
Bol. Soc. Paran. Mat. (3s.) v. 38 7 (2020): 149–167.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v38i7.44463

Tripartite Graphs with Energy Aggregation

Nawras A. Alawn and Nadia M. G. Al-Saidi and Rashed T. Rasheed

abstract: The aggregate of the absolute values of the graph eigenvalues is called
the energy of a graph. It is used to approximate the total π-electron energy of
molecules. Thus, finding a new mechanism to calculate the total energy of some
graphs is a challenge; it has received a lot of research attention. We study the
eigenvalues of a complete tripartite graph Ti,i,n−2i , for n ≥ 4, based on the adja-
cency, Laplacian, and signless Laplacian matrices. In terms of the degree sequence,
the extreme eigenvalues of the irregular graphs energy are found to characterize the
component with the maximum energy. The chemical HMO approach is particularly
successful in the case of the total π-electron energy. We showed that some chemical
components are equienergetic with the tripartite graph. This discovering helps easily
to derive the HMO for most of these components despite their different structures.
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1. Introduction

Spectral graph theory is a branch of graph-theoretical emerged in the 50s, which
study on the relationship between the structural and spectral properties of graphs,
another major research was sourced in quantum chemistry. The relation between
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these subjects of work remained undiscovered until much later. The monograph
spectra of the graphs by Cvetkovic et al. [1], summarized nearly all research in this
area. This summary was updated by a survey of the recent theories of the spectral
results of the graphs.
Spectrum has several applications in chemical, physics, medicine, computer sci-
ence, information theory, geographic studies, and social sciences. Eigenvalues in-
teract with a number of chemical topics, such as the total energy of π-electron in a
molecule, which is the summation of eigenvalues. The membrane vibration prob-
lem can be addressed by approximating the solution of the corresponding partial
differential equation that considers the eigenvalues of the graph, a discrete model
of the membrane. Eigenvalues are widely used in various areas such as physics,
particularly in statistical physics and thermodynamic [1]; furthermore, it has great
importance in image processing especially in face recognition [2,3], as well as image
clustering [4,5] and image segmentation [6]. Eigenvalues have also been applied in
medical sciences, including the diagnosis of cancers by assigning a potential link
between a pair of cells (cells or clusters) [7], as well as, the functional integration
of environmental networks through the deployment path [8].
Let G be finite undirected simple connected graph, then G(V,E) consists of two
finite sets, the set of vertices V and the set of edges E, which contains the un-
ordered pairs of vertices (vi, vj) [9]. The order G is the number of vertices n, such
that |V (G)| = n, and the size of a graph G is the number m of edges such that,
|E(G)| = m.
The degree of a vertex d(vi) or di is the number of edges incident to the vertex vi.
The maximum degree of a vertex in G is denoted by △(G) = △ and defined as
△(G) = max{d(vi)|vi ∈ V (G)}. Similarly, the minimum degree of a vertex in G,
denoted by η(G) = η, is defined by η(G) = min{d(vi)|vi ∈ V (G)}.
The adjacency matrix A(G) is defined by 0, 1, whose (i, j) entry is 1 if (vi, vj) ∈ E,
and 0 otherwise [9]. The set of A(G) eigenvalues are denoted by λ1 ≥ λ2 ≥ · · · ≥
λn. Let D(G)= {d1, d2, d3, · · · , dn} be the matrix which contains the degree of
each vertex. It is called the degree matrix of G. The Laplacian matrix of G is
L(G) = D(G) − A(G), where L(G) is a real symmetric matrix and its eigenval-
ues are; µ1 ≥ µ2 ≥ · · · ≥ µn. The signless Laplacian matrix of G is defined by
S (G) = D(G) +A(G), where its eigenvalues are δ1 ≥ δ2 ≥ · · · ≥ δn.
The complete tripartite graph Ti,i,n−2i [10] consists of three sets of vertices sized
i, i and n − 2i, where n is the number of all vertices. Their edges are defined, if
and only if, they lie in different sets. Figure 1 shows the complete tripartite graphs
T1,1,7 and T2,2,5.
The tripartite graph plays an important role in several applications, including
chemistry, where some molecular orbital for chemistry compounds can be repre-
sented by the tripartite graph. For example, octahedral can be represented by
T2,2,2, whereas dyck can be represented by the symmetrical tripartite graph T4,4,4

and other [11]. Therefore, some researchers pay considerable attention to this
graph. In 1980, Cvetkovic et al. [1] introduced the characteristic polynomial of
the complete multiple graph Tn1,n2,...,np

. In 2012, Delorme [12] first presented
another general formula of the characteristic polynomial of the complete multiple
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graph Tp1,p2,...,pk
.

