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Reidemeister Classes for Coincidences Between Sections of a Fiber

Bundle

D. Penteado and T. F. V. Paiva

abstract: Let s0, f0 be two sections of a fiber bundle q : E → B and assume the
coincidence set Γ(s0, f0) 6= ∅. We consider the problem of identifying the algebraic
Reidemeister classes for s0 and f0 with the geometric classes obtained by the lifting
maps on covering spaces. We do this by using the homotopy lifting extension pro-
priety of the fibration q to obtain homotopies over B. When we make this and the
basic point is fixed we can use the elements s0(β), f0(β

−1) where β ∈ π1(B, b0) and
the elements γ ∈ π1(F0, e0). So we will introduce the algebraic Reidemeister classes
relative to the subgroup π1(F0, e0). When the basic points are not fixed we need

to consider the classes [s̃]L of lifting of s0 defined on the universal covering B̃ to Ẽ.
The present work relates the lifting classes [s̃]L of s0 and the algebraic Reidemeister
classes RA(s0, f0;π1(F0, e0)), as given in [2],[3] and [5].
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1. Introduction

Let f : (B, b0) → (B, b0) be a function and assume that B is compact, locally
path connected, semi locally 1-connected and an euclidean neighborhood retract
space. Then there is the universal covering pb0 : B̃(b0) → B, constructed from

the trivial subgroup {[b0]} ≤ π1(B, b0). Let T : π1(B, b0) → Cov(B̃(b0)/B) be the
isomorphism β 7→ Tβ, the deck transformation associated to β.

Let L(f0) be the set of all liftings f̃ of f0 with respect to the following commu-
tative diagram. Note that the second diagram corresponds to the case when f is
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the identity map IB .

B̃(b0)
f̃ //

pb0

��

B̃(b0)

pb0

��
B

f // B

B̃(b0)
ĨB //

pb0

��

B̃(b0)

pb0

��
B

IB // B

(1.1)

Consider the following equivalence relation on the set L(f): f̃1RLf̃2 ⇔ f̃1 =

Tβ ◦ f̃2 ◦ T
−1
β , with β ∈ π1(B, b0). We denote by RL(L(f) the quotient set and by

[f̃ ]L the class of f̃ and rL(L(f)) = |RL(L(f))|.
In [3], [2] and [4] the authors related the relation RL with the algebraic Rei-

demeister classes induced by IB , f : π1(B, b0) → π1(B, b0) whose quotient set is
RA(f, IB) and rA(f, IB) = |RA(f, IB)|. They proved that:

1. There is an one to one correspondence between RL(L(f) and RA(f, IB),
therefore rL(L(f)) = rA(f, IB).

2. If [f̃1]L = [f̃2]L then pb0
(
Fix(f̃1)

)
= pb0

(
Fix(f̃2)

)
.

3. If pb0
(
Fix(f̃1)

)
∩ pb0

(
Fix(f̃2)

)
6= ∅ then [f̃1]L = [f̃2]L.

In fixed point theory it is usual to put the date f, IB : B → B on the context of
fiber bundle considering the trivial fiber bundle q : B ×B → B, q(b1, b2) = b1 and
the sections s0, f0 : B → B ×B of q given by s0(b) = (b, b) and f0(b) = (b, f(b)).

In this work we consider a general fiber bundle q : E → B and initially two
sections s0, f0 : (B, b0) → (E, e0) and F0 the fiber over b0 which satisfies good
hypotheses on B, E and F0 = q−1(b0). The purpose of this work is to prove an
analogous result of some results in [2] and [3] in this context of section on fiber
bundle.

This work is divided in four sections. In Section 2 we established notations and
we listed some results about the construction of covering spaces of a subgroup G
of π1(E, e0) and we explicit the lifting s̃0, f̃0 and sF0 , fF0 . We also introduce the
equivalence relation Rf0 on the set L(s0; fF0) and the relation Rs0 on L(f0; sF0)
which the sets are, respectively, specified lifting maps on the universal covering
for the sections s0 and f0, as in [2],[3] and [5]. The Theorem 2.9 established the
first approximations between relations Rf0 or Rs0 and the Reidemeister relation
relative to the subgroup π1(F0, e0), as we will see in the next section. In Section 3 we
defined the algebraic Reidemeister classes relative of a subgroup H0 ≤ G0 induced
by the homomorphisms ϕ, ψ : G1 → G0 which the quotient set is RA(ψ, φ;H0). In
particular, we will apply this for the homomorphisms on the fundamental groups
for two sections s0, f0 : π1(B, b0) → π1(E, e0) of a fiber bundle q : E → B and the
subgroup H0 = π1(F0, e0), so we have the set RA(s0, f0;π1(F0, e0)).

