theorem 2.4 shows that for fixed t > 0, the zeroth and first frequencies of the
difference between the diffusive and non-diffusive solutions decay to zero, as ε→ 0,
at different rates in terms of ε.

2.3. Time Decay Rates When c+ = c−

If in addition v0 ∈ L1(R), (1.11) implies

lim
x→±∞

c0(x) = c0(0)e
∫

±∞

0
v0(y) dy ≡ c±, c0(0) > 0, (2.2)

where 0 < c± < ∞. Theorems 2.2-2.4 are true whether c+ 6= c− or c+ = c−. To
discuss time decay rates of the solution to the constant equilibrium state (0, 1) we
consider the case c+ = c−. The consideration of the other case involves an even
more complicated approach, and is left to a future work.

Assuming c+ = c−, (1.11) implies

∫ ∞

−∞

v0(x) dx =

∫ ∞

−∞

c′0(x)

c0(x)
dx = 0. (2.3)

Noting from the first equation of (2.1), v is a conserved quantity. That is,

∫ ∞

−∞

v(x, t) dx =

∫ ∞

−∞

v(x, 0) dx = 0. (2.4)

This allows one to define the anti-derivative:

ψ(x, t) =

∫ x

−∞

v(y, t) dy, t ≥ 0. (2.5)

Our next theorem is on the time decay rates in this setting:

Theorem 2.5 (Decay Rates [15]). Let the conditions of Theorem 2.2 hold, and

assume that ψ0 ≡ ψ(·, 0) ∈ L2(R).
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• When ε = 0, the unique global-in-time solution to (2.1) satisfies

(1 + t)‖v‖2(t) + (1 + t)2‖u− 1‖2(t) +
∫ t

0

(1 + τ)‖(vx, u− 1)‖2(τ) dτ ≤ c7,

(1 + t)2‖(vx, ux)‖2(t) +
∫ t

0

(1 + τ)2‖(vxx, ux)‖2(τ) dτ ≤ c8,

(1 + t)3‖(vxx, uxx)‖2(t) +
∫ t

0

(1 + τ)3
(

ε‖vxxx‖2 + ‖uxx‖2H1

)

(τ) dτ ≤ c9,

(2.6)
where the constants c7, c8, c9 are independent of t.

• When ε > 0, let N > 0 be an arbitrarily fixed constant. Then there exists a

constant δ > 0, such that if ‖v′0‖2 + ‖u′0‖2 ≤ N and

‖ψ0‖2 + ‖v0‖2 + ‖u0 − 1‖2 ≤ δ, (2.7)

then the global-in-time solution to (2.1) enjoys the same decay rates as in

(2.6).

The statement of Theorem 2.5 is slightly different from the one in [15] due to
a brief, additional iteration, see [16] for a justification. From the theorem we see
that explicit time decay rates can be obtained for chemically non-diffusive model
(ε = 0) with large data. For chemically diffusive model (ε > 0) we do need the
smallness assumption (2.7) on ψ0 and (v0, u0− 1). Comparing with what has been
discussed in Section 1.2, however, we do not need the smallness on derivatives of
(v0, u0).

From (2.6) we see that the L2 decay rate for v is (t + 1)−1/2 while the one
for u − 1 is (t + 1)−1. These are better than (t + 1)−1/4 and (t + 1)−3/4 given in
Section 1.2. This is possible because Theorem 2.5 is for the case c+ = c−. In fact,
under such a scenario the optimal rates are (t+1)−3/4 and (t+1)−5/4, respectively,
as to be discussed next. Although the rates obtained in Theorem 2.5 via energy
and weighted energy methods are not optimal, they are the starting point of an
iteration scheme that finally leads to the optimal ones. That is, (2.6) is crucial in
obtaining optimal time decay rates.

2.4. Optimal Time Decay Rates When c+ = c−

We now announce a new result on the optimal rates, which is resulted from an
iteration via spectral analysis and Duhamel’s principle, and based on Theorem 2.5:

Theorem 2.6 (Optimal Decay Rates [16]). Let the conditions of Theorem 2.2

hold, and assume that ψ0 ∈ L2(R) ∩ L1(R), u0 − 1 ∈ L1(R).

• When ε = 0, the unique global-in-time solution to (2.1) satisfies

(1 + t)
3

4 ‖v‖(t) + (1 + t)
5

4 (‖vx‖+ ‖u− 1‖)(t) + (1 + t)
7

4 ‖ux‖(t) ≤ c10, (2.8)

where the constant c10 > 0 depends only on the system parameters and initial

data.
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• When ε > 0, let N > 0 be an arbitrarily fixed constant. Then there exists a

constant δ > 0, such that if ‖v′0‖2 + ‖u′0‖2 ≤ N and

‖ψ0‖2 + ‖v0‖2 + ‖u0 − 1‖2 ≤ δ,

then the global-in-time solution to (2.1) enjoys

(1+ t)
3

4 ‖v‖(t)+

1∑

k=0

(1+ t)
5

4
+ k

2 (‖Dk+1
x v‖+‖Dk

x(u−1)‖)(t)+(1+ t)
9

4 ‖uxx‖(t) ≤ c11,

(2.9)

where the constant c11 > 0 depends only on the system parameters and initial

data.

