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abstract: A sequence (xk) of points in a subset E of a 2-normed space X

is called strongly lacunary δ-quasi-Cauchy, or Nθ-δ-quasi-Cauchy if (∆xk) is Nθ-
convergent to 0, that is limr→∞

1

hr

∑
k∈Ir

||∆2xk, z|| = 0 for every fixed z ∈ X. A

function defined on a subset E of X is called strongly lacunary δ-ward continuous
if it preserves Nθ-δ-quasi-Cauchy sequences, i.e. (f(xk)) is an Nθ-δ-quasi-Cauchy
sequence whenever (xk) is. In this study we obtain some theorems related to strongly
lacunary δ-quasi-Cauchy sequences.
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1. Introduction

The concept of 2-normed spaces was introduced by S. Gähler in 1960’s ( [1],
[2]). Since then a lot of interesting developments have occured in 2-normed spaces
by many different authors, see for instance ( [3,4,5,6,7,8,9,10,11,12,13]). Let X
be a real vector space of dimension d, where dimX > 1. A 2-norm on X is a
function ||., .|| : X × X → R

+ which satisfies: (i) ‖x, y‖ = 0 ⇔ x and y are
linearly dependent, (ii) ‖x, y‖ = ‖y, x‖, (iii) ‖αx, y‖ = |α| ‖x, y‖ for all α ∈ R,
(iv) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖. Then (X, ||., .||) is called a 2-normed space.
Throughout this paper by X we will mean a 2-normed space with a 2-norm ‖., .‖.
We note here that ‖., .‖ is a nonnegative real numbers and in a 2-normed linear
space (X, ||., .||), the 2-norm induces a topology which makes X a locally convex
Hausdorff topological vector space. To get the topology first define for each x ∈ X
a seminorm pz on X by pz(x) = ||x, z|| for each z ∈ X . The set {pz : z ∈ X} forms
a family of seminorms and the topology formed by this family of seminorms gives
the required topology on X.
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A sequence (αk) of points in R, the set of real numbers, is called statistically
convergent to L, or st-convergent to L, if limn→∞

1
n
|{k ≤ n : |αk − L| ≥ ε}| = 0

for every positive real number ε. This is denoted by st− lim αk = L (see [14]).
A lacunary sequence θ = (kr) is an increasing sequence of positive integers such

that k0 = 0 and hr = kr−kr−1 → ∞ as r → ∞. The intervals determined by θ will
be denoted by Ir = (kr−1, kr], the ratio kr/kr−1 will be abbreviated by qr, q1 = 0 for
convention, and we assume that lim infr qr > 1. In [15], the concept of a strongly
lacunary convergent sequence of real numbers, or an Nθ convergent sequence, was
defined by Freedman, Sember, and Raphael. A sequence (αk) of points in R is called
strongly lacunary convergent to a real number L or Nθ-convergent to an element
L of R if limr→∞

1
hr

∑

k∈Ir
|αk − L| = 0, and it is denoted by Nθ − limαk = L.

Using the idea of Freedman, Sember, and Raphael; Fridy and Orhan introduced
the concept of lacunary statistical convergence of a sequence of real numbers in
[16,17]. A sequence (αk) of points in R is called lacunary statistically convergent,
or Sθ-convergent, to an element L of R if limr→∞

1
hr

|{k ∈ Ir : |αk − L| ≥ ε}| = 0
for every positive real number ε, it is denoted by Sθ − limk→∞ αk = L.

In recent years many kinds of continuities were introduced and investigated
( [18,19,20]). A sequence (αk) of points in R is called strongly lacunary quasi-
Cauchy if Nθ − lim∆αk = 0, where ∆αk = αk+1 − αk for each positive integer k
( [21,22,23,27,24,25,26]). The set of strongly lacunary quasi-Cauchy sequences in R

will be denoted by ∆Nθ. A function defined on a subset A of R is called strongly
lacunary ward continuous or Nθ-ward continuous if it preserves Nθ-quasi-Cauchy
sequences of points in A, i.e. (f(αk)) is Nθ-quasi-Cauchy whenever (αk) is an Nθ-
quasi-Cauchy sequence of points in A. Recently, the concept of the ward continuity
in 2-normed spaces was investigated in [28,29,30].

