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Approximation of Signals by General Matrix Summability with Effects

of Gibbs Phenomenon

B. B. Jena, Lakshmi Narayan Mishra∗, S. K. Paikray and U. K. Misra

abstract: In the proposed paper the degree of approximation of signals (func-
tions) belonging to Lip(α, pn) class has been obtained using general sub-matrix
summability and a new theorem is established that generalizes the results of Mittal
and Singh [10] (see [M. L. Mittal and Mradul Veer Singh, Approximation of signals
(functions) by trigonometric polynomials in Lp-norm, Int. J. Math. Math. Sci.
2014 (2014), Article ID 267383, 1-6 ]). Furthermore, as regards to the convergence
of Fourier series of the signals, the effect of the Gibbs Phenomenon has been pre-
sented with a comparison among different means that are generated from sub-matrix
summability mean together with the partial sum of Fourier series of the signals.

KeyWords:Trigonometric approximation, Signal functions, Gibbs Phenomenon,
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Contents

1 Introduction, Definitions and Motivation 141

2 Known Results 146

3 Main Results 147

4 Proof of the Theorem 3.1 149

5 Effects of Gibbs Phenomenon and Applications 155

1. Introduction, Definitions and Motivation

The study of the Theory of Approximation, is an exceptionally broad field and
the investigation of the hypothesis of trigonometric estimation is of incredible sci-
entific interest and of incredible functional significance. As mentioned in [14], the
Lp-space in general, and L2 and L1 specifically assume an essential part of the hy-
pothesis of signals. It is believed that the Theory of Approximation which started
from a surely understood hypothesis of Weierstrass, has turned into an exciting
interdisciplinary field of study for the last 130 years. These approximations have
expected imperative new measurements because of their wide applications in Signal
Analysis (see [13]), in general and specifically in Digital Signal Processing. Investi-
gation of signals or time capacities is of awesome significance, since it passes on data
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or characteristics of some phenomenon. The Engineers and Scientists use proper-
ties of Fourier approximation for outlining digital filters and signals. Particularly,
Psarakis and Moustakides [14] exhibited another L2 based technique for outlining
the Finite Impulse Response digital filters and get comparing optimum approxi-
mations having enhanced execution. Recently, Diger et al. [4], and Mittal and
Singh [10] have obtained numerous nice results on Theory of Approximation utiliz-
ing sub-Nörlund, sub-Riesz mean of summability techniques with monotonicity on
the rows of the corresponding matrix T (a digital filter) by using sub-Cesàro mean
of summability method presented earlier by Armitage and Maddox (see [1]). Till
now, nothing appears to have been done for obtaining the degree of approximation
of signals (functions) using general sub-matrix mean of summability method. The
purpose of the present study is to establish certain new theorems in this direction
that will generalize some existing results.

Let f(x) ∈ Lp[0, 2π] (p ≥ 1) be a signal function with period 2π, then the
Fourier series of f is given by

f(x) =
a0
2

+
∞
∑

k=1

(ak cos kx+ bk sin kx). (1.1)

Let sn(f) be the nth partial sum of the Fourier series (1.1), then

sn(f) =
a0
2

+

n
∑

k=1

(ak cos kx+ bk sinkx). (1.2)

The integral modulus of continuity of f is defined by

ωp(f ; δ) = sup
0<|h|≤δ

{

1

2π

∫ 2π

0

|f(x+ h)− f(x)|pdx

}

1
p

. (1.3)

If ωp(f ; δ) = O(δα) (α > 0), then we write f ∈ Lip(α, p) (p ≥ 1).

For, p → ∞, Lip(α, p) class reduces to the Lip(α) class.

In this paper throughout, ‖.‖Lp
will denote Lp-norm and is defined by,

‖f‖Lp
=

{

1

2π

∫ 2π

0

|f(x)|pdx

}

1
p

(f ∈ Lp; p ≥ 1)

and L∞- norm of a function over R is defined by,

‖f‖L∞
= sup{|f(x)| : x ∈ R}.

