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Operations
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abstract: In this paper we define the notion of lifting of a crossed module via the
morphism in groups with operations and give some properties of this type of liftings.
Further we prove that the lifting crossed modules of a certain crossed module are
categorically equivalent to the internal groupoid actions on groups with operations,
where the internal groupoid corresponds to the crossed module.
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1. Introduction

Groupoids are mathematical structures which are known to be useful in many
areas of science [5,16]. A groupoid is a small category in which each arrow has an
inverse and a group-groupoid is an internal groupoid in the category of groups. For
a group-groupoid G the covers of G in the category of group-groupoids are categor-
ically equivalent to the group-groupoid actions of G on groups [7, Proposition 3.1].
A crossed module defined by Whitehead in [32,33] can be viewed as a 2-dimensional
group [8] and has been widely used in homotopy theory [4], the theory of identities
among relations for group presentations [9], algebraic K-theory [19], and homo-
logical algebra [18,20]. See [4] for a discussion of the relation of crossed modules
to crossed squares and so to homotopy 3-types. We refer the readers to [6] for the
structure of the actor 2-crossed module related to the automorphisms of a crossed
module of groupoids.

In [10, Theorem 1] Brown and Spencer proved that group-groupoids are cate-
gorically equivalent to crossed modules. Then in [29, Section 3], Porter proved that
a similar result holds for a certain algebraic category C introduced by Orzech [27]
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and called category of groups with operations including categories of groups, rings,
associative algebras, associative commutative algebras, Lie algebras, Leibniz alge-
bras, alternative algebras and others. In [14,15], Datuashvili continued the study
of internal category in C by applying Porter’s result. Moreover she introduced the
cohomology theory of internal categories, which are equivalent to crossed modules
in C [13,12]. Also, it is proved in [1] that for an internal groupoid G and the
associated crossed module α : A → B in C, the coverings of G and the covering
crossed modules of α : A → B are categorically equivalent.

On the other hand in [25], Mucuk and Şahan have recently defined the notion
of lifting for crossed modules. If (A,B, α) is a crossed module and θ : X → B is a
morphism of groups, then a crossed module (A,X,ϕ) in which the action of X on
A is defined via θ such that θϕ = α is called a lifting of α over θ. Also they proved
in [25] that the liftings of a certain crossed module are categorically equivalent to
the actions of associated group-groupoid on groups. See also [30] for further works
on lifting crossed modules.

The object of this paper is to extend the results given in [25] to a more general
certain category C. First we give the notion of lifting crossed module of a crossed
module in C. Then we observe some properties of such lifting crossed modules.
Finally we prove that for an internal groupoid G in C, internal groupoid actions of
G on groups with operations and liftings of the crossed module associated with G
are categorically equivalent.

We acknowledge that an extended abstract of this paper as AIP Conference
Proceedings of International Conference of Mathematical Sciences at Maltepe Uni-
versity in İstanbul, 2018 is in process.

2. Preliminaries

As it is defined in [5,21] a groupoid G has a set G of morphisms, which we call
just elements of G, a set Ob(G) of objects together with maps d0, d1 : G → Ob(G)
and ǫ : Ob(G) → G such that d0ǫ = d1ǫ = 1Ob(G). The maps d0, d1 are called
initial and final point maps respectively and the map ǫ is called object inclusion. If
g, h ∈ G and d1(g) = d0(h), then the composition h◦ g exists such that d0(h◦ g) =
d0(g) and d1(h ◦ g) = d1(h). So there exists a partial composition defined by
Gd0

×d1
G → G, (h, g) 7→ h ◦ g, where Gd0

×d1
G is the pullback of d1 and d0.

Further, this partial composition is associative, for x ∈ G0 the element ǫ(x) acts
as the identity and is denoted by 1x, and each element g has an inverse g−1 such
that d0(g

−1) = d1(g), d1(g
−1) = d0(g), g

−1 ◦ g = ǫd0(g) and g ◦ g−1 = ǫd1(g). The
map G → G, g 7→ g−1 is called the inversion.