In Section 4 we also defined the set of Nielsen coincidence classes which is indi-
cated by Γ̃(s0, f0) and proved that it is finite under good hypotheses on the spaces
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B,E, F0. We also exhibit an injection map Γ̃(s0, f0) → RA(s0, f0;π1(F0, e0)).
We finished this section relating the theorems 2.9 and 4.3 and then we proved
the main theorem 4.5, which established an one-to-one correspondence between
RL(L(f0; sF0)) and RA(s0, f0;π1(F0, e0)) or similarly for the classes [s̃]L on the set
RL(L(s0; fF0)), as in [4] and [5].

2. Covering projection constructed from a subgroup and relations on

the lifting maps

Let G be a subgroup of π1(E, e0) and let P (E, e0) be the set of all paths
α : [0, 1] → E such that α(0) = e0. We say that α1, α2 ∈ P (E, e0) are G−related
if α1(1) = α2(1) and the class [α1 ∗ α

−1
2 ] ∈ G ≤ π1(E, e0). It is easy to prove that

this is an equivalence relation and we denote the class from the path α by 〈e, α〉G
with e = α(1). The quotient set of P (E, e0) by this relation is indicated by Ẽ(G).

In [6] the author defined a basis for a topology on the set Ẽ(G) for which the

function pG : Ẽ(G) → E, pG〈e, α〉G = e is continuous. Moreover if E is path
connected then pG is a surjection and we have the following statements:

1. If E is connected, locally path connected and semi-locally 1-connected then

pG :
(
Ẽ(G), ẽ0

)
→ (E, e0) is a covering space with

pG
(
π1

(
Ẽ(G), ẽ0

))
= G,

where ẽ0 = 〈e0, e0〉G and e0 is the constant path on e0 ∈ E.

2. If G1 ≤ G2 ≤ π1(E, e0) are subgroups and p
G1 : Ẽ(G1) → E, pG2 : Ẽ(G2) →

E are covering spaces then there is a covering space pG1

G2
: Ẽ(G1) → Ẽ(G2)

so that pG1 = pG2 ◦ pG1

G2
.

3. If G is a normal subgroup of π1(E, e0) and p : (Ẽ, x̃0) → (E, e0) is a cov-

ering space so that p
(
π1(Ẽ, x0)

)
= G then there is an homeomorphism

ϕ : (Ẽ, x̃0) → (Ẽ(G), ẽ0) so that p = pG ◦ ϕ.

Now we apply this construction when we have two sections s0, f0 : (B, b0) →
(E, e0) of a fiber bundle q : (E, e0) → (B, b0). For this we suppose that E,B and
the fiber F0 = q−1(b0) are compact spaces with B and E satisfying the hypothesis
as in (1) above.

More precisely, we construct the universal covering spaces for the trivial sub-
groups [b0]✁ π1(B, b0) and [e0]✁ π1(E, e0) which are denoted by pb0 : B̃(b0) → B

and pe0 : Ẽ(e0) → E. We also consider the regular covering space pF0 : Ẽ(F0) → E

where Ẽ(F0) = Ẽ(π1(F0, e0)). As in (2) above we denote pe0F0
: Ẽ(e0) → Ẽ(F0) for

the covering space so that pe0 = pF0 ◦ pe0F0
.

From these constructions it is easy to explicit the covering projections, that is
pb0〈b, β〉b0 = b, pe0〈e, α〉e0 = e and pe0F0

〈e, α〉e0 = 〈e, α〉F0 ∈ Ẽ(F0). Moreover from
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the sections s0, f0 : (B, b0) → (E, e0) it is possible to explicit two special lifting
maps as in the following lemma:

Lemma 2.1. The maps

s̃0, f̃0 : (B̃(b0), b̃0) → (Ẽ(e0), ẽ0) and sF0 , fF0 : (B̃(b0), b̃0) → (Ẽ(F0), ẽ0)

given by s̃0〈b, β〉b0 = 〈s0(b), s0(β)〉e0 , f̃0〈b, β〉b0 = 〈f0(b), f0(β)〉e0 , sF0〈b, β〉b0 =
〈s0(b), s0(β)〉F0 and fF0〈b, β〉b0 = 〈f0(b), f0(β)〉F0 are continuous and the following
diagram commutes.

Proof: The commutativity is immediate from the constructions. Note that the
continuity of the maps is given by the choice of the topology on the sets B̃(b0),

Ẽ(e0) and Ẽ(F0). In fact, let 〈b, β〉b0 ∈ B̃(b0) and V (〈s0(b), s0(β)〉e0 ) be a basic

open set of the topology on Ẽ(e0) where V is an open neighborhood of s0(b) in E.
From the continuity of s0 let U = s−1

0 (V ) ⊆ B an open neighborhood of b on B
and note that s̃0 (U (〈b, β〉b0)) ⊆ V (〈s0(b), s0(β)〉e0) .