The degree of approximation of a function over R by trigonometric polynomial
(tn) of degree n under supremum norm ‖.‖L∞

is defined by Zygmund (see [16])
and given us,

‖tn − f‖L∞
= sup{|tn − f(x)| : x ∈ R}
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and error En of a function f ∈ Lp is defined by

En = min
n

‖tn − f‖Lp
.

The formula of Abel’s Transformation is given by,

n
∑

k=m

ukvk =

n−1
∑

k=m

Uk(vk − vk+1)− Um−1vm + Unvn (0 ≤ m ≤ n), (1.4)

Uk = u0 + u1 + ...+ uk, k ≥ 0, U−1 = 0,

which can be verified, is known as Abel’s transformation and will be used exten-
sively in what follows.

If vm, vm+1, ..., vn are non-negative and non-increasing, the left hand side of (1.4)
does not exceed

2vm max
m−1≤k≤n

|Uk|

in absolute value. In fact,

∣

∣

∣

∣

∣

n
∑

k=m

ukvk

∣

∣

∣

∣

∣

= max |Uk|

{

n−1
∑

k=m

(vk − vk+1)− vm + vn

}

= 2vm max |Uk|. (1.5)

A non-negative sequence (cn) is known as almost monotone decreasing (increas-
ing) if there exists a constant K = K(c), depending on the sequence c only, such
that,

cn ≤ Kcm (cm ≤ Kcn) (∀ n ≥ m).

A non-negative sequence (cn) which is either almost increasing sequence or almost
decreasing sequence is called an almost monotone sequence.

Let F ⊂ N be infinite and it be the range of strictly increasing sequence of
positive integers of the form F = (λ(n))∞n=1. The method of sub-Cesàro summa-
bility (Cλ) is defined by

(Cλx)n =
1

λ(n)

λ(n)
∑

k=1

xk (n = 1, 2, 3...),

where (xk) is a real sequence. Therefore, Cλ summability method is a subsequence
of the Cesàro (C1) summability method and hence it is regular for any λ. Also
Cλ is obtained by deleting a set of rows from Cesàro matrix. The reader will
be known about the most fundamental properties of Cλ method see (Armitage
and Maddox [1], Osikiewicz [12]). In the present paper, to determine the degree
of approximation of signals f ∈ Lip(α, p) by imposing nth degree trigonometric
polynomial (T λ

n (f)), we first set

T λ
n (f) =

λ(n)
∑

k=0

(aλ(n),k)sk(f), (1.6)
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where

sk(f) =
1

π

∫ 2π

0

f(x+ t)Dn(t)dt

with

Dn(t) =
sin(n+1

2 )t

2 sin(t/2)
.

Here, throughout the paper T = (aλ(n),k) will denote a lower triangular infinite
matrix of real numbers such that,

aλ(n),k ≥ 0 (λ(n) ≥ k), aλ(n),k = 0 (λ(n) < k)

and
λ(n)
∑

k=0

aλ(n),k = 1 (λ(n), v = 0, 1, 2, 3, ...).

We shall also use the notations,

∆k(aλ(n),k) = (aλ(n),k − aλ(n),k+1).

The result in equation (1.6) is the generalization of the following known results:

(a) for aλ(n),k =
pλ(n)−k

Pλ(n)
, the trigonometric polynomial T λ

m(f) is reduced to the

trigonometric polynomial Nλ
m(f) (see [10]). In this case, we write

Nλ
n (f) =

1

Pλ(n)

λ(n)
∑

k=0

pλ(n)−ksk(f); (1.7)

where,

Pλ(n) = p0 + p0 + ...+ pλ(n).

(b) for aλ(n),k = pk

Pλ(n)
, the trigonometric polynomial T λ

n (f) is reduced to the

trigonometric polynomial Rλ
n(f) (see [10]). In this case, we write

Rλ
n(f) =

1

Pλ(n)

λ(n)
∑

k=0

pksk(f), (1.8)

where,

Pλ(n) = p0 + p0 + ...+ pλ(n).