In a groupoid G for x, y ∈ Ob(G) we write G(x, y) for the set of all morphisms
with initial point x and final point y. According to [5] G is transitive (simply
transitive, 1-transitive and totally intransitive) if for all x, y ∈ Ob(G), the set
G(x, y) is not empty (has not more than one element, has exactly one element and
is empty for x 6= y). For x ∈ Ob(G) the star of x is defined as {g ∈ G | d0(g) = x}
and denoted as StGx; and the object group at x is defined as G(x, x) and denoted
as G(x).
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Let G and H be groupoids. A morphism from H to G is a pair of maps
f : H → G and Ob(f) : Ob(H) → Ob(G) such that d0f = Ob(f)d0, d1f = Ob(f)d1,
fǫ = ǫf0 and f(h◦g) = f(h)◦f(g) for all (h, g) ∈ Hd0

×d1
H . For such a morphism

we simply write f : H → G.
Let p : G̃ → G be a morphism of groupoids. Then p is called a covering

morphism and G̃ a covering groupoid of G if for each x̃ ∈ Ob(G̃) the restriction

St
G̃
x̃ → StGp(x̃) is bijective. A covering morphism p : G̃ → G is called transitive

if both G̃ and G are transitive. A transitive covering morphism p : G̃ → G is called
universal if G̃ covers every cover of G, i.e., if for every covering morphism q : H̃ → G
there is a unique morphism of groupoids p̃ : G̃ → H̃ such that qp̃ = p (and hence

p̃ is also a covering morphism), this is equivalent to that for x̃, ỹ ∈ Ob(G̃) the set

G̃(x̃, ỹ) has not more than one element.

A morphism p : (G̃, x̃) → (G, x) of pointed groupoids is called a covering mor-

phism if the morphism p : G̃ → G is a covering morphism. Let p : (G̃, x̃) → (G, x)
be a covering morphism of pointed groupoids and f : (H, z) → (G, x) a mor-
phism of pointed groupoids. We say f lifts to p if there exists a unique morphism
f̃ : (H, z) → (G̃, x̃) such that f = pf̃ . For any groupoid morphism p : G̃ → G and

an object x̃ of G̃ we call the subgroup p(G̃(x̃)) of G(px̃) the characteristic group
of p at x̃. The characteristic group determines a necessary and sufficient condition
for a morphism f : (H, z) → (G, x) lifts to a covering morphism p : (G̃, x̃) → (G, x)
[5, 10.3.3].

The action of a groupoid on a set is defined in [5, pp.374] as follows.

Definition 2.1. Let G be a groupoid. An action of G on a set consists of a set
X , a function θ : X → Ob(G) and a function Gd0

×θ X → X, (g, x) 7→ g • x defined
on the pullback Gd0

×θ X of θ and d0 such that

(i) θ(g • x) = d1(g) for (g, x) ∈ Gd0
×θ X ;

(ii) (h ◦ g) • x = h • (g • x) for (h, g) ∈ Gd0
×d1

G and (g, x) ∈ Gd0
×θ X ;

(iii) ǫ(θ(x)) • x = x for x ∈ X .

�

According to [5, pp.374] for given such an action, semidirect product groupoid
G⋉X is defined to be the groupoid with object set X and elements of (G⋉X)(x, y)
the pairs (g, x) such that g ∈ G(θ(x), θ(y)) and g•x = y. The groupoid composition
is defined to be

(h, y) ◦ (g, x) = (h ◦ g, x).

Mucuk and Şahan in [25] recently defined the notion of lifting for crossed modules
in the category of groups and proved that the liftings of a certain crossed module
are categorically equivalent to the actions of associated group-groupoid on groups.
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3. Crossed modules in groups with operations

The idea of the definition of categories of groups with operations comes from
Higgins [17] and Orzech [27,28]; and the definition below is from Porter [29] and
Datuashvili [11, p.21], which is adapted from Orzech [27].