In this article, the spectrum of the graph is introduced, and general formulas are
constructed based on adjacency, Laplacian, and signless Laplacian matrices. The
extreme eigenvalues (maximum and minimum eigenvalues) are also demonstrated.
In 2003, Stevanovic [13] introduced a new formula for the largest eigenvalue of the
connected irregular graph G.
In this work, a new formula of extreme eigenvalues for some connected irregular
complete tripartite graph is used based on the number of vertices and the maxi-
mum degree ∆. This formula is compared with the Stevanovic [13] and Zhang’s
[14] formula.

(a) T1,1,7 (b) T2,2,5

Figure 1: Complete tripartite graphs T1,1,7 ,T2,2,5

2. Primary Concepts

Properties of Ti,i,n−2i:

1. The number of cycle C with length 3 in Ti,i,n−2i is equal i(n− 2i).

Proof. Since Ti,i,n−2i has three sets of vertices and each cycle has length 3,
the number of cycle depends on the number of the third set of vertices sized
(n− 2i) multiplied by i, as shown in Figure 2.

Figure 2: Number of cycles of length 3

�
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2. The number of edges in Ti,i,n−2i is given by:

|E(Ti,i,n−2i)| = i((n− 2i) + i) + i(n− 2i)

The proof is trivial.

3. The eigenvalues of Ti,i,n−2i based on adjacency matrix A

In this section, we introduced the general form of the eigenvalues of Ti,i,n−2i

based on adjacency matrix A and some properties of it.

Theorem 3.1. Let Ti,i,n−2i be a simple connected non-regular graph of order n

and m be the size of Ti,i,n−2i. Then the general formula of eigenvalues of Ti,i,n−2i

based on adjacency matrix A is given by
{

03,−i,
i+
√

i2 + 4g

2
,
i−
√

i2 + 4g

2

}

. (3.1)

Proof. The eigenvalues of any graph can be found by solving its characteristic
polynomial. The adjacency matrix-based characteristic polynomial of G is refereed
to as CH(A, G), such that; CH(A, G) = |A − λI| and it is computed by letting
|A−λI| = 0. For Ti,i,n−2i, the characteristic polynomial is obtained by computing
the determinant of

|A(Ti,i,n−2i)− λI| = 0,

and given in equation (3);
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Therefore,

CH(A, Ti,i,n−2i) = λn − (i2 + (2i(n− 2i)))λn−2 − (2i2(n− 2i))λ(n−3). (3.3)

The eigenvalues are obtained when CH(A, Ti,i,n−2i) = 0, such that

λn − (i2 + (2i(n− 2i)))λn−2 − (2i2(n− 2i))λ(n−3) = 0. (3.4)

Then, after some simplification, we have

λn−3(λ3 − (i2 + (2i(n− 2i)))λ− (2i2(n− 2i))) = 0. (3.5)

Therefore, from the first part of the equation (3.5), we have (n−3) of the eigenvalues
are equal to zero, and the second part of the equation (3.5) given in the equation
(3.6) is also equal to zero, such that

(λn−3(λ+ i)(λ2 − 2iλ)− (2i2(n− 2i))

i
) = 0. (3.6)

By solving the equation (3.6), the set of eigenvalues can be found

{

03,−i,
i+
√

i2 + 4g

2
,
i−
√

i2 + 4g

2

}

(3.7)

where g = (2i2(n−2i))
i

.