(c) for aλ(n),k = 1
λ(n)+1 , the trigonometric polynomial T λ

n (f) is reduced to the
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trigonometric polynomial Cλ
n(f) (see [10]). In this case, we write

Cλ
n(f) =

1

λ(n) + 1

λ(n)
∑

k=0

sk(f). (1.9)

Next, we define the product of sub-Cesàro summability Cλ
n(f) with a sub-

Nörlund summability Nλ
n (f) denoted by Aλ(n),k(f)-summability and it has the

mean given by,

Aλ(n),k(f) =
1

λ(n) + 1

λ(n)
∑

λ(k)=0

1

Pλ(n)

λ(n)
∑

k=0

pλ(n)−ksk(f)

=
1

λ(n) + 1

λ(n)
∑

k=0

aλ(n),k (0 ≤ k ≤ λ(n)). (1.10)

Here,

Aλ(n),k =
1

λ(n) + 1

λ(n)
∑

k=0

aλ(n),k

and the matrix Aλ(n),k is said to be almost row monotone for each 0 ≤ k ≤ λ(n),
whenever, T = (aλ(n),k) is either almost increasing or almost decreasing in k and
0 ≤ k ≤ λ(n).

Remark 1.1. The product transforms Aλ
n(f) of this form plays an important

role as a double digital filter [5, 6] in signal theory as well as the theory of Ma-
chines in Mechanical Engineering (see [5]).

Many researchers like, Quade [15], Mohapatra and Russell [11], Chandra [2] and
a few others used different summability means to determine the degree of approxi-
mations of trigonometric polynomials. Further Mittal and Rhoades [7, 8] estimate
the error of trigonometric polynomials by Fourier series expansion. In 2002, Chan-
dra [3] has established a result of the degree of approximation of the trigonometric
polynomial using (N, pm) matrix. After that Mittal et al. [9] proved a theorem on
the degree approximation of the trigonometric polynomial using lower triangular
infinite matrix. Very recently, Deger et al. [4] and Mittal and Singh [10] used a
more general sub-Cesàro summability mean (Cλ) (see Armitage and Maddox [1])
to establish a result of the approximation of signals by trigonometric polynomials
in Lp- norm. In order to have some advance study in this direction, in the proposed
paper, we have established a new theorem on the degree of approximation of signals
(f ∈ Lip(α, p)) under some weaker conditions by using general sub-matrix mean
T λ
n (f) (that is, weakening the conditions of the filter, we enhance the quality of

digital filter) that generalizes some known theorems. Further, we have established
a new result on the approximation of signals of (f ∈ Lip(α, p)) class by the prod-
uct of sub-Cesàro mean and sub-Nörlund mean (Aλ(n),k(f)). Next as regards to
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convergence, the signals for nth partial sum of Fourier series and signals or Cλ
n(f)

mean, (Nλ
n (f)) mean and (Aλ(n),k(f)) means are plotted by using Matlab and are

compared in a suitable example.

2. Known Results

Dealing with a degree of approximations, Deger et al. [4] and Mittal and Singh
[10] in the year 2012 and 2014 respectively established the following theorems.

Theorem 2.1. (see [4]) Let f ∈ Lip(α, p) and let (pn) be a positive sequence
such that

(λ(n) + 1)pλ(n) = O(Pλ(n)).

If one of the conditions hold true,

(i) p > 1, α ∈ (0, 1] and pn is monotonic sequence;

(ii) p = 1, α ∈ (0, 1) and pn is monotonic increasing sequence, then

‖Nλ
n (f)− f‖Lp

= O

(

1

nα

)

.

Theorem 2.2. (see [4]) Let f ∈ Lip(α, 1), α ∈ (0, 1).

If the positive sequence (pn) satisfies

(λ(n) + 1)pλ(n) = O(Pλ(n)),

and (pn) is a monotonic increasing sequence, then

‖Rλ
n(f)− f‖1 = O

(

1

nα

)

.