The continuity of the f̃0, s̃F0 and f̃F0 is shown by similar argument. ✷

For β ∈ π1(B, b0) the correspondent deck transformation we denote by Tβ ∈

Cov(B̃(b0)/B) and similarly, Tα, Tγ for α ∈ π1(E, e0) and γ ∈ π1(F0, e0)✁π1(E, e0).
From the covering map constructions we can to explicit the following fibers,

where we use the same symbol to express the loop path and its class on fundamental
groups:

(
pb0

)−1
(b0) = {〈b0, β〉b0 , β ∈ π1(B, b0)} ;

(
pe0F0

)−1
(〈e0, e0〉F0) =

(
pe0F0

)−1
(ẽF0) {〈e0, γ〉e0 ; γ ∈ π1(F0, e0)} ;

(
pF0

)−1
(e0) = {〈e0, s0(β)〉F0 = 〈e0, f0(β)〉F0 ;β ∈ π1(B, b0)} ;

We know that on theses fibers we have a right transitive action of the funda-
mental group and a left action of the deck transformation group. For example, if
β ∈ π1(B, b0) then

Tβ (〈b0, β1〉b0) = 〈b0, β1〉b0 ⋆ β
−1 = 〈b0, β1 ∗ β

−1〉b0 , (2.1)
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where ⋆ denotes the right action
(
pb0

)−1
(b0)× π1(B, b0) →

(
pb0

)−1
(b0).

In order to relate the set of coincidences between the sections with the liftings
maps involved we define the following sets.

Definition 2.2.

1. L(s0) = {s̃ : B̃(b0) → Ẽ(e0), p
e0 ◦ s̃ = s0 ◦ pb0}

2. L(f0) = {f̃ : B̃(b0) → Ẽ(e0), p
e0 ◦ f̃ = f0 ◦ pb0}

3. L(s0, f0) = {(s̃, f̃); pe0 ◦ s̃ = s0 ◦ p
b0 , pe0 ◦ f̃ = f0 ◦ p

b0}

4. L(s0; fF0) = {(s̃, f̃0), sF0 = pe0F0
◦ s̃, s̃ ∈ L(s0)}

5. L(f0; sF0) = {(s̃0, f̃), fF0 = pe0F0
◦ f̃ , f̃ ∈ L(f0)}

Lemma 2.3.

1. L(s0; fF0) =
{
(s̃, f̃0); s̃ = Tγ1

◦ s̃0; γ1 ∈ π1(F0, e0)
}

2. L(f0; sF0) =
{
(s̃0, f̃); f̃ = Tγ2

◦ f̃0; γ2 ∈ π1(F0, e0)
}

3. L(s0, f0) =
{(
Tα1 ◦ s̃0, Tα2 ◦ f̃0

)
;α1, α2 ∈ π1(E, e0)

}
= L(s0)× L(f0).

Proof: Standard results in covering space theory when we identified
Cov(Ẽ(e0)/Ẽ(F0)) ≃ π1(F0, e0) and Cov(Ẽ(F0)/E) ≃ π1(B, b0) ≃ Cov(B̃(b0)/B).

✷

Lemma 2.4.

1. If s̃ ∈ L(s0) and s̃ = s̃0 ◦ Tβ then there is only one α(s̃) ∈ π1(E0, e0) so that
Tα(s̃) ◦ s̃0 = s̃0 ◦ Tβ, moreover α(s̃) = s0(β).

2. If f̃ ∈ L(f0) and f̃ = f̃0 ◦ Tβ then there is only one α(f̃) ∈ π1(E, e0) so that

T
α(f̃) ◦ f̃0 = f̃0 ◦ Tβ and moreover α(f̃) = f0(β).

Proof: Just use the uniqueness of each lifting and apply on the basic point b̃0
using the equality (2.1). ✷

Remark 2.5. From lemmas 2.4 and 2.3 part (3), for each pair (s̃, f̃) ∈ L(s0, f0)
we can write in the form

(s̃, f̃) = (Tα1
◦ s̃0, Tα2

◦ f̃0)

= (Tα1∗s0(q(α
−1
1 ))∗s0(q(α1))

◦ s̃0, Tα2∗f0(q(α
−1
2 ))∗f0(q(α2))

◦ f̃0)

=
(
Tα1∗s0(q(α

−1
1 )) ◦ s̃0 ◦ Tq(α1), Tα2∗f0(q(α

−1
2 )) ◦ f̃0 ◦ Tq(α2)

)

=
(
Tγ1

◦ s̃0 ◦ Tq(α1), Tγ2
◦ f̃0 ◦ Tq(α2)

)

=
(
Tγ−1

2 ∗γ1
◦ s̃0, f̃0 ◦ Tq(α2)∗q(α

−1
1 )

)
or

=
(
s̃0 ◦ Tq(α1)∗q(α

−1
2 ), Tγ−1

1 ∗γ2
◦ f̃0

)
,
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where γ1 = α1 ∗ s0(q(α
−1
1 )) ∈ π1(F0, e0) and γ2 = α2 ∗ f0(q(α

−1
2 )) ∈ π1(F0, e0).