�

Theorem 3.2. Let Ti,i,n−2i be a simple connected non-regular graph of order n and
m be the size of Ti,i,n−2i. Then the eigenvalues of Ti,i,n−2i have some properties;

1. λ1 = |λn + i|,

2. λ1 < n,

3. λn ≤ 0,

4. In general for i = 1, 2, 3, · · · , the eigenvalues are

λ1(T1,1,n−2) ≤ λ1(T2,2,n−4) ≤ λ1(T3,3,n−6) ≤ · · · . (3.8)

Proof. 1. Since
∑n

i=1 λi = 0, [1], by applying of this relation to the set of the
eigenvalues of Ti,i,n−2i, we obtained

λ1 − λn − i = 0. (3.9a)

Then
λ1 = λn + i where λn ≤ 0. (3.9b)

Consequently
λ1 = |λn + i|.
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2. It is obvious from (1) that λ1 < n for i ≥ 1 and n ≥ 1.

3. The proof of this property is similar to the proof of the second property.

4. Since

λ1(Ti−1,i−1,n−2(i−1)) =
i− 1 +

√

(i− 1)2 + 4( (2(i−1)((i−1)(n−2(i−1))))
i−1 )

2

where i ≥ 2 and

λ1(Ti,i,n−2i) =
i+
√

i2 + 4( (2i(i(n−2i)))
i

)

2
,

then

λ1(Ti−1,i−1,n−2(i−1)) ≤ λ1(Ti,i,n−2i).

�

Table 1 shows some eigenvalues of Ti,i,n−2i for i = 2, 4, 5.

i n Ti,i,n−2i

2

5 -1.2360, -2, 0, 0, 3.2360
6 -2, -2, 0, 0, 0, 4
7 -2.6056,-2,0,0,0,0,4.6056
8 -3.1231,-2,0,0,0,0,0,5.1231

i n Ti,i,n−2i

4

9 −1.4641,−4, 06, 5.4641
10 −2.4721,−4, 07, 6.4721
11 −3.2915,−4, 08, 7.2915
12 −4,−4, 09, 8

i n Ti,i,n−2i

5

11 −1.5311,−5, 07, 6.5311
12 −2.6235,−5, 08, 7.6235
13 3.5208,−5, 09, 8.5208
16 5.6394,−5, 013, 10.6394

Table 1: The eigenvalues for some Ti,i,n−2i based on A(Ti,i,n−2i).

4. The eigenvalues of Ti,i,n−2i based on Laplacian matrix L

In this section, we introduced the general form of the eigenvalues of Ti,i,n−2i

based on Laplacian matrix L and some properties of it.
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Theorem 4.1. Let Ti,i,n−2i be a simple connected non-regular graph of order n

and m be the size of Ti,i,n−2i. Then the general formula of eigenvalues of Ti,i,n−2i

based on Laplacian matrix L is given by

{0, n2, (n− i)2i−2, (2i)(n−2i)−1}. (4.1)

Proof. The eigenvalues of any graph can be found by solving its characteristic
polynomial. The characteristic polynomial of G based on Laplacian matrix is
refereed to as CH(L, G) such that,

CH(L, G) = |L− λI| = 0.

For Ti,i,n−2i, the characteristic polynomial is obtained by computing the determi-
nant of |L(Ti,i,n−2i)−λI| which is equal to zero and the determinant can be shown
in (4.2) as
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After calculating of this determinant, we obtained,

(µ)(µ − n)2(µ− (n− i))2i−2(µ− 2i)(n−2i)−1 = 0. (4.3)

Therefore, the spectrum of Ti,i,n−2i is given in the following set

{0, n2, (n− i)2i−2, (2i)(n−2i)−1}. (4.4)

�

Table 2 shows some results for i = 1, 4, 5.
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n T1,1,n−2 n T4,4,n−8 n T5,5,n−10

4 0, 2, 4, 4 9 0, 92, 56 11 0, 112, 68

5 0, 2, 2, 5, 5 10 0, 102, 66, 8 12 0, 122, 76, 10
6 0, 2, 2, 2, 6, 6 11 0, 112, 76, 82 13 0, 132, 86, 102

7 0, 2, 2, 2, 2, 7, 7 12 0, 122, 86, 83 14 0, 142, 96, 102

8 0, 2, 2, 2, 2, 2, 8, 8 13 0, 132, 96, 84 15 0, 152, 106, 102

Table 2: The spectrum of T1,1,n−2, T4,4,n−8 and T5,5,n−10 based on L(Ti,i,n−2i)

To simplify, based on Laplacian matrix, some properties of the spectrum of
Ti,i,n−2i are given as follows

• µ1 = µ2 = n,

• µ2 = 0,

• µi ≥ 0.

