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abstract: The purpose of this paper is to determine extended centroid of an
inverse semiring. We also generalize a few striking results of W.S Martindale on
extended centroid of rings to inverse semirings.
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1. Introduction

W. S Martindale[12] introduced ring of quotients and extended centroid, as a
key tool to study prime rings satisfying polynomial identities. His concept later
generalized for semiprime rings[1]. The notion of extended centroid has significant
role in various branches of algebra. For example, in the study of functional iden-
tities[3], Galois theory ([9],[10],[13]) and additive mappings ([2],[7],[11]). Recently,
extended centroid of multiplicatively cancellative semiring considered in [16]. Our
aim is to investigate Martindale’s work for inverse semirings. We generalize some
results concerning extended centroid of rings to inverse semirings. These results
might be fruitful in enriching the theory of semiring in various other directions of
algebra.

By S, we mean a semiring (S,+, .) with commutative addition and an absorb-
ing zero. S is called an inverse semiring[8] if for every a ∈ S there exists a unique
element a′ ∈ S such that a + a′ + a = a and a′ + a + a′ = a′, where a′ is called
pseudo inverse of a. If X is a nonempty set and S is an inverse semiring then the
set of all mappings Map(X,S) from X into S is also an inverse semiring, where
for every f ∈ Map(X,S), the pseudo inverse f ′ is defined as f ′(x) = f(x)′, x ∈ X.

Throughout this paper, S will denote an inverse semiring such that a+a′ is in cen-
ter of S. This class of semiring is known as MA semiring which has been studied
in several directions([8],[14],[15]). S is prime if aSb = 0 implies that either a = 0
or b = 0. It is observed that center of a prime inverse semiring is zero divisor free.
Let S be a semiring then a right S-semimodule is a commutative monoid (M,+),
with additive identity 0M , for which we have the function M × S → M , denoted
by (s,m) 7→ sm, which satisfy the following conditions, for all elements s1 and s2
of S and all elements m1 and m2 of M :
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(i) m(s1s2) = (ms1)s2
(ii) (m1 +m2)s = m1s+m2s

(iii) m1S = m

(iv) 0Ms = 0M = m0S.
Let M and N be right S-semimodules then an additive mapping α : M → N is
right S-semimodule homomorphism if α(ms) = α(m)s for all m ∈ M and s ∈ S.

We will need the following lemma.

Lemma 1{Lemma 1.1, [14]}. Let S be an inverse semiring, a, b ∈ S. Then a+b = 0
implies that a = b′.

Construction of Right Martindale Semiring of Quotients

Let S 6= 0 be a prime semiring and Ω be the set of all non-zero ideals of S which
is closed under finite intersection and product of ideals. Let ∆ = {(f, I); f : I → S

is right S-semimodule homomorphism, where I ∈ Ω}. Define a relation ∼ on ∆ as
follows; (f, I) ∼ (g, J) iff f coincides with g on some K ∈ Ω such that K ⊆ I ∩ J

then ∼ is an equivalence relation. Let [f, I] be the equivalence class determined by
(f, I). Denote the set of all equivalence classes with Qr(S). Then Qr(S) forms a
semiring with respect to the following operations

[f, I] + [g, J ] = [f + g, I ∩ J ]

[f, I].[g, J ] = [fg, JI]

Here fg is defined on JI because g(JI) = g(J)I ⊆ I. These operations are well-
defined, indeed if, [f1, I1] = [g1, J1] and [f2, I2] = [g2, J2], that is; fi = gi on some
Ki ∈ Ω such that Ki ⊆ Ii ∩ Ji, i = 1, 2. Then f1 + f2 = g1 + g2 on K1 ∩K2 ∈ Ω
and f1f2 = g1g2 on K2K1 ∈ Ω. Thus [f1 + f2, I1 ∩ I2] = [g1 + g2, J1 ∩ J2] and
[f1f2, I2I1] = [g1g2, J2J1]. It is easy to calculate that Qr(S) forms a semiring with
[idS , S] as identity element and [0, S] as absorbing zero.

Moreover, If S is an inverse semiring so is Qr(S) such that for every element
[f, I] ∈ Qr(S), [f

′, I] is pseudo inverse of [f, I]. Thus [f, I]+[f ′, I]+[f, I] = [f, I] and
[f ′, I] + [f, I] + [f ′, I] = [f ′, I], where f ′ : I → S is defined as f ′(x) = f(x)′, x ∈ I.

In what follows, S will be a prime inverse semiring, E(S), set of all additively
idempotent elements in S such that Annl(E(S)) 6= 0, where Annl(E(S)) is left
annihilator of E(S). As an example, consider the inverse semiring, S = M2(N) =

{

(

x y

0 0

)

: x, y ∈ N}, in which Annl(E(S)) 6= 0, where N is prime inverse semir-

ing with addition x+ y = max(a, b) and usual multiplication.