Theorem 2.3. (see [10]) If f ∈ Lip(α, p) and (pn) is positive and if one the fol-
lowing conditions

(i) p > 1, α ∈ (0, 1) and pn is almost decreasing sequence;

(ii) p > 1, α ∈ (0, 1), pn is almost decreasing sequence and (λ(n) + 1)pλ(n) =
O(Pλ(n)) holds;

(iii) p > 1, α = 1, and

λ(n)−1
∑

v=1

v|αpv| = O(Pλ(n));

(iv) p > 1, α = 1,

λ(n)−1
∑

k=0

|∆pk| = O(Pλ(n)/λ(n)), and (λ(n) + 1)pλ(n) = O(Pλ(n))
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holds;

(v) p = 1, δ ∈ (0, 1] and

λ(n)−1
∑

k=−1

|∆pk| = O(Pλ(n)/λ(n)), then

‖Nλ
m(f)− f‖Lp

= O

(

1

(λ(n))α

)

.

Theorem 2.4. (see [10] Let f ∈ Lip(α, 1), α ∈ (0, 1). If the positive (pn) satisfies

(λ(n) + 1)pλ(n) = O(Pλ(n)),

and the condition

λ(n)−1
∑

k=0

|∆pk| = O(Pλ(n)/λ(n))

holds, then

‖Rλ
n(f)− f‖L1 = O

(

1

(λ(n))α

)

.

3. Main Results

Theorem 3.1. Let f ∈ Lip(α, p), if one of the conditions holds true

(i) p > 1, α ∈ (0, 1), (aλ(n),k) is almost decreasing sequence and (λ(n)+1)aλ(n),0 =
O(1);

(ii) p > 1, α ∈ (0, 1) and (aλ(n),k) is almost increasing sequence;

(iii) p > 1, α = 1 and

λ(n)−1
∑

k=0

|∆kAλ(n),k| = O

(

1

λ(n)

)

;

(iv) p = 1, α ∈ (0, 1),

λ(n)−1
∑

v=0

|∆kaλ(n),k| = O

(

1

λ(n)

)

and (λ(n) + 1)aλ(n),λ(n) =

O(1), then

‖T λ
n (f)− f‖Lp

= O

(

1

(λ(n))α

)

. (3.1)

Each of the following Lemmas will be needed in our present work.
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Lemma 3.2. (see [15]) If f ∈ Lip(α, p), for α ∈ (0, 1] and p > 1, then

‖sn(f)− f‖Lp
= O

(

1

nα

)

. (3.2)

Lemma 3.3. (see [15]) If f ∈ Lip(1, p), for p > 1, then

‖σn(f)− sn(f)‖Lp
= O

(

1

n

)

. (3.3)

Lemma 3.4. (see [15]) If f ∈ Lip(α, 1), α ∈ (0, 1), then

‖σn(f)− f‖1 = O

(

1

nα

)

. (3.4)

Lemma 3.5. Let aλ(n),k ≥ 0 (λ(n) ≥ k) and aλ(n),k = 0 (λ(n) < k), such

that

λ(n)
∑

k=0

aλ(n),k = 1.

If (aλ(n),k) is almost increasing sequence or almost decreasing sequence, and

(1 + λ(n))(aλ(n),0) = O(1),

then

λ(n)
∑

v=0

1

(1 + k)α
(aλ(n),k) = O

(

1

(1 + λ(n))α

)

(α ∈ (0, 1)). (3.5)

Proof. Suppose q =
[

λ(n)
2

]

, aλ(n),k ≥ 0 (λ(n) ≥ k) and aλ(n),k = 0 (λ(n) < k),

such that

λ(n)
∑

k=0

aλ(n),k = 1,

by Abel’s transformations, we have

λ(n)
∑

k=0

1

(1 + k)α
(aλ(n),k) ≤

q
∑

k=0

1

(1 + k)α
(aλ(n),k) +

1

(1 + q)α

λ(n)
∑

k=q+1

(aλ(n),k)

≤

q
∑

k=0

1

(1 + v)δ
(aλ(m),v) +

1

(1 + q)δ
.
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λ(n)
∑

k=0

1

(1 + k)α
(aλ(n),k) ≤

q−1
∑

k=0

{

1

(1 + k)α
−

1

(2 + k)α

} k
∑

j=0

(aλ(n),j)

+
1

(1 + q)α

q
∑

k=0

(aλ(n),k) +
1

(1 + q)α

≤

q−1
∑

k=0

(

(k + 2)α − (k + 1)α

(k + 1)α−1(k + 2)α

)

Aλ(n),k +
1

(1 + q)α
.