The purpose of this paper is to introduce the concept of strongly lacunary delta
ward continuity in 2-normed spaces and prove some related theorems.

2. Strongly Lacunary δ-ward continuity

A sequence (xk) of points in X is said to be convergent to an element l ∈ X
if limk→∞ ||xk − l, z|| = 0 for every z ∈ X . This is denoted by limxk = l or
limk→∞ ||xk, z|| = ||l, z||. A sequence (xk) of points in a 2-normed space (X, ||., .||)
is called quasi-Cauchy if limk→∞ ||∆xk, z|| = 0 for every z ∈ X where ∆xk =
xk+1 − xk for every k ∈ N [28].

A sequence (xk) of points in a subset E of a 2-normed space X is called strongly
lacunary quasi-Cauchy, or Nθ-quasi-Cauchy if (∆xk) is Nθ-convergent to 0, that is

lim
r→∞

1

hr

∑

k∈Ir

||∆xk, z|| = 0

for every fixed z ∈ X and it is denoted by Nθ − limk→∞ ||∆xk, z|| = 0. A function
defined on a subset E ofX is called strongly lacunary ward continuous if it preserves
Nθ-quasi-Cauchy sequences, i.e. (f(xk)) is an Nθ-quasi-Cauchy sequence whenever
(xk) is [30].
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Now we introduce strongly lacunary delta quasi-Cauchy sequence in 2-normed
space X in the following.

Definition 2.1. A sequence (xk) of points in a subset E of X is called strongly

lacunary delta quasi Cauchy, or Nθ-δ quasi Cauchy if the sequence (∆xk) is an Nθ

quasi Cauchy sequence, that is

lim
r→∞

1

hr

∑

k∈Ir

||∆2xk, z|| = 0

for each positive integer k and for any fixed z ∈ X.

Throughout this paper, Nθ, ∆Nθ(x) and ∆2Nθ(x) will denote the set of strongly
lacunary convergent sequences, strongly lacunary quasi-Cauchy sequence and
strongly lacunary delta quasi-Cauchy sequence in X respectively.

Consider R2 as a 2-normed space with the 2-norm ‖., .‖ defined by ||a,b|| =
|a1b2 − a2b1| where a = (a1, a2), b = (b1, b2) ∈ R2. The sequence

(xn) =

{

(0,
√
n) n = k2

(0, 0) otherwise

is an Nθ-δ quasi Cauchy sequence in R2 with this 2-norm. This sequence strongly
lacunary converges to the point (0, 0). However this sequence is not convergent at
all. Thus the set of convergent sequence is a proper subset of strongly lacunary delta
quasi-cauchy sequence. So it is obvious that every Nθ quasi-Cauchy sequence is
also Nθ-δ quasi-Cauchy, but the converse is not always true. For example, consider
R2 as a 2-normed space with the previously given 2-norm. The sequence

(xn) =

{

(n, n) n = k2

(0, 0) otherwise

is an Nθ-δ quasi Cauchy sequence in R2 with this 2-norm. But this sequence is not
Nθ quasi-Cauchy sequence. Moreover the subsequence of the Nθ-δ quasi-Cauchy
sequence need not to be a Nθ-δ quasi-Cauchy. Now we introduce the concept of
Nθ-δ ward compactness of a subset of X .

Definition 2.2. If any sequence of points in a subset E has an Nθ-δ quasi-Cauchy

subsequence, then E is called strongly lacunary delta ward compact, or Nθ− δ ward

compact.

Any finite subset of X is δ-ward compact. A union of two δ-ward compact
subsets of X is δ-ward compact and also the intersection of any δ-ward compact
subsets of X is δ-ward compact. Any ward compact subset of X is strongly δ-ward
compact.

In the following we introduce a definition of Nθ-δ ward continuity in X .

Definition 2.3. A real valued function f defined on a subset E of X is called

Nθ-δ ward continuous if it preserves Nθ-δ quasi-Cauchy sequences of points in E,

in other words; (∆f(xk)) is a Nθ-δ quasi-Cauchy sequence whenever (∆xk) is a

Nθ-δ quasi-Cauchy sequence of points in E.
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The set of Nθ-δ ward continuous functions on E will be denoted by ∆2Nθ(E).