Because we are considering the constant homotopy on the basic space IB : B ×
[0, 1] → B to deform the initial sections s0, f0 over B, so we assume that q(α1) =

q(α2). From this we consider only the pairs of liftings
(
Tγ−1

2 ∗γ1
◦s̃0, f̃0

)
∈ L(s0; fF0)

or
(
s̃0, Tγ−1

1 ∗γ2
◦ f̃0

)
∈ L(f0; sF0).

Definition 2.6.

1. Given (s̃1, f̃0) and (s̃2, f̃0) ∈ L(s0; fF0) we say that (s̃1, f̃0) is lifting related

with (s̃2, f̃0) for the f0, in symbols s̃1Rf0 s̃2, or (s̃1, f̃0)Rf0(s̃2, f̃0), if and only
if Tf0(β) ◦ s̃1 = s̃2 ◦ Tβ for some β ∈ π1(B, b0).

2. Similarly for the elements (s̃0, f̃1) (s̃0, f̃2) ∈ L(f0; sF0) we define the relation

Rs0 by f̃1Rs0 f̃2 ⇔ Ts0(β) ◦ f̃1 = f̃2 ◦ Tβ for some β ∈ π1(B, b0).

Proposition 2.7.

1. The relation Rf0 is an equivalence relation on the set L(s0; fF0).

2. The relation Rs0 is an equivalence relation on the set L(f0; sF0).

Proof: If β = [b0] ∈ π1(B, b0) then s̃1Rf0 s̃1. If s̃1Rf0 s̃2 with Tf0(β) ◦ s̃1 = s̃2 ◦ Tβ
thus Tf0(β−1) ◦ s̃2 = s̃1 ◦ Tβ−1 . If s̃1Rf0 s̃2 and s̃2Rf0 s̃3 which implies that there
are β1, β2 ∈ π1(B, b0) so that Tf0(β1)

◦ s̃1 = s̃2 ◦ Tβ1
and Tf0(β2)

◦ s̃2 = s̃3 ◦ Tβ2.
Therefore,

Tf0(β2∗β1)
◦ s̃1 = Tf0(β2)

◦
(
Tf0(β1)

◦ s̃1
)

= Tf0(β1)
◦ s̃2 ◦ Tβ1

=
(
Tf0(β2)

◦ s̃2
)
◦ Tβ1

= s̃3 ◦ Tβ2
◦ Tβ1

= s̃3 ◦ Tβ2∗β1

The proof of (2) is analogous. ✷

Let Rf0(L(s0; fF0)) and Rs0(L(f0; sF0)) be the quotient spaces by the rela-
tions Rf0 and Rs0 on the spaces L(s0; fF0) and L(f0, sF0) respectively. Denote by
rf0(L(s0; fF0)) and rs0 (L(f0; sF0)) the respective cardinals of the quotient spaces.

The following definition is approximation between the relation Rf0 , or Rs0 , and
the Reidemeister relation relative to the subgroup π1(F0, e0) as we will view in the
the next section.

Definition 2.8. Let s̃1 = Tγ1
◦ s̃0, s̃2 = Tγ2

◦ s̃0 be in L(s0; fF0) where γ1, γ2 ∈
π1(F0, e0). We say that s̃1 is lifting related with s̃2, in symbol s̃1RLs̃2, if there

is β ∈ π1(B, b0) so that f0(β) ∗ γ1 = γ2 ∗ s0(β) . Similarly we define for f̃1 =

Tγ1
◦ f̃0, f̃2 = Tγ2

◦ f̃0 be in L(f0; sF0). That is f̃1RLf̃2 if and only if there is
β ∈ π1(B, b0) such that f0(β) ∗ γ1 = γ2 ∗ s0(β).

Theorem 2.9.
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1. The relation RL defined on L(s0; fF0)is an equivalence relation.

2. The relation RL defined on L(f0; sF0) is an equivalence relation.

3. [s̃]f0 = [s̃]L and [f̃ ]s0 = [f̃ ]L. Therefore if RL(L(s0; fF0)) and RL(L(f0; sF0))
are the quotient set by the relation RL then there is an one to one correspon-
dence between the followings sets:

Rf0(L(s0; fF0)) ↔ RL(L(s0; fF0)) ↔ Rs0(L(f0; sF0)) ↔ RL(L(f0; sF0)).