Theorem 2. Let S be a prime inverse semiring and Ω be the set of all non-
zero ideals of S. Then Qr(S) has following properties.
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a) Qr(S) is a unital semiring containing S as subsemiring.
b) For every q ∈ Qr(S) there exists I ∈ Ω such that qI ⊆ S.
c) For every q ∈ Qr(S) and I ∈ Ω, qI = 0 ⇒ q = 0.
d) If I ∈ Ω and f : I → S a right S-semimodule homomorphism then there exists
q ∈ Qr(S) such that f(x) = qx, ∀x ∈ I.

Moreover, these properties characterize Qr(S) upto isomorphism.

Proof: We have seen that Qr(S) is a unital semiring. Define ρ : S → Qr(S)
by ρ(s) = [Ls, S], s ∈ S, where Ls is a left multiplication map. Clearly, ρ is a
well-defined homomorphism. To see ρ is (1 − 1), let ρ(s) = ρ(t), so we have,
Ls(x) = Lt(x) for all x ∈ I, I ∈ Ω. Thus sx = tx, x ∈ I. It follows that
(s + s′)x = (t + s′)x, x ∈ I. But Annl(E(S)) 6= 0, let 0 6= x1 ∈ Annl(E(S))
then we get, 0 = x1(t + s′)x, x ∈ I. Since (t + s′)x is in center of S and center
of prime inverse semiring is zero divisor free so we arrive at (t + s′)x = 0. Thus
t + s′ = 0. By lemma 1, it follows that ρ is (1-1). Hence, ρ is an embedding of
S into Qr(S). Identifying S with its isomorphic copy ρ(S), we may consider S as
subsemiring of Qr(S). To prove (c), let q = [f, I] ∈ Qr(S) then for every x ∈ I, we
have,

qx = [f, I][Lx, S] = [fLx, SI] = [Lf(x), S] = f(x) ∈ S

This establishes (c). If qI = 0 then f(I) = 0 hence q = [f, I] = 0. Also, if qJ = 0,
for any other J ∈ Ω, then qIJ ⊆ qJ = 0. But S is prime thus qI = 0 implies
q = 0, it proves (d). As we have seen above, for I ∈ Ω and a right S-semimodule
homomorphism f : I → S we can select q = [f, I] ∈ Qr(S), as required by (d).

Let Q be arbitrary semiring which satisfies conditions (a)-(d). Let q ∈ Q then
by (b) there exists I ∈ Ω such that qI ⊆ S. Thus we can define right S-semimodule
homomorphism f : I → S such that f(x) = qx, x ∈ I. If there is another J ∈ Ω
such that qJ ⊆ S then g : J → S defined as g(x) = qx, x ∈ J coincides with f

on I ∩ J . Thus we have a map φ : Q → Qr(S) defined by φ(q) = [f, I] which is
well-defined. φ is also a homomorphism. Injectivity and ontoness follows from (c)
and (d). Hence φ is an isomorphism.

Lemma 3. Let q1, q2 ∈ Qr(S) and I ∈ Ω then q1Iq2 = 0 implies either q1 = 0 or
q2 = 0.

Proof: Using (b), there exists Ii ∈ Ω such that qiIi ⊆ S, i= 1,2. Thus

(q1I1)I(q2I2) ⊆ q1Iq2I2 = 0,

that is; (q1I1)x(q2I2) = 0, x ∈ I. Replacing x by sx, s ∈ S and using primeness of
S and (c), we obtain the required result.

Lemma 4. Let qi ∈ Qr(S), (i= 1, 2...n) then there exists I ∈ Ω such that
qiI ⊆ S.
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Proof: By (b) there exists Ii ∈ Ω such that qiIi ⊆ S. Thus I = ∩Ii has the
desired property.

Lemma 5. If q1, q2 ∈ Qr(S) and I ∈ Ω such that q1i = q2i, for all i ∈ I then p = q.

Proof: Let q1 = [f, I] and q2 = [g, J ]. As S can be considered as subsemiring
of Qr(S), thus for every i ∈ I , q1i = q2i implies that [f, I][Li, S] = [g, J ][Li, S]
or [fLi, SI] = [gLi, SJ ]. This implies that fLi = gLi on some K ∈ Ω such that
K ⊆ SI ∩ SJ . That is, f(ik) = g(ik), k ∈ K. From this, we can conclude that
f = g on IK ∈ Ω, where IK ⊆ I ∩ J . Thus q1 = [f, I] = [g, J ] = q2.

Definition 6. The set C = {g ∈ Qr(S) : gf = fg, ∀f ∈ Qr(S)} is called the
extended centroid of a semiring S. It is easily seen that C is a subsemiring of Qr(S).