Proposition 2.4. The set of Nθ-δ ward continuous functions is a vector space.

Proof. Firstly we prove that the sum of two Nθ-δ ward continuous functions is
Nθ-δ ward continuous,i.e. if f, g ∈ ∆2Nθ(E), then f + g ∈ ∆2Nθ(E). Consider f ,
g be Nθ-δ ward continuous functions on a subset E of X . Let ε > 0 be given and
(xk) be an Nθ-δ quasi Cauchy sequence of points in E. Since f and g are Nθ-δ
ward continuous functions then (f(xk)) and (g(xk)) are also Nθ-δ quasi-Cauchy
sequences. That is

lim
r→∞

1

hr

∑

k∈Ir

||∆2f(xk), z|| = 0 and lim
r→∞

1

hr

∑

k∈Ir

||∆2g(xk), z|| = 0.

We have

∑

k∈Ir

||∆2(f + g)(xk), z|| ≤
∑

k∈Ir

||∆2f(xk), z||+
∑

k∈Ir

||∆2g(xk), z||.

Hence limr→∞
1
hr

∑

k∈Ir
||∆2(f(xk) + g(xk)), z|| = 0.

The product of the Nθ-δ ward continuous function f and any constant real
number α is also the Nθ-δ ward continuous function. That is, let f be the Nθ-δ
ward continuous function on E and for any α ∈ R and z ∈ X

∑

k∈Ir

||∆2αf(xk), z|| =
∑

k∈Ir

|α|||∆2f(xk), z|| = |α|
∑

k∈Ir

||∆2f(xk), z||.

lim
r→∞

1

hr

∑

k∈Ir

||∆2αf(xk), z|| = |α| lim
r→∞

1

hr

∑

k∈Ir

||∆2f(xk), z|| = 0.

So the set of Nθ-δ ward continuous functions is a vector space. �

If a function f is Nθ-δ ward continuous on a subset E of the 2-normed space
X , then it is Nθ ward continuous on E. But the converse of the statement is not
true. Here is the proof of the statement.

Theorem 2.5. If a function f is Nθ-δ ward continuous on a subset E of the

2-normed space X, then it is Nθ ward continuous on E.

Proof. Assume that f is Nθ-δ ward continuous. To prove that f is Nθ ward con-
tinuous, take any Nθ-quasi Cauchy sequence (xn) of points in E. We are going to
show that (f(xn)) is an Nθ-quasi Cauchy sequence. Now define the sequence

(ξn) = (x1, x1, x2, x2, . . . xn, xn, . . .).

Then (ξn) is also Nθ-quasi Cauchy therefore (ξn) is Nθ-δ quasi Cauchy. As f is
Nθ-δ ward continuous (f(ξn)) is Nθ-δ quasi-Cauchy.
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Then

(f(ξn)) = (f(x1), f(x1), f(x2), f(x2), ..., f(xn), f(xn), ...).

Therefore it is obvious that the sequence (f(ξn)) is an Nθ-quasi-Cauchy sequence
on E. That is for every z ∈ X ,

lim
r→∞

1

hr

∑

k∈Ir

||∆f(ξk), z|| = 0.

So the proof of the theorem is completed. �

Theorem 2.6. If a function f is Nθ-δ ward continuous on a subset E of X, then

it is Nθ-sequentially continuous on E.

Proof. Although the proof could be seen by using Theorem 10 in [30], we give a
direct proof for completeness. Assume that f is Nθ-δ ward continuous function
on a subset E of X . To prove that f is Nθ-sequentially continuous, take any
Nθ-convergent sequence (xn) of points in E with Nθ − limn→∞ ||xn, z|| = ||ℓ, z||
or limr→∞

1
hr

∑

k∈Ir
||xn − ℓ, z|| = 0. We are going to show that (f(xn)) is an

Nθ-convergent sequence. Now define the sequence

(ξn) = (x1, ℓ, x2, ℓ, . . . xn, ℓ, . . .).

Then (ξn) is also Nθ-convergent therefore (ξn) is Nθ-δ convergent. As f is Nθ-δ
ward continuous (f(ξn)) is Nθ-δ convergent.

Then
(f(ξn)) = (f(x1), f(ℓ), f(x2), f(ℓ), ..., f(xn), f(ℓ), ...).