The proofs of these three properties can be easily calculated from the general
spectral formula of Ti,i,n−2i based on L(Ti,i,n−2i).

5. The eigenvalues of Ti,i,n−2i based on signless Laplacian matrix S

In this section, we introduced the general form of the eigenvalues of Ti,i,n−2i

based on signless Laplacian matrix S and some properties of it.

Theorem 5.1. Let Ti,i,n−2i be a simple connected non-regular graph of order n

and m be the size of Ti,i,n−2i. Then the general formula of eigenvalues of Ti,i,n−2i

based on signless Laplacian matrix S is given by

{n− 2i, (n− i)(2i−2), (2i)(n−2i)−1,
B + C

2
,
B − C

2
} (5.1)

where B = (a1)− (δ2 + δ3 + δ4), C =
√
B2 − 4z3,

and a1 = (2i2 + 2i(n− 2i)) + (2i(n− 2i)).

Proof. The eigenvalues of any graph can be found by solving its characteristic
polynomial. The characteristic polynomial of G based on signless matrix is refereed
to as CH(S , G) such that,

CH(S , G) = |S − λI| = 0.

For Ti,i,n−2i, the characteristic polynomial is obtained by computing the determi-
nant of |S (Ti,i,n−2i)−λI| which is equal to zero and the signless matrix of Ti,i,n−2i

is shown in (5.2) as
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Then, to compute the characteristic polynomial of (5.2), we have:

CH(S, Ti,i,n−2i) = |δI − S|
= a0δ

2 + (a1 − ((n− 2i) + (n− i)2i−2

+(2i)(n−2i)−1))δ + z3 (5.3)

and the roots of the equation (5.3) are obtained by solving |δI − S| = 0, which
resulted in

(δ − (n− 2i)(δ − (n− i)2i−2)(δ − (2i(n−2i)−1)

(a0δ
2 + (a1 − ((n− 2i) + (n− i)2i−2 + (2i)(n−2i)−1))δ + z3) = 0 (5.4)

where a0 = 1 and z3 is calculated recursively as follows

z1 =
det S(Ti,i,n−2i)

n− 2i
, where det S(Ti,i,n−2i) = an (5.5)

z2 =
z1

n− i2i−2
, and if 2i− 2 = 0 then z2 = z1 (5.6)

z3 =
z2

2i(n−2i)−1
, and if (n− 2i)− 1 = 0 then z3 = z2 (5.7)

Then, the eigenvalues of Ti,i,n−2i given as

δ2 = n− 2i, δ3 = (n− i)(2i−2) and δ4 = (2i)(n−2i)−1.

Then δ1 =
B + C

2
and δn =

B − C

2
,

where B = (a1)− (δ2 + δ3 + δ4), C =
√

B2 − 4z3.

and a1 = (2i2 + 2i(n− 2i)) + (2i(n− 2i)).

(5.8)

�
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Some properties of Ti,i,n−2i based on S(Ti,i,n−2i) can be listed as follows:

• δn > 0,

• δi(T2,2,n−4) > δi(T2,2,n−4) where i = 1, 2, 3, . . . , n,

• δn(T2,2,n−4) > δn(T2,2,n−4),

• δ1 > 0.

For example, some spectrums of Ti,i,n−2i, for i = 1, 4, 5, are shown in Table 3.

i n T1,1,n−2

1

4 0.7639, 2, 2, 5.2361
5 0.6277, 2, 2, 3, 6.3723
6 0.5359, 2, 2, 2, 4, 7.4641
7 0.4689, 2, 2, 2, 2, 5, 8.5311

i n T4,4,n−8

4

9 1, 56, 5.6277, 11.3723
10 2, 8, 66, 4.8769, 13.1231
11 3, 76, 82, 4.3765, 11.3723
12 4, 83, 86, 11.3723

i n T5,5,n−10

5

11 1, 68, 7.2984, 13.7016
12 2, 78, 10, 6.4174, 15.5826
13 3, 88, 102, 5.8211, 17.1789
16 6, 105, 118, 4.6934, 21.3065