Proof: We will prove the item (1). Obviously the relation RL is reflexive and
symmetric. If s̃i = Tγi

◦ s̃0, for i = 1, 2, 3 and s̃1RLs̃2 and s̃2RLs̃3 then there
exists β1 and β2 in π1(B, b0) such that f0(β1) ∗ γ1 = γ2 ∗ s0(β1) and f0(β2) ∗ γ2 =
γ3 ∗ s0(β2). So we have

f0(β2 ∗ β1) ∗ γ1 = f0(β2) ∗ (f0(β1) ∗ γ1)
= f0(β2) ∗ γ2 ∗ s0(β1)
= γ3 ∗ s0(β2) ∗ s0(β1).

Therefore s̃1RLs̃3. The proof of (2) is analogous.
In fact [s̃1]f0 = [s̃1]L. If s̃1Rf0 s̃2, then there is β ∈ π1(B, b0) such that Tf0(β) ◦

s̃1 = s̃2 ◦ Tβ. But s̃1, s̃2 ∈ L(s0; fF0) so there are γ1, γ2 ∈ π1(F0, e0) such that
s̃1 = Tγ1

◦ s̃0 and s̃2 = Tγ2
◦ s̃0. Since s̃1Rf0 s̃2 we have:

Tf0(β) ◦ s̃1 = s̃2 ◦ Tβ
Tf0(β) ◦ Tγ1

◦ s̃0 = Tγ2
◦ s̃0 ◦ Tβ

Tf0(β)∗γ1
◦ s̃0 = Tγ2∗s0(β)

◦ s̃0

The last equation means that s̃1RLs̃2. Therefore there is an one to one corre-
spondence betwen the sets. The second part is analogous. ✷

3. Algebraic Reidemeister classes relative of a subgroup

Definition 3.1. Let ψ, ϕ : G1 → G0 be group homomorphisms and H0 a subgroup
of G0. We say that two elements h1, h2 ∈ H0 are (ψ, ϕ; H)−algebraic Reidemeister
related, in symbols h1R(ψ,ϕ;H0)h2 = h1RH0h2 or h1RAh2, if there is g ∈ G0 such
that ϕ(g)h1 = h2ψ(g).

It is easy to prove that R(ψ,ϕ;H0) is an equivalence relation on H0, called the
algebraic Reidemeister relation of ϕ and ψ relative to the subgroupH0. We denoted
by [h](ψ,ϕ;H0) = [h]H0 or [h]A the algebraic Reidemeister class determined by h ∈
H0 and by RA(ϕ, ψ;H0) to the quotient set. The cardinal of RA(ϕ, ψ;H0) which is
indicated by r(ϕ, ψ;H0) is called (ϕ, ψ; H0)−Reidemeister number. WhenH0 = G0

we denoted R(ϕ, ψ; G0) = R(ϕ, ψ) and r(ϕ, ψ; G0) = r(ϕ, ψ).

Proposition 3.2. Let ϕ, ψ : G1 → G0 be homomorphisms and H0,K0 subgroups
of G0. If H0 ≤ K0 then r(ϕ, ψ;H0) ≤ r(ϕ, ψ;K0).
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Proof: Just set the injection RA(ϕ, ψ;H0) →֒ RA(ϕ, ψ;K0), [a]H0 7→ [a]K0 . ✷

Remark 3.3. If {eG0} is the trivial subgroup of G0 then for any subgroup H0 of
G0 we have 1 = r(ϕ, ψ; {eG0}) ≤ r(ϕ, ψ;H0) ≤ r(ϕ, ψ).

Proposition 3.4. Let ϕ, ψ : G2 → G1 be homomorphisms, K1 ≤ G1 and Φ : G1 →
G0 a homomorphism with H0 = Φ(K1). The following map ΦA : RA(ϕ, ψ; K1) →
RA(Φ ◦ ϕ,Φ ◦ ψ;H0)) given by ΦA([k]K1) = [Φ(k)]H0 is surjective. Therefore
r(ϕ, ψ;K1) ≥ r(Φ ◦ ϕ,Φ ◦ ψ;H0).

If Φ has the left inverse homomorphism Ψ : G0 → G1 then ΦA is an one to one
correspondence and Φ−1

A [Φ(k)]H0 = [k]K1 so r(ϕ, ψ;K1) = r(Φ ◦ ϕ,Φ ◦ ψ;H0).

Proof: If [k1]K1 = [k2]K1 there is g2 such that ϕ(g2)k1 = k2ψ(g2), then
Φ(ϕ(g2))Φ(k1) = Φ(k2)Φ(ψ(g2)). Therefore we have a well defined map ΦK1 :
RA(ϕ, ψ;K1) → RA(Φ◦ϕ,Φ◦ψ;H0) given by [k1]K1 7→ [Φ(k1)]H0 . As H0 = Φ(K1),
it is easy to prove that the map ΦA is surjective.