Using Lagrange’s mean value theorem to the function f(x) = xα (α ∈ (0, 1)) on
the interval (k + 1, k + 2), we obtain

λ(n)
∑

k=0

1

(1 + k)α
(aλ(n),k) ≤

q−1
∑

k=0

α

(k + 2)α
(Aλ(n),k) +

1

(1 + q)α
.

When, (aλ(n),k) is almost decreasing sequence and (1+λ(n))(aλ(n),0) = O(1) we get,

λ(n)
∑

k=0

1

(1 + k)α
(aλ(n),k) ≤ (Aλ(n),0)

q−1
∑

k=0

(

1

(k + 2)α
+

1

(1 + q)α

)

≤ (q + 1)1−α(aλ(n),0) +
1

(1 + q)α

≤
1

(1 + λ(n))α
.

Again, if (aλ(n),k) almost increasing sequence, then

λ(n)
∑

k=0

1

(1 + k)α
(aλ(n),k) ≤ (Aλ(n),q)

q−1
∑

k=0

(

1

(k + 2)α
+

1

(1 + q)α

)

≤
1

(1 + q)α

q
∑

k=0

(aλ(n),k) +
1

(1 + q)α

≤
1

(1 + λ(n))α
.

This completes proof of the Lemma 3.5. �

4. Proof of the Theorem 3.1

Initially, we wish to prove cases (i) and (ii) together, we have

T λ
n ((f)− f =

λ(n)
∑

k=0

aλ(n),k(sk(f)− f)
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‖T λ
n ((f)− f‖Lp

≤

λ(n)
∑

k=0

aλ(n),k‖(sk(f)− f)‖p

≤

λ(n)
∑

k=0

1

(1 + k)α
(aλ(n),k) (by Lemma 3.2)

= O

(

1

(λ(n))α

)

(by Lemma 3.5).

Next, under the condition (iii), we have

T λ
n (f)− f =

λ(n)
∑

k=0

aλ(n),k(sk(f)− f).

By Abel’s transformation, we have

T λ
n ((f)− f =

λ(n)−1
∑

k=0

(sk(f)− sk+1(f))

k
∑

j=0

aλ(n),j + sλ(n)(f)− f

= sn(f)− f −

λ(n)−1
∑

k=0

(1 + k)Uk+1(f)Aλ(n),k

= sn(f)− f −

λ(n)−2
∑

k=0

(Aλ(n),k −Aλ(n),k+1)

k
∑

j=0

(j + 1)Uj+1(f)

−Aλ(n),λ(n)−1

λ(n)−1
∑

k=0

(k + 1)Uk+1(f)

= sn(f)− f −

λ(n)−2
∑

k=0

(Aλ(n),k −Aλ(n),k+1)

k
∑

j=0

(j + 1)Uj+1(f)

−
1

λ(n)

λ(n)−1
∑

j=0

aλ(n),j

λ(n)−1
∑

k=0

(k + 1)Uk+1(f),





λ(n)
∑

k=0

aλ(n),k = 1



 .

Now by Triangle inequality,
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‖T λ
n (f)− f‖Lp

≤ ‖sn(f)− f‖Lp
+

λ(n)−2
∑

k=0

∣

∣Aλ(n),k −Aλ(n),k+1

∣

∣

∥

∥

∥

∥

∥

∥

k+1
∑

j=1

jUj(f)

∥

∥

∥

∥

∥

∥

Lp

+
1

λ(n)

∥

∥

∥

∥

∥

n
∑

k=1

kUk(f)

∥

∥

∥

∥

∥

Lp

. (4.1)

Also,

σλ
n(f)− sn(f) =

1

(1 + λ(n))

λ(n)
∑

k=1

kUk(f).