Table 3: The spectrum of T1,1,n−2, T4,4,n−8 and T5,5,n−10 based on S(Ti,i,n−2i)

6. Extreme Eigenvalues

In this section, the extreme eigenvalues of the connected irregular complete
tripartite graph Ti,i,n−2i are discussed. A general formula that used to bind the
eigenvalue of the graph based on A(Ti,i,n−2i) is also presented. The comparison
with two known formulae Stevanovic [13] and Zhang [14] indicated an improvement
upon them.

6.1. Largest eigenvalue based on adjacency matrix A(Ti,i,n−2i)

Let Ti,i,n−2i be a complete tripartite graph with n vertices and E edges. Given
that A is symmetric then all eigenvalues of Ti,i,n−2i are real. Moreover, they are
related as follows: λ1 ≥ λ2 ≥ · · · ≥ λn. The spectral radius of Ti,i,n−2i that
represents the largest eigenvalue is denoted by λ1. A graph is called regular if
d(vi) = △ for all vi for i = 1, 2, · · · , n. The spectral radius λ1 of a regular graph is
denoted by△ [15]. If x = (x1, x2, · · · , xn)

′ is the positive eigenvector ofA(Ti,i,n−2i)
corresponding to λ1, then x is the maximal eigenvector of Ti,i,n−2i. In the fields of
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numerical analysis and social network [14,18], obtaining an estimation of the ratio
of components of the maximal eigenvector of G is important. The problem is to
estimate the ratio

γ = max
16i,j6n

xi

xj

.

Stevanovic [13] recently studied the spectral radius of connected irregular graphs
with n vertices and △ maximum degree. In his study, he studied the maximum
spectral radius among all of the connected irregular graphs with n vertices and △
maximum degree. He showed that

ϑ < △− 1

2n(n△−1)△2
∼ △− 1

2n2△3
. (6.1)

Afterward, Zhang [14] improved this formula, and proved that

η ≤ △− 2△−1− 2
√

△(△− 1)

n(n− 1)△)△2
. (6.2)

This bound was later improved by S. M. Cioaba, D. A. Gregory and V. Nikiforov
[16], and B. Liu, J. Shen and X. Wang [17].
In this work, we aimed to find the largest eigenvalue λ1 of Ti,i,n−2i.

Theorem 6.1. Let Ti,i,n−2i be a simple connected non-regular graph of order n and
|E| be the size of Ti,i,n−2i, with sequence (d1, d2, · · · , dn). If X = (x1, x2, · · · , xn)

T

is a maximal eigenvector of Ti,i,n−2i, then

λ1 <

√

√

√

√

n
∑

i=1

d(vi) where

n
∑

i=1

d(vi) = (2i2 + 4i(n− 2i)). (6.3)

Proof. From [14], let we recall that

λ1

n
∑

i=1

xi =

n
∑

j=1

djxj .

Let X = (x1, x2, · · · , xn) be a maximal normalized eigenvector (i.e.
∑n

i=1 x
2
i = 1 )

corresponding to λ1 of Ti,i,n−2i . Then

(

λ1

n
∑

i=1

xi

)2

=





n
∑

j=1

djxj





2

Firstly let we consider the left hand side of the equation. Since (x1, x2, · · · , xn)T

is a positive eigenvector of A(G) corresponding to λ1 and the value of λ1 > 0, then

(

λ1

n
∑

i=1

xi

)2

≥ λ2
1.
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Therefore

λ2
1 <





n
∑

j=1

djxj





2

.

From the right-hand side, we have





n
∑

j=1

djxj





2

≥
n
∑

i=1

di.

Hence

λ2
1 ≤

n
∑

i=1

di

then

λ1 ≤

√

√

√

√

n
∑

i=1

di.

From 3.1, we have

λ1 =
i+
√

i2 + 4 (2i2(n−2i))
i

2
=

i

2
+

√

i2 + 4 (2i2(n−2i))
i

2

and
√

√

√

√

n
∑

i=1

di =
√

(2i2 + 4i(n− 2i)) ≥
√

(2i2) +
√

4i(n− 2i)).