Otherwise if Ψ : G0 → G1 is a left inverse of Φ then when we apply Ψ in the
equation Φ(ϕ(g2))Φ(k1) = Φ(k2)Φ(ψ(g2)) we have a well defined map ΨΦ(K0) :
RA(Φ ◦ ϕ,Φ ◦ ψ; Φ(K1)) → RA(ϕ, ψ;K1) such that ΦK1 ◦ ΨΦ(K1) is identity of
RA(ϕ, ψ;K1)

Therefore ΦK1 is an one to one correspondence and we have the equivalence on
the Reidemeister numbers r(ϕ, ψ; K1) = r(Φ ◦ ϕ,Φ ◦ ψ;H0) with H0 = Φ(K1) ✷

Example 3.5 (Case trivial fiber bundle). Let f, g : (B, b0) → (F, y0) be continuous
maps. So we have f, g : π1(B, b0) → π1(F, y0) and the set of algebraic Reidemeister
classes RA(f, g). Now we consider the trivial fiber bundle q : (B × F, (b0, y0)) →
(B, b0) so the maps f, g induces two sections sf , sg : (B, b0) → (B×F, (b0, y0)) given
by sf (b) = (b, f(b)) and sg(b) = (b, g(b)). Let F0 = {b0} × F = q−1(b0) be the fiber
over b0 with base point e0 = (b0, y0) so π1(F0). Then we can consider the algebraic
classes of Reidemeister RA(sg, sf ;π1(F0, e0)) and Φ(π1(F0, b0, y0)) = π1(F, y0).
Then we conclude that:

RA(sg, sf ;π1(F0, e0)) ↔ RA(Φ ◦ sg,Φ ◦ sf ; Φ(π1(F0, e0)))
↔ RA(g, f ;π1(F, y0)) = RA(g, f)

(3.1)

Example 3.6 (Case not trivial fiber bundle). We consider two sections s0, f0 :
(B, b0) → (E, e0) of the fiber bundle q : (E, e0) → (B, b0). We used s0 to describe
the structure of the group π1(E, e0) as the semi direct product π1(F0, e0)⋊π1(B, b0).
Formally, let Φ : π1(E, e0) → π1(F0, e0)⋊ π1(B, b0) be the isomorphism given by

Φ(α) =
(
α ∗ s0

(
q
(
α−1

))
, q(α)

)
∈ π1 (F0, e0)⋊ π1 (B, b0) , (3.2)

The operation on π1(F0, e0)⋊ π1(B, b0) is expressed by

(γ1, β1) • (γ2, β2) :=
(
γ1 ∗ s0(β1) ∗ γ2 ∗ s0(β

−1
1 ), β1 ∗ β2

)
. (3.3)
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Let Ψ := Φ−1 : π1(F0, e0) ⋊ π1(B, b0) → π1(E, e0) be the inverse isomor-
phism of Φ given by Ψ(γ, β) = γ ∗ s0(β

−1
1 ) and let H0 = π1(F0, e0) × {[b0]} =

Φ(π1(F0, e0)) be the subgroup of π1(F0, e0) ⋊ π1(B, b0). By the proposition 3.4 we
have RA(s0, f0;π1(F0, e0)) ↔ RA(Φ ◦ s0,Φ ◦ f0;H0).

For the operation • in π1(F0, e0)⋊π1(E, e0) expressed in (3.3) when we describe
the classes of RA(Φ ◦ s0,Φ ◦ f0;H0) we have the same classes on

RA(s0, f0;π1(F0, e0))

Φ ◦ s0(β) • (γ1, [b0]) = (γ2, [b0]) • (Φ ◦ f0(β))
([e0], β) • (γ1, [b0]) = (γ2, [b0]) • (f0(β) ∗ s0(β

−1), β)

(s0(β) ∗ γ1 ∗ s0(β
−1), β) = (γ2 ∗ f0(β) ∗ s0(β

−1), β)
s0(β) ∗ γ1 = γ2 ∗ f0(β).

(3.4)

4. The coincidence set and the Nielsen classes for sections on the fiber

bundle

Let s0, f0 : (B, b0) → (E, e0) be the sections of a fiber bundle q : (E, e0) →
(B, b0) and ΓBE(s0, f0) = {b ∈ B, s0(b) = f0(b)} 6= ∅ be the coincidence topological
space induced from B. Note that ΓBE(s0, f0) = s−1

0 (f0(B)) = f−1
0 (s0(B)).

In ΓBE(s0, f0) we defined the Nielsen classes for b1, b2 ∈ ΓBE(s0, f0) saying that

b1 is Nielsen related to b2, in symbols b1Nb2, if and only if there is a path βb1b2 on B

connecting b1 to b2 such that s0(β
b1
b2
) is homotopic to f0(β

b1
b2
) relative to {0, 1}. It

easy is to verify that N is an equivalent relation and we denote by [b1]N the class

determined by b1. If Γ̃BE(s0, f0) is the quotient set of ΓBE(s0, f0) by the Nielsen

relation, we denote by pN : ΓBE(s0, f0) → Γ̃BE(s0, f0) the canonical projection map.