Since,

∥

∥

∥

∥

∥

∥

λ(n)
∑

k=1

kUk(f)

∥

∥

∥

∥

∥

∥

Lp

= (λ(n) + 1)‖σλ
n(f)− sn(f)‖ = O(1). (By Lemma 3.3). (4.2)

From (4.1) and (4.2), we have

‖T λ
n ((f)− f‖Lp

≤
1

λ(n)
+

λ(n)−2
∑

k=0

|Aλ(n),k −Aλ(n),k+1|

= O

(

1

λ(n)

)

(by condition (iii).

Finally, for the condition (iv),

T λ
n (f)− f =

λ(n)
∑

k=0

aλ(n),k(sk(f)− f)

=

λ(n)−1
∑

k=0

(aλ(n),k − aλ(n),k+1)

k
∑

j=0

(sj(f)− f)

+aλ(n),λ(n)

λ(n)
∑

k=0

(sk(f)− f)

=

λ(n)−1
∑

k=0

(aλ(n),k − aλ(n),k+1)(k + 1)(σλ
k(f)− f)

+aλ(n),λ(n)(1 + λ(n))(σλ
k(f)− f).
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‖T λ
n ((f)− f)‖L1 ≤

λ(n)−1
∑

k=0

(aλ(n),k − aλ(n),k+1)(k + 1)‖σλ
k(f)− f‖L1

+aλ(n),λ(n)(1 + λ(n))‖σλ
k(f)− f‖1

≤

λ(n)−1
∑

k=0

|aλ(n),k − aλ(n),k+1|(1 + k)1−α

+aλ(n),λ(n)(1 + λ(n))1−α (by Lemma 3.4).

≤ (1 + λ(n))1−α





λ(n)−1
∑

k=0

|aλ(n),k − aλ(n),k+1|+ aλ(n),λ(n)





‖T λ
n (f)− f‖L1 = O

(

1

λ(n)α

)

.

This completes the proof of Theorem 3.1. �

Corollary 4.1. Let f ∈ Lip(α, 1) (0 < α < 1). If λ(n) = n and the condi-
tions (iv) of Theorem 3.1, that is,

n−1
∑

k=0

|∆kan,k| = O

(

1

n

)

and (n+ 1)an,n = O(1) holds,

then

‖Tn(f)− f)‖L1 = O

(

1

nα

)

.

Proof. We have,

Tn(f)− f =

n
∑

k=0

an,k(sk(f)− f)

=

n−1
∑

k=0

(an,k − an,k+1)

k
∑

j=0

(sj(f)− f) + an,n

n
∑

k=0

(sk(f)− f)

=
n−1
∑

k=0

(an,k − an,k+1)(k + 1)(σλ
k(f)− f) + an,n(n)(σ

λ
k(f)− f).
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‖Tn(f)− f‖L1 ≤
n−1
∑

k=0

(an,k − an,k+1)(k + 1)‖σk(f)− f‖L1

+an,n(1 + n)‖σk(f)− f‖L1

≤

n−1
∑

k=0

|an,k − an,k+1|(1 + k)1−α + an,n(n)
1−α (by Lemma 3)

= (1 + n)1−α

(

n−1
∑

k=0

|an,k − an,k+1|+ an,n

)

‖Tn(f)− f‖L1 = O

(

1

nα

)

.

This completes the proof of Corollary 4.1. �

Corollary 4.2. If p → ∞ (0 < α < 1), then the generalized Lip(α, p) reduces
to the class Lip(α), and the degree of approximation of a function (f) belonging to
the Lip(α)-class, given by

‖T λ
n (f)− f‖L∞

= O

(

1

λ(n)α

)

.