Comparing with λ1, we have
i

2
≤
√

(2i2)

and
√

i2 + 4 (2i2(n−2i))
i

2
≤
√

4i(n− 2i)),

then

λ1 ≤

√

√

√

√

n
∑

i=1

di.

�

This comparison is shown in Table 5 and Figure 3.
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N T4,4,1 T4,4,2 T4,4,3 T4,4,4 T4,4,20 T4,4,25 T4,4,30 T4,4,40

Original 5.4641 6.4721 7.2915 8 14.8062 16.2829 17.6205 20
Stevanovic 7.999 7.999 7.999 7.999 23.999 28.999 34 44
Zhang 7.999 7.999 7.999 7.999 23.999 28.999 34 43.999

√
∑n

i=1 d(vi) 6.9282 8 8.9442 9.7979 18.761 20.784 22.6274 25.9229

Table 4: The spectrum of T4,4,n−8

Figure 3: The comparison between Stevanovic, Zhang and the formula (4.4)

7. Chemical Applications of Graph Theory

One of the main applications of the graph spectra is chemistry. The problem
encountered in chemical graph theory many years ago was about the existence of
molecule graphs with identical spectra. The mathematical properties of the total π-
electron energy (E) have a long history as one of the most useful quantum chemical
characteristics of a conjugated molecule. This characteristic can be obtained by
the theory of unsaturated conjugated hydrocarbons known as the Huckel Molecular
Orbital (HMO) theory. The correspondence between the theoretical terms of the
graph and the molecular orbital of chemical (chemistry term) is given as follows;
in which the vertices correspond to atoms while the edges represent the bound.
Huckel matrix [1] is the ”adjacency matrix”, the graph is the structural formula
and a tree graph is the cyclic graph, wherein the degree of the vertices degree is
the valence of an atom and the characteristic polynomial is the secular polynomial.
This is shown in Table 5.

Chemistry term Graph theoretical term

Atom Vertex
Bound Edge

Acyclic graph Tree graph
Valence of an atom Degree of a vertex



Tripartite Graphs with Energy Aggregation 162

n- polygene Path on a vertex
Secular polynomial Characteristic polynomial

Huckel matrix Adjacency matrix
Energy level Eigenvalue
Bonding level Positive eigenvalue

Table 5: The chemical term corresponding to the graph theoretical term

Figure [4] represents an example that describes the chemical formula of benzene
and its corresponding representation in the graph theory

Figure 4: Benzene and its corresponding representation in the graph theory

7.1. Tripartite Energy

Spectral graph theory plays an important role in the molecular orbits of some
chemical compounds. In 1930, the German scholar Erich Huckel [1] introduced
a method to find the approximation of the solutions of the Schrodinger equation,
which refers to a molecular orbital called unsaturated conjugated hydrocarbons.
The details of this approach are often referred to as HMO theory. HMO theory
is based on the molecular orbital of π-electrons (assuming that the underlying
molecule is planar and that the π- and σ-orbitals are mutually orthogonal). The
general approximation solution of the HMO model is as follows:

H = αI + βA(G) (7.1)

where H is the Hamiltonian matrix, I is the unit matrix of order n, and A(G) is the
adjacency matrix of the corresponding n vertices of the molecular graph. Recall
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that, n is the number of conjugated centers in the underlying molecule and that the
molecular graph may either be simple (for hydrocarbons) or weighted (for hetero-
conjugated systems). The parameters α and β are called the Coulomb and the
resonance integrals, respectively. They are regarded as semi-empirical constants.
The HMOmolecular orbital corresponds to the eigenvectors of the adjacency matrix
A. The corresponding energy level is given by

Eπ = α+ βλi, i = 1, 2, · · · , n (7.2)

where λi is the eigenvalues of A.
In the HMO molecular orbital methods, the total π-electrons are given by

Eπ =

n
∑

i=1

giλi (7.3)

where gi is the “occupation number”. We refer to [1] for additional details on this
matter. In 1970, Gutman [1] uncovered a relation to determine the total π-electron
energy from the molecular orbital of Huckel with the graph theory defined as

E = E(G) =

n
∑

i=1

|λi|. (7.4)

The molecular orbital of benzene and hydrocarbon are shown in Figure 5.