Definition 3.1. The notion of a group with a set of operations consists of a pair
(Ω, E) where E is a set of identities including the group laws and Ω of operations
which includes the group operations, and the following conditions hold: If Ωi is the
set of i-ary operations in Ω, then

1. Ω = Ω0 ∪ Ω1 ∪ Ω2;

2. The group operations written additively 0,− and + are the elements of Ω0,
Ω1 and Ω2 respectively. Let Ω′

2 = Ω2\{+}, Ω′
1 = Ω1\{−} and assume that

if ⋆ ∈ Ω′
2, then ⋆◦ defined by a ⋆◦ b = b ⋆ a is also in Ω′

2. Also assume that
Ω0 = {0};

3. For each ⋆ ∈ Ω′
2, E includes the identity a ⋆ (b + c) = a ⋆ b+ a ⋆ c;

4. For each ω ∈ Ω′
1 and ⋆ ∈ Ω′

2, E includes the identities ω(a+ b) = ω(a) +ω(b)
and ω(a) ⋆ b = ω(a ⋆ b).

Then the category C satisfying the conditions (1)-(4) is called a category of groups
with operations. �

From now on C will be a category of groups with operations.
A morphism between any two objects of C is a group homomorphism, which

preserves the operations of Ω′
1 and Ω′

2.

Remark 3.2. The set Ω0 contains exactly one element, the group identity; hence
for instance the category of associative rings with unit is not a category of groups
with operations.

Example 3.3. The categories of groups, rings generally without identity, R-
modules, associative, associative commutative, Lie, Leibniz, alternative algebras
are examples of categories of groups with operations. �

If A and B are objects of C an extension of B by A is an exact sequence

0 −→ A
ı

−→ E
p

−→ B −→ 0

in which p is surjective and ı is the kernel of p. It is split if there is a morphism
s : B → E such that ps = ıdB. A split extension of B by A is called a B-structure
on A. Given such a B-structure on A we get actions of B on A corresponding to
the operations in Ω2. For any b ∈ B, a ∈ A and ⋆ ∈ Ω′

2 we have the actions called
derived actions by Orzech [27, p.293]

b · a = s(b) + a− s(b)

b ⋆ a = s(b) ⋆ a.
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Theorem 3.4. [27, Theorem 2.4] A set of actions (one for each operation in Ω2)
is a set of derived actions if and only if the semidirect product A⋊B with underlying
set A×B and operations

(a, b) + (a′, b′) = (a+ b · a+ a′, b+ b′)

(a, b) ∗ (a′, b′) = (a ∗ a′ + a ∗ b′ + b ∗ a′, b ∗ b′)

is an object in C.

Definition 3.5. An internal groupoid G in C is a groupoid in which the initial
and final point maps s, t : G ⇒ Ob(G), the object inclusion map ǫ : Ob(G) → G
and the partial composition ◦ : Gd0

×d1
G → G, (h, g) 7→ h ◦ g are the morphisms

in the category C.

Note that since ǫ is a morphism in C, ǫ(0) = 0 and that the operation ◦ being
a morphism in C implies that for all g, h, k, l ∈ G and ⋆ ∈ Ω2,

(k ⋆ h) ◦ (l ⋆ g) = (k ◦ l) ⋆ (h ◦ g) (3.1)

whenever one side makes sense. This is called the interchange law [29].
For the category of internal groupoids in C we use the same notation Cat(C)

as in [29].
In particular if C is the category of groups, then an internal groupoid G in C

becomes a groupoid object in the category of groups, which is quite often called
2-group [3], group-groupoid or G-groupoid [10]. Recently the notion of monodromy
for topological group-groupoids was developed in [24] and the normality and quo-
tient in group-groupoids were developed in [26]. More recently however, Mucuk
and Demir [23] and Temel [31] characterized, independently, normal and quotient
objects in the category of crossed modules over groupoids via double groupoids
and via 2-groupoids, respectively which extend the results of the paper [26]. In the
case where C is the category of rings, an internal groupoid is a ring object in the
category of groupoids [22] (see also [2] for topological R-module case).

Definition 3.6. Let p : G̃ → G be a morphism of internal groupoids in C. Then p
is called a covering morphism of internal groupoids if it is a covering morphism of
underlying groupoids.