Lemma 7. Let f : I → S be S-bisemimodule homomorphism(a map which is
both right and left S-semimodule homomorphism), where I ∈ Ω then there exists
q ∈ C such that f(x) = qx, x ∈ I.

Proof: Let q be an element of Qr(S) determined by f that is; q = [f, I]. As in the-
orem 2, for x ∈ I, f(x) = qx. Thus we only need to show that q ∈ C. Let p = [g, J ]
be arbitrary element of Qr(S) then pq = [gf, JI] and qp = [gf, IJ ]. Consider JK
where IJ ∩ JI = K then JK ∈ Ω such that JK ⊆ IJ ∩ JI. Let x =

∑n

n=1 aibi be
arbitrary element of JK then we have, gf(x) = gf(a1b1+ ...+anbn) = g(f(a1b1)+
... + f(anbn)) = g(a1f(b1) + ... + anf(bn)) = g(a1f(b1)) + ... + g(anf(bn)) =
f(g(a1)b1) + ...+ f(g(an)bn) = f(g(a1b1) + ...+ f(g(anbn) = fg(x).
Thus gf and fg coincides on JK. Hence, pq = qp or q ∈ C. This completes the
proof.

Lemma 8. The extended centroid C of a non-zero prime semiring S is semi-
field.

Proof: Let (0 6= λ) ∈ C be arbitrary element. Let I ∈ Ω such that λI ⊆ S.

If λI = 0 then by (c), λ = 0 therefore, λI ∈ Ω. Define a map f : λI → S by
f(λx) = x, then f is well-defined. Indeed, if for some x ∈ I, λx = 0 then λIx = 0,
where Ix is ideal of S generated by S. From this and (c), we obtain that x = 0.
Hence, f is well-defined. It is easy to see that f is S-bisemimodule homomorphism.
Thus from above lemma there exists β ∈ C such that f(y) = βy, y ∈ λI. Put
y = λx we obtain βλx = x. By lemma 5, we can conclude that C is semifield.

Theorem 9. Let S be prime inverse semiring, a, b ∈ Qr(S) and I ∈ Ω such
that axb+ bxa′ = 0, for all x ∈ I, then there exists λ ∈ C such that b = λa.

Proof: By lemma 4, there exists J ∈ Ω such that aJ ⊆ S and bJ ⊆ S. Let
K = I∩J then aK ⊆ S and bK ⊆ S. Let a 6= 0 then aK 6= 0, thus V = KaK ∈ Ω.
Define a map f : V → S by f(

∑

ixiayi) =
∑

ixibyi, xi, yi ∈ K. Then f is well-
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defined. If
∑

ixiayi = 0, then
∑

ixia(yiz)b = 0, where z ∈ S. From above lemma
and axb + bxá = 0, we obtain

∑

ixibyi = 0. Moreover, f is S-bisemimodule homo-
morphism. Thus by lemma 7, there exists λ ∈ C such that f(v) = λv, v ∈ V . In
particular, xby = λxay, for all x, y ∈ K. Post multiplying axb+ b′xa = 0 by y and
using the last relation we have, (aλ + b′)xay = 0. Primeness of S and lemma 1
implies that aλ = b.

Theorem 10. Let ai, bi ∈ Qr(S), (i = 1, 2, ..., n) and I ∈ Ω such that

n
∑

1

aixbi = 0 (1.1)

for all x ∈ I. If a1, ...an are linearly independent over C then each bi = 0. Similarly,
if b1, ..., bn are linearly independent over C then each ai = 0.

Proof: Suppose that a1, ..., an are linearly independent. The case n = 1 fol-
lows from lemma 3. Assume that the result holds if the number of summands is
smaller than n. Choose 0 6= bn ∈ Qr(S) then by (b), there exists J ∈ Ω such that
bnJ ⊆ S. Thus xbny ∈ I, x ∈ I, y ∈ J and therefore

n
∑

1

aixbnybi = 0 (1.2)

By using lemma 1 in (1), we have, anxbn =
∑

1
n−1

aixb́i = 0. Thus from (2), we
get

n−1
∑

1

aix(bnybi + b′iybn) = 0

for all x ∈ I, y ∈ J . By assumption bnybi + b′iybn = 0, y ∈ J and i = 1, ..., n− 1.
By theorem 9, there exist λi ∈ C such that bi = λibn, i = 1, ..., n − 1. Thus from
(1) we have,

∑n

1 aixλibn = 0, where λn = 1 or
∑

1
n
(λiai)xbn = 0. By lemma

3,
∑n

1 λiai = 0. But λn = 1, contradicting the linear independence of the ai’s.
Similarly, if bi’s are linearly independent then ai = 0.
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