Therefore the sequence (f(ξn)) isNθ-convergent sequence. That is, for every z ∈ X ,

lim
r→∞

1

hr

∑

k∈Ir

||f(ξk)− f(ℓ), z|| = 0.

So the proof of the theorem is completed. �

Theorem 2.7. The function f is uniformly continuous on a subset E of X. If

(xn) is any quasi-Cauchy sequence of points in E, then the sequence (f(xn)) is a

Nθ-δ quasi-Cauchy.

Proof. Let (xn) is any quasi-Cauchy sequence of points in E. If a function f is
uniformly continuous on a subset E of X , for every x, y, z ∈ X and ε > 0 there
exists a δ > 0 such that ||f(x) − f(y), z|| < ε whenever ||x− y, z|| < δ. For this δ
there exists an n0 ∈ N such that ||∆xk, z|| = ||xk+1 −xk, z|| < δ for all k ≥ n0 and
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for z ∈ X . For k ≥ n0, uniformly continuity implies that ||f(xk+1)− f(xk), z|| < ε

2
for z ∈ X . Thus

lim
r→∞

1

hr

∑

k∈Ir

||∆2f(xk), z|| = lim
r→∞

1

hr

∑

k∈Ir

||f(xk+2)− 2f(xk+1) + f(xk), z||

≤ lim
r→∞

1

hr

∑

k∈Ir

||f(xk+2)− f(xk+1), z||+ lim
r→∞

1

hr

∑

k∈Ir

||f(xk+1)− f(xk), z|| = 0

Therefore (f(xn)) is a Nθ-δ quasi-Cauchy sequence. This completes the proof of
this theorem. �

Theorem 2.8. If (fn) is a sequence of Nθ-δ ward continuous functions on a subset

E of X and (fn) is uniformly convergent to a function f , then f is also Nθ-δ ward

continuous on E.

Proof. Let (fn) be uniformly convergent to a function f and let ε be any positive
real number. There exists a number n0 ∈ N such that for every n ≥ n0, ||fn(x) −
f(x), z|| ≤ ε

4 for all x, z ∈ E. Take any Nθ-δ-quasi-Cauchy sequence of points in
E. If (fn) is a sequence of Nθ-δ ward continuous functions on a subset E then
limr→∞

1
hr

∑

k∈Ir
||∆2fn(xk), z|| = 0 for any z ∈ E.

Our aim is to show that f is also Nθ-δ ward continuous function on E, i.e.
∀z ∈ E

lim
r→∞

1

hr

∑

k∈Ir

||∆2f(xk), z|| = 0.

By using the property ||x+ y, z|| ≤ ||x, z||+ ||y, z||, we have

lim
r→∞

1

hr

∑

k∈Ir

||∆2f(xk), z|| = lim
r→∞

1

hr

∑

k∈Ir

||f(xk+2)− 2f(xk+1) + f(xk), z||

= lim
r→∞

1

hr

∑

k∈Ir

||f(xk+2)− fn0
(xk+2) + fn0

(xk+2)− 2fn0
(xk+1)

+ fn0
(xk) + 2fn0

(xk+1)− fn0
(xk)− 2f(xk+1) + f(xk), z||

≤ lim
r→∞

1

hr

∑

k∈Ir

||f(xk+2)− fn0
(xk+2), z||

+ lim
r→∞

1

hr

∑

k∈Ir

||fn0
(xk+2)− 2fn0

(xk+1) + fn0
(xk), z||

+ lim
r→∞

1

hr

∑

k∈Ir

||2(fn0
(xk+1)− f(xk+1)), z||

+ lim
r→∞

1

hr

∑

k∈Ir

||fn0
(xk)− f(xk), z|| = 0 + 0 + 0 + 0 = 0

This result completes the proof of the theorem. So the uniform convergence pre-
serves the property of the Nθ-δ ward continuity for the functions in X . �
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3. Conclusion

In this study, strongly lacunary delta quasi-Cauchyness in 2-normed space is
introduced and investigated. We have proved that any strongly delta ward con-
tinuous function is strongly ward continuous and strongly sequentially continuous
and uniformly limit of strongly delta ward continuous function is strongly delta
ward continuous.
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