Definition 3.7. Let G be an internal groupoid in C and X an object of C. If the
underlying groupoid of G acts on the underlying set of X in the sense of Definition
2.1 such that the maps θ : X → Ob(G) and Gd0

×θ X → X, (g, x) 7→ g • x are
morphisms in C, then we say that the internal groupoid G acts on the group with
operations X via θ. �

We write (X, θ) for an action. Here note that Gd0
×θ X → X, (g, x) 7→ g • x is

a morphism in C if and only if

(g ⋆ h) • (x ⋆ y) = (g • x) ⋆ (h • y) (3.2)
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for x, y ∈ X ; g, h ∈ G and ⋆ ∈ Ω2 whenever one side is defined.
A morphism f : (X, θ) → (X ′, θ′) of such actions is a morphism f : X → X ′ of

groups with operations and underlying operations of G. Then we have the category
ActCat(C)(G) of actions of G in C.

Example 3.8. Let G and G̃ be internal groupoids in C and let p : G̃ → G be a
covering morphism of internal groupoids. Then the internal groupoid G acts on
the group with operations X = Ob(G̃) via Ob(p) : X → Ob(G) assigning to x ∈ X

and g ∈ StGp(x) the target of the unique lifting g̃ in G̃ of g with source x. Clearly
the underlying groupoid of G acts on the underlying set and by evaluating the
uniqueness of the lifting, the equation (3.2) is satisfied for x, y ∈ X and g, h ∈ G
whenever one side is defined. �

It is given in [24] that the categories of actions and coverings of an internal
groupoid in a category of groups with operations are equivalent.

The conditions of a crossed module in groups with operations are formulated
in [29, Proposition 2] as follows.

Definition 3.9. A crossed module α : A → B in C is a morphism in C, where B
acts on A (i.e. we have a derived action in C) with the conditions for any b ∈ B,
a, a′ ∈ A, and ⋆ ∈ Ω′

2:

CM1 α(b · a) = b+ α(a)− b;

CM2 α(a) · a′ = a+ a′ − a;

CM3 α(a) ⋆ a′ = a ⋆ a′;

CM4 α(b ⋆ a) = b ⋆ α(a) and α(a ⋆ b) = α(a) ⋆ b.

�

A morphism from α : A → B to α′ : A′ → B′ is a pair f1 : A → A′ and f2 : B →
B′ of morphisms in C such that

1. f2α(a) = α′f1(a),

2. f1(b · a) = f2(b) · f1(a),

3. f1(b ⋆ a) = f2(b) ⋆ f1(a)

for any b ∈ B, a ∈ A and ⋆ ∈ Ω′
2. So we have a category XMod(C) of crossed

modules in C.
A morphism (f1, f2) : (Ã, B̃, α̃) → (A,B, α) of crossed modules in C such that

f1 : Ã → A an isomorphism is called a covering morphism. Then we have the cate-
gory of coverings of the crossed module (A,B, α) in C denoted by
CovXMod(C)/(A,B, α).

The following theorem was proved in [29, Theorem1].
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Theorem 3.10. The category XMod(C) of crossed modules and the category Cat(C)
of internal groupoids in C are equivalent.

Proposition 3.11. Let G be an internal groupoid in C and (A,B, α) the crossed
module corresponding to G. If G is transitive (resp. simply transitive, 1-transitive
and totally intransitive), then α is surjective (resp. injective, bijective; and a zero
morphism such that A is singular).

Proof. The proof follows from the Theorem 3.10. �

Definition 3.12. Let (A,B, α) be a crossed module in C. Then (A,B, α) is called
transitive (resp. simply transitive, 1-transitive and totally intransitive if α is sur-
jective (resp. injective, bijective; and zero morphism such that A is singular).

Example 3.13. If X is a topological group with operations whose underlying
topology is path-connected (resp. totally disconnected), then the crossed module
(StπX0, X, d1) is transitive (resp. totally intransitive).

4. Liftings of crossed modules in groups with operations

In this section we give the notion of lifting crossed module of a crossed module
associated with an internal groupoid in C and clarify the properties of lifting crossed
modules.