3. Main Result and Discussion for the Original System

Recall the original system of Keller-Segel-Fisher/KPP model (1.9):
{

ct = εcxx − µuc− σc,

ut + χ[u(ln c)x]x = Duxx + au(1− u
K ),

x ∈ R, t ∈ R
+,

(c, u)(x, 0) = (c0, u0)(x), x ∈ R,

(3.1)

where χ, µ 6= 0, D, a,K > 0 and ε, σ ≥ 0 are constants, with χµ > 0. The variable
u here is the same as the one in (2.1) except for the rescaling defined in (1.6). The
variable c, on the other hand, is related to v in (2.1) by the transform (1.3):

v = (ln c)x =
cx
c
, (3.2)

and the rescaling (1.6). Therefore, as long as v0 = c′0/c0 and u0 satisfy the as-
sumptions of Theorems 2.2-2.6, corresponding conclusions from Section 2 apply.
In particular, properties of the cellular population density function u in Section
2 directly apply to u in (3.1). To obtain properties of the chemical concentration
function c, however, additional iteration based on the first equation of (3.1) and
the results in Section 2 is needed. Here we announce a new result in this regard:

Theorem 3.1 (Optimal Decay Rates in Original Variables [16]). Suppose that the

initial data satisfy c0(x) > 0, c0 − c̄ ∈ H3(R) ∩ L1(R), with a constant c̄ > 0,
u0 > 0, and u0 −K ∈ H2(R)∩L1(R). Then there exists a unique solution to (3.1)
for all t ≥ 0. The solution satisfies c(x, t) > 0 and u(x, t) > 0 for all x ∈ R and

t ≥ 0. Writing

c(x, t) = e−(µK+σ)tc̃(x, t), (3.3)

the solution has the following decay property:

• When ε = 0, for t ≥ 0 we have

2
∑

k=0

(1 + t)
1

4
+ k

2 ‖Dk
x(c̃− c̄)‖(t) +

1
∑

k=0

(1 + t)
5

4
+ k

2 ‖Dk
x(u −K)‖(t) ≤ c12, (3.4)

where the constant c12 > 0 depends only on the system parameters and initial

data.
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• When ε > 0, let N > 0 be an arbitrarily fixed constant. Then there exists a

constant δ > 0, such that if ‖c′′0‖2 + ‖u′0‖2 ≤ N and

‖c0 − c̄‖2H1 + ‖u0 −K‖2 ≤ δ,

then the global-in-time solution to (3.1) enjoys

3
∑

k=0

(1 + t)
1

4
+ k

2 ‖Dk
x(c̃− c̄)‖(t) +

2
∑

k=0

(1 + t)
5

4
+ k

2 ‖Dk
x(u −K)‖(t) ≤ c13, (3.5)

where the constant c13 > 0 depends only on the system parameters and initial

data.

The zero mass restriction (2.3) on v0 becomes c+ = c− = c̄ in the original
variable. That is, the initial perturbation (c0 − c̄, u0 −K) in Theorem 3.1 is truly
generic in the sense that its mass can be anything finite, not necessary zero. From
(3.3), when µ < 0 and σ > 0, c exponentially grows in time if −µK > σ, and
exponentially decays if −µK < σ. It is interesting to observe that in the critical
case of −µK = σ, c− c̄ decays in L2 algebraically, with the rate (t+ 1)−1/4. This
is consistent to that of a heat kernel, the solution to the diffusion equation with an
initial point-mass. Algebraic rates like this have not been obtained before for the
Keller-Segel model (1.2).

4. Conclusion

We have surveyed some recent results and announced new ones on the quali-
tative behavior of large data classical solutions to a Keller-Segel type chemotaxis
model (1.1), which has logarithmic sensitivity and logistic growth. The model
can be transformed into a system of hyperbolic-parabolic balance laws (1.7) by
the inverse Hopf-Cole transformation. We considered the Cauchy problem of (1.7)
on R with the initial data being perturbed around the constant equilibrium state
(v±, u±) = (0, 1). We have results on existence of global-in-time solution, time
asymptotic stability of the constant equilibrium state, and vanishing diffusion limit
of the diffusive solution as ε → 0. We also have optimal time decay rates of the
solution to the constant equilibrium state.

Based on the results of the Cauchy problem of (1.7) we are able to go back
to the original physical variables, and consider the Cauchy problem of (1.1). In
particular, we have optimal time decay rates of the chemical concentration function
and the cell density function towards their constant background values.
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