Figure 5: Molecular orbital of benzene C6H6 and hydrocarbon C12H8

To represent these two chemical components by the graph theory, the benzene
and the hydrocarbon graphs are the tripartite graphs T2,2,2 and T4,4,4 respectively,
such that each carbon atom corresponds to a vertex of the tripartite graph, as
shown in Figure [6].

Figure 6: The tripartite graphs T2,2,2 and T4,4,4
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The total π− electronic energy of benzene is 8. This value can also be calcu-
lated by equation (28) where λi for the tripartite graph T2,2,2 corresponds to such
molecular component.

E = E(G) =

n
∑

i=1

|λi| = |−2|+ |2|+ 4|1| = 8

The number of the molecular orbital is symmetric to the tripartite graph Ts,t,t

where s = (n−2
4 ) and t = n−s

2 given as Naphthalene C10H8, Anthracene

C14H10, Tetracene C18H12, Pentacene C22H14 and in general CnH(n−2m), where

n is the number of carbon atom andm = ((n−2
4 )−1) is the number of carbon bounds

as shown in Figure 7.

Figure 7: The tripartite graphs corresponding to some molecular orbital.

Therefore, the total π−electron energy of the molecular orbital of those graphs
equals to the summation of the absolute eigenvalues of their corresponding tripar-
tite graphs.
All of the above results are obtained by using the adjacency matrix. The combi-
natorial Laplacian and signless Laplacian matrices with immense invested interest
in chemistry are presented for future works.
In 2006, Gutman and Zhou [19] defined the energy of the graph called Laplacian
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energy of G denoted by LEG, and given as:

LEG =

n
∑

i=1

|µi −
2m

n
| (7.5)

where µi(i = 1, · · · , n) are the eigenvalues of the Laplacian matrix L obtained
by using (7.5), and m, n are the numbers of edges and vertices of G, respectively.
Several properties are known especially to bind the energy and the Laplacian energy
of a graph. For example, the total π-electron energy of benzene is given by:

LEG =
n
∑

i=1

|µi −
2m

n
| = |0− 12

6
|+ 2|1− 12

6
|+ 2|3− 12

6
|+ |4− 12

6
| = 8

For more details about the Laplacian energy of a graph based on the signless ma-
trix, we refer the reader to see [20,21].
Some total π-electron energy of molecular orbital of hydrocarbonCnH(n−2((n−2

4 )−1)),

can be found by the eigenvalues of the tripartite graph Ts,t,t, as shown in Figure 8.

Figure 8: Some types of CnH(n−2((n−2
4 )−1)) with the structures of their correspond-

ing tripartite graph

We found that the total π-electron energy for benzene, hydrocarbon, Naph-

thalene, and Anthracene equal to the sum of the eigenvalues of their correspond-
ing tripartite graphs Ts,s,t based on the adjacency matrix.
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8. Conclusions

This paper focused on the important subject in mathematics called the spectral
graph theory which combines the graph theory and linear algebra. New results of
the spectral graphs was studied. Main concern was for the tripartite graph. The
obtained theoretical results can be compared with the practical results to prove
their validity. The spectrum of some graphs based on adjacency matrix and Lapla-
cian matrix (combinatorial and signless) was studied, especially, for the complete
tripartite graphs T(i,i,n−2i). The extreme eigenvalues (maximum and minimum
eigenvalues) were the main achievement in this work. The general formula of the
largest eigenvalue of tripartite graph T(i,i,n−2i) was presented depending on the
properties of the graph. A new formula for extreme eigenvalues of some connected
irregular complete tripartite graph was proposed and showed an improvement upon
some well-known methods in this field. Satisfactory results were obtained upon ap-
plying these new methods in quantum chemistry. We found that, the molecular
orbital of some chemical compounds, such as hydrocarbon CnH(n−2m) and unit
cell of crystal, could be represented by the tripartite graph because they had the
same structure. Also, the total π- electronic energy levels for those chemical com-
pounds could be calculated by summing the absolute values of the spectrum of
their corresponding graphs.
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