Let G be an internal groupoid in C acting on a group with operations X by an
action Gd0

×θ X → X, (g, x) 7→ g • x, via a morphism of groups with operations
θ : X → Ob(G) and let (A,B, α) be the crossed module corresponding to G in C.
Since B = Ob(G) then we have a morphism θ : X → B of groups with operations
and derived actions of X on A = StG0 defined by

x · a = 1θ(x) + a− 1θ(x)

and
x ⋆ a = 1θ(x) ⋆ a

for each ⋆ ∈ Ω′
2.

By the internal groupoid action of G on X we have a morphism of groups with
operations

ϕ : A → X, a 7→ ϕ(a) = a • 0X

such that θϕ = α, where 0X is the identity element of the group with operations
X .

Now we prove the following theorems.

Theorem 4.1. By the action of X on A defined above, (A,X,ϕ) becomes a crossed
module in C.

Proof. By [25, Theorem 4.1.] the conditions [CM1] and [CM2] are satisfied. Then
we need to prove that the conditions [CM3] and [CM4] are also satisfied.
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CM3. For a, a′ ∈ A we have the following equality

ϕ(a) ⋆ a′ = (a • 0X) ⋆ a′

= 1θ(a•0X) ⋆ a
′

= 1d1(a) ⋆ a
′

= a ⋆ a′.

CM4. For all a ∈ A and x ∈ X , we have

ϕ(x ⋆ a) = ϕ(1θ(x) ⋆ a)

= (1θ(x) ⋆ a) • 0X

= (1θ(x) ⋆ a) • (0X ⋆ 0X)

= (1θ(x) • 0X) ⋆ (a • 0X)

= x ⋆ ϕ(a).

�

Theorem 4.2. Let (A,B, α) be a crossed module in C and θ : X → B a morphism
in C. Then any morphism ϕ : A → X such that θϕ = α is a crossed module in C

with the action defined via θ if and only if the map ϕ : A⋊X → X defined by

ϕ(a, x) = ϕ(a) + x

is a morphism in C.

Proof. Assume that ϕ : A → X is a crossed module in C. Since by [25, Theorem
4.2.] we have the following equality,

ϕ((a, x) + (a′, x′)) = ϕ(a, x) + ϕ(a′, x′)

for a, a′ ∈ A and x, x′ ∈ X , we only need to prove that ϕ : A ⋊X → X preserves
the operations of Ω′

2 and Ω′
1.

For a, a′ ∈ A, x, x′ ∈ X and ⋆ ∈ Ω′
2,

ϕ((a, x) ⋆ (a′, x′)) = ϕ(a ⋆ x′ + x ⋆ a′ + a ⋆ a′, x ⋆ x′)

= ϕ(a ⋆ x′ + x ⋆ a′ + a ⋆ a′) + x ⋆ x′

= ϕ(a ⋆ x′) + ϕ(x ⋆ a′) + ϕ(a ⋆ a′) + x+ x′

= (ϕ(a) ⋆ x′) + (ϕ(a′) ⋆ x) + (ϕ(a) ⋆ ϕ(a′)) + x ⋆ x′

= (ϕ(a) + x) ⋆ (ϕ(a′) + x′) + (ϕ(a) + x) ⋆ (ϕ(a′) + x′)

= (ϕ(a) + x) ⋆ (ϕ(a′) + x′)

= ϕ((a, x)) ⋆ ϕ((a′, x′)).
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On the other hand for a ∈ A, x ∈ X and w ∈ Ω′
1, we have that

ϕ(ω(a, x)) = ϕ(ω(a), w(x))

= ϕ(ω(a)) + ω(x)

= ω(ϕ(a)) + ω(x)

= ω(ϕ(a) + x)

= ω(ϕ(a, x)).

Conversely, suppose that the map ϕ : A → X defined by ϕ(a, x) = ϕ(a) + x is
a morphism of groups with operations. Then we have to prove that ϕ satisfies the
conditions of Definition 3.9.