Considering Γ̃BE(s0, f0) with the topology co-induced by pN we have the follow-
ing statements.

Theorem 4.1.

1. If [b1]cc is the connected component by path of b1 ∈ ΓBE(s0, f0) then [b1]cc ⊂
[b1]N .

2. If E is a Hausdorff topological space then ΓBE(s0, f0) is closed in B.

3. If B is locally path connected and E is Hausdorff and semilocally 1-connected
topological space then Γ̃BE(s0, f0) is discrete topological space.

4. If B and E satisfies the before conditions and ΓBE(s0, f0) is compact then

Γ̃BE(s0, f0) is finite.

Proof: The (1), (2) and (4) items are easy to prove. We will prove only the item
(3). Let b2 ∈ [b1]N and consider an open set Ve2 such that i : π1(Ve2 , e2) →
π1(E, e2) is trivial homomorphism. Now Wb2 = s−1

0 (Ve2)∩ f0(Ve2)∩Ub2 where Ub2
is connected path neighborhood of b2. It is immediate to verify thatWb2 ⊂ [b1]N so
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p−1
N ([b1]N ) =

⋃

b2∈[b1]

Wb2 . In others words [b1]N is open and closed set in Γ̃BE(s0, f0).

✷

In this work we assume that B,E and F0 are compact, ENR (Euclidean neigh-
borhood Retracts), path connected, locally path connected and semilocally 1-

connected space so the set Γ̃BE(s0, f0) is finite.

Let B be the collection of all the pairs
(
bi;β

b0
bi

)
, where βb0bi is a path on B

connecting b0 to bi ∈ ΓBE(s0, f0). Let γ(bi) ∈ π1(F0, e0) be the homotopy class

given by the loop s(βb0bi )∗f(β
b0
bi
)−1. Now we define PR : B → RA(s0, f0;π1(F0, e0))

given by PR(bi;β
b0
bi
) =

[
[s0(β

b0
bi
)∗f0(β

b0
bi
)−1]

]
A
= [γ(bi)]A and PN : B → Γ̃BE(s0, f0)

by PN (bi, β
b0
bi
) = [bi]N

Theorem 4.2. The map PR does not depend of the path βb0b1 , it is that, if

(b1, β
b0
b1
(1)), (b1, β

b0
b1
(2)) ∈ B then PR(b1, β

b0
b1
(1)) = PR(b1, β

b0
b1
(2)). The map PR

splits by PN through the injective map PR on the bellow diagram, so that we have
|Γ̃BE(s0, f0)| ≤ rA(s0, f0;π1(F0, e0)).

B
PR //

PN

��

RA(s0, f0;π1(F0, e0))

Γ̃BE(s0, f0)

PR

44
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐

Proof: For the first part we consider β = βb0b1(2) ∗ (β
b0
b1
(1))−1. Now

PR(b1, β
b0
b1
(1)) = [[s0(β

b0
b1
(1) ∗ f0(β

b0
b1
(1))−1]]A

= [[s0(β) ∗ (s0(β
b0
b1
(1) ∗ f0(β

b0
b1
(1))−1) ∗ f0(β)−1]]A

= PR(b1, β
b0
b1
(2))

For the second part, if (b1, β
b0
b1
), (b2, β

b0
b2
) ∈ B and [b1]N = [b2]N on Γ̃BE(s0, f0)

then there is a path βb1b2(N) between b1 and b2 such that f0(β
b1
b2
(N)) is homotopic

to s0(β
b1
b2
(N)) relative to {0, 1}. So we have:

PR(b1, β
b0
b1
) = [[s0(β

b0
b1
) ∗ f(βb0b1)

−1]]A
= [[s0(β

b0
b1
) ∗ s0(β

b1
b2
(N)) ∗ f(βb1b2(N))−1 ∗ f(βb0b1)

−1]]A
= [[s0(β

b0
b2
) ∗ f0(β

b0
b2
)−1]]A = PR(b2, β

b0
b2
)

So PR([b1]) = PR(b1, β
b0
b1
) is a well defined map as on the commutative diagram

and it is easy to see that PR is an injection. ✷

Theorem 4.3. Let Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃1) and Γ

B̃(b0)

Ẽ(e0)
(s̃0, f̃2) be the coincidence set for

f̃1, f̃2 ∈ L(f0; sF0).

1. If [f̃1]s0 = [f̃2]s0 then pb0
(
Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃1)

)
= pb0

(
Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃2)

)
.
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2. If pb0
(
Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃1)

)
∩ pb0

(
Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃2)

)
6= ∅ then [f̃1]s0 = [f̃2]s0 .