We know from [25] that ϕ satisfies the conditions [CM1] and [CM2]. It is
sufficient to show that conditions [CM3] and [CM4] are satisfied.

CM3. For a, a′ ∈ A,

ϕ(x ⋆ a) = ϕ(x ⋆ a, x) = ϕ((0, x) ⋆ (a, 0))

= ϕ(0, x) ⋆ ϕ(a, 0)

= (ϕ(0) + x) ⋆ (ϕ(a) + 0)

= x ⋆ ϕ(a)

CM4. For a, a′ ∈ A, ϕ(a) ⋆ a′ = a ⋆ a′.

�

Now we define the notion of lifting of a crossed module as follows.

Definition 4.3. Let (A,B, α) be a crossed module and θ : X → B a morphism in
C. Then a crossed module (A,X,ϕ) in which the action of X on A is defined via
θ, is a called a lifting of α over θ and denoted by (ϕ,X, θ) whenever θϕ = α.

Remark 4.4. If (ϕ,X, θ) is a lifting of (A,B, α), then Kerϕ ⊆ Kerα and (1A, θ) is
morphism of crossed modules in C.

Therefore, if (A,B, α) is a simply transitive crossed module in C, then Kerα is
trivial so is Kerϕ. Hence the crossed module (A,X,ϕ) is also simply transitive.

Lemma 4.5. Let (A,B, α) be a crossed module in C and ϕ a lifting of α over
θ : X → B. If there are isomorphism f : B → B′ and g : X ′ → X in C, then ϕ′ is
a lifting of α′ over θ′ : X ′ → B′ where ϕ′ = g−1ϕ, α′ = fα and θ′ = fθg.

Proof. We need to prove that θ′ϕ′ = α′. We know that (A,B, α) be a crossed
module in C and ϕ a lifting of α over θ : X → B, so the equation θϕ = α exists.
Since α′ = fα and ϕ′ = g−1ϕ are crossed modules and the morphisms f, g are
isomorphism in C, then we have
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θ′ϕ′ = (fθg)(g−1ϕ)

= fθϕ

= fα

= α′.

�

Proposition 4.6. Let (A,B, α) be a crossed module in C and (ϕ,X, θ) a lifting of
(A,B, α). If (ϕ′, X ′, θ′) is a lifting of (A,X,ϕ), then (ϕ′, X ′, θθ′) is also a lifting
of (A,B, α).

Proof. The proof is straightforward. �

Let (ϕ,X, θ) and (ϕ′, X ′, θ′) be two liftings of (A,B, α). A morphism f from
(ϕ,X, θ) to (ϕ′, X ′, θ′) is a morphism of groups with operations f : X → X ′ such
that fϕ = ϕ′ and θ′f = θ. Hence lifting crossed modules of (A,B, α) and mor-
phisms between them form a category which we denote by LXMod(C)/(A,B, α).
By the Proposition 4.6 it follows that if ϕ is a lifting of (A,B, α) over θ : X → B,
then LXMod(C)/(A,X, ϕ) is a full subcategory of LXMod(C)/(A,B, α).

Let (A,B, α) be a transitive crossed module in C. Then a lifting (ϕ,X, θ) of
(A,B, α) is called an n-lifting when |Kerθ| = n.

Corollary 4.7. If (ϕ,X, θ) is a 1-lifting of (A,B, α), then θ is an isomorphism.
Hence (A,X,ϕ) ∼= (A,B, α).

Proof. If (ϕ,X, θ) is a 1-lifting of (A,B, α), then θ becomes surjective and |Kerθ| =
1, i.e., θ is injective. Hence θ is an isomorphism. �

Theorem 4.8. Let (f, g) : (Ã, B̃, α̃) → (A,B, α) be a morphism of crossed modules
in C where (A,B, α) is transitive and let (ϕ,X, θ) be a lifting of (A,B, α). Then

there is a unique morphism of crossed modules (f, g̃) : (Ã, B̃, α̃) → (A,X,ϕ) such
that θg̃ = g if and only if f(Kerα̃) ⊆ Kerϕ.