Proof: (1). Since [f̃1]s0 = [f̃2]s0 there is β ∈ π1(B, b0) which satisfies Ts0(β) ◦ f̃1 =

f̃2 ◦ Tβ . If b̃ ∈
(
Γ
B̃(b0)

Ẽ(e0)

(
s̃0, f̃1

))
then s̃0 (̃b) = f̃1(̃b), so we have

s̃0 ◦ Tβ (̃b) = Ts0(β) ◦ s̃0(̃b)

= Ts0(β) ◦ f̃1(̃b)

= f̃2 ◦ Tβ (̃b).

Therefore Tβ (̃b) ∈ Γ
B̃(b0)

Ẽe0

(
s̃0, f̃2

)
. The verification of the inverse inclusion is anal-

ogous. Since Tβ established an one to one correspondence between Γ
B̃(b0)

Ẽ(e0)

(
s̃0, f̃1

)

and Γ
B̃(b0)

Ẽe0

(
s̃0, f̃2

)
then when we apply pb0 we have

pb0
(
Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃1)

)
= pb0

(
Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃2)

)
.

Since (3) is equivalent to (2) it is sufficient to prove the item (2). If

pb0
(
Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃1)

)
∩ pb0

(
Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃2)

)
6= ∅,

then Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃1) 6= ∅ and Γ

B̃(b0)

Ẽ(e0)
(s̃0, f̃2) 6= ∅. Then there are b̃1 ∈ Γ

B̃(b0)

Ẽ(e0)
(s̃0, f̃1)

and b̃2 ∈ Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃2) such that pb0 (̃b1) = pb0 (̃b2) := b. Since the action of the

fundamental group π1(B, b0) on the fibers is transitive, there is β ∈ π1(B, b0) such

that Tβ (̃b1) = b̃2 and

ẽ := f̃2(̃b2) = s̃0(̃b2)

f̃2 ◦ Tβ (̃b1) = s̃0 ◦ Tβ (̃b1)

= Ts0(β) ◦ s̃0 (̃b1)

= Ts0(β) ◦ f̃1(̃b1)

Since f̃1, f̃2 ∈ L(f0; sF0) and the coincidence occurs in the b̃1 it follows that

f̃2 ◦ Tβ = Ts0(β) ◦ f̃1 as the bellow diagram. Therefore we have [f̃2]s0 = [f̃1]s0 .

(B̃(b0), b̃2)
f̃2 // (Ẽ(e0), ẽ)

p
e0
F0

��

(Ẽ(e0), f̃1(̃b1))
Ts0(β)oo

(B̃(b0), b̃1)

Tβ

OO

sF0 // (Ẽ(F0), sF0 (̃b1)) (B̃(b0), b̃1)

f̃1

OO

sF0oo

✷
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Theorem 4.4. Let Γ
B̃(b0)

Ẽ(e0)
(f̃0, s̃1) and Γ

B̃(b0)

Ẽ(e0)
(f̃0, s̃2) be the coincidence set for

s̃1, s̃2 ∈ L(s0; fF0).

1. If [s̃1]f0 = [s̃2]f0 then pb0
(
Γ
B̃(b0)

Ẽ(e0)
(f̃0, s̃1)

)
= pb0

(
Γ
B̃(b0)

Ẽ(e0)
(f̃0, s̃2)

)
.

2. If pb0
(
Γ
B̃(b0)

Ẽ(e0)
(f̃0, s̃1)

)
∩ pb0

(
Γ
B̃(b0)

Ẽ(e0)
(f̃0, s̃2)

)
6= ∅ then [s̃1]f0 = [s̃2]f0 .

Now, [s̃1]f0 = [s̃2]L ∈ RL(L(s̃0; fF0) by theorem 2.9. If s̃1 = Tγ1
◦ s̃0 and

s̃2 = Tγ2
◦ s̃0 with γ1, γ2 ∈ π1(F0, e0) then, by definition 2.8, we have [Tγ1

◦ s̃0]L =
[Tγ2

◦ s̃0]L if and only if [γ1]A = [γ2]A ∈ RA(s0, f0;π1(F0, e0)). From this, it follows
the main theorem:

Theorem 4.5. Let Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃1) and Γ

B̃(b0)

Ẽ(e0)
(s̃0, f̃2) be the coincidence set for

f̃1, f̃2 ∈ L(f0; sF0).

1. There is an one to one correspondence

Ψ : RL(L(f0; sF0)) → RA(f0, s0;π1(F0, e0)).

2. If [f̃1]L = [f̃2]L then pb0
(
Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃1)

)
= pb0

(
Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃2)

)
.

3. If pb0
(
Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃1)

)
∩ pb0

(
Γ
B̃(b0)

Ẽ(e0)
(s̃0, f̃2)

)
6= ∅ then [f̃1]L = [f̃2]L.

Remark 4.6. Note that the theorem follows from the theorems 2.1 and 4.3, and
is true if we replace f0, f̃1, f̃2 by s0, s̃1, s̃2 and sF0 by fF0 .
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