Proof. The proof follows from [25, Theorem 4.12]. �

Corollary 4.9. Let (A,B, α) be a crossed module in C. Assume that (ϕ,X, θ) and

(ϕ̃, X̃, θ̃) are two liftings of (A,B, α) such that (A, X̃, ϕ̃) is transitive. Then ϕ̃ is a
lifting of ϕ if and only if Kerϕ̃ ⊆ Kerϕ.

Corollary 4.10. Let (A,B, α) be a crossed module in C. Assume that (ϕ,X, θ)

and (ϕ̃, X̃, θ̃) are two liftings of (A,B, α) such that (A,X,ϕ) and (A, X̃, ϕ̃) are both

transitive. Then (ϕ,X, θ) ∼= (ϕ̃, X̃, θ̃) if and only if Kerϕ = Kerϕ̃.
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Theorem 4.11. Let (A,B, α) be a crossed module, X an object of C and let
θ : X → B be an injective morphism in C. Then any morphism ϕ : A → X such
that θϕ = α becomes a lifting of α over θ.

Proof. According to Theorem 4.2 it is sufficient to show that ϕ(a, x) = ϕ(a) + x is
a morphism in C. Since in [25, Theorem 4.15], it is proved that the operation + is
preserved under the morphism ϕ, then we only need to show that the operations
⋆ ∈ Ω′

2 is also preserved under ϕ, i.e., ϕ(a ⋆ x) = ϕ(a) ⋆ x and ϕ(x ⋆ a) = x ⋆ ϕ(a)
for all a ∈ A and x ∈ X .

θ(ϕ(x ⋆ a)) = θ(ϕ(θ(x) ⋆ a))

= α(θ(x) ⋆ a) (since θϕ = α)

= θ(x) ⋆ α(a) (by CM4)

and on the other hand

θ(x ⋆ ϕ(a)) = θ(x) ⋆ θ(ϕ(a))

= θ(x) ⋆ α(a). (since θϕ = α)

Since θ is injective and θ(ϕ(x ⋆ a)) = θ(x ⋆ ϕ(a)), we have ϕ(x ⋆ a) = x ⋆ ϕ(a) and
similarly ϕ(a ⋆ x) = ϕ(a) ⋆ x for all a ∈ A and x ∈ X . �

5. Equivalences of the categories

In this section for a certain internal groupoid G in C, the category of inter-
nal groupoid actions of G and the lifting crossed modules of the crossed module
corresponding to G are equivalent.

Theorem 5.1. Let G be an internal groupoid in C and (A,B, α) the crossed module
corresponding to G. Then the category ActCat(C)(G) of internal groupoid actions
of G in C and the category LXMod(C)/(A,B, α) of lifting crossed modules of
(A,B, α) are equivalent.

Proof. A functor δ : ActCat(C)(G) → LXMod(C)/(A,B, α) is defined as follows:
For each object (X, θ) of ActCat(C)(G), δ(X, θ) defines a lifting of (ϕ,X, θ) of
(A,B, α) where

ϕ : A → X, a 7→ a • 0X

such that θϕ = α, where 0X ∈ Ω0. Then by way of the action of X on A, (A,X,ϕ)
becomes a crossed module in C.

Conversely define a functor η : LXMod(C)/(A,B, α) → ActCat(C)(G) assigning
each lifting (ϕ,X, θ) of the crossed module (A,B, α) to an internal groupoid action
(X, θ) of G on the group with operations X via an action map defined by

Gd0
×θ X → X, (g, x) 7→ g • x = ϕ(g − 1d0(g)) + x.

The required equivalences δη ≃ 1 and ηδ ≃ 1 follows from the details of the
proof of [25, Theorem 5.1]. �



Liftings of Crossed Modules in the Category of Groups with Operations192

Acknowledgments

We would like to thank the referees for their contributions.

References
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Tunçar Şahan,

Department of Mathematics,

University of Aksaray,

Aksaray, Turkey.

E-mail address: tuncarsahan@gmail.com


	Introduction
	Preliminaries
	Crossed modules in groups with operations
	Liftings of crossed modules in groups with operations
	Equivalences of the categories