Proof. For p → ∞ (0 < α < 1), we have

‖T λ
n (f)− f‖L∞

= sup
{∣

∣T λ
n (f)− f

∣

∣ : 0 ≤ x ≤ 2π
}

= O

(

1

λ(n)α

)

.

This establishes of Corollary 4.2. �

Remark 4.3. In Theorem 3.1, as well as in Corollary 4.1 and 4.2, as (λ(n))−α ≤
(n)−α (0 < α ≤ 1), so our result for sub matrix summability gives better estimates
(that is, minimizes the error) in comparison to the earlier existing results for gen-
eral matrix summability methods.

Corollary 4.4. Let f ∈ Lip(α, 1) (0 < α < 1). If the conditions,

λ(n)−1
∑

k=0

|∆kaλ(n),k| = O

(

1

λ(n)

)

and (λ(n) + 1)aλ(n),λ(n) = O(1) holds true,

then

‖Aλ(n),k(f)− f‖L1 = O

(

1

(λ(n))1+α

)

,



154 B. B. Jena, Lakshmi Narayan Mishra, S. K. Paikray and U. K. Misra

where Aλ(n),k(f) is the mean for the product (Cλ
m.Nλ

m).

Proof. Using the conditions we have,

Aλ(n),k(f)− f =
1

1 + λ(n)

λ(n)
∑

k=0

aλ(n),k(sk(f)− f)

=
1

1 + λ(n)

λ(n)−1
∑

k=0

(aλ(n),k − aλ(n),k+1)

k
∑

j=0

(sj(f)− f)

+aλ(n),λ(n)

λ(n)
∑

k=0

(sk(f)− f)

=
1

1 + λ(n)

λ(n)−1
∑

k=0

(aλ(n),k − aλ(n),k+1)(k + 1)(σλ
k(f)− f)

+aλ(n),λ(n)(1 + λ(n))(σλ
k(f)− f).

‖Aλ(n),k(f)− f‖L1 ≤
1

1 + λ(n)

λ(n)−1
∑

k=0

(aλ(n),k − aλ(n),k+1)(k + 1)‖σλ
k(f)− f‖L1

+aλ(n),λ(n)(1 + λ(n))‖σλ
k(f)− f‖L1

≤
1

1 + λ(n)

λ(n)−1
∑

k=0

|aλ(n),k − aλ(n),k+1|(1 + k)1−α

+aλ(n),λ(n)(1 + λ(n))1−α (by lemma 3.4)

≤
(1 + λ(n))

(1 + λ(n))1+α





λ(n)−1
∑

k=0

|aλ(n),k − aλ(n),k+1|+ aλ(n),λ(n)





‖Aλ(n),k(f)− f‖L1 = O

(

1

(λ(n))1+α

)

.

This establishes Corollary 4.4. �

Remark 4.5 From Corollary 4.4, as 1 + α ≥ α, α ∈ (0, 1), so it gives still
sharper estimates. Thus, as regards to convergence of f(x), the product summa-
bility (Cλ

m.Nλ
m). gives better estimates than the individuals.
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5. Effects of Gibbs Phenomenon and Applications

As regards to the effect of the Gibbs Phenomenon in the following example,
we will see how the sub-Cesàro mean Cλ

n(f), sub-Nörlund mean Nλ
n (f) that are

generated for sub-matrix mean T λ
n (f) as mentioned by the authors and the product

Aλ(n),k(f) mean of partial sums of Fourier series of 2π - periodic signal is better
behaved than the sequence of partial sums sn(x) itself.

Consider

f(x) =







−1 (−π ≤ x < 0)

1 (0 ≤ x < π),

be periodic with period 2π. Clearly, it is an odd function. So its Fourier series is
given by

f(x) =

∞
∑

n=1

bn sinnx,

where

bn =
2

π

∫ π

0

f(x) sinnx =
2

π

(

1− (−1)n

n

)

.

Thus the Fourier series of f(x) is,

f(x) =
2

π

∞
∑

n=1

1− (−1)n

n
sinnx, x ∈ [−π, π]. (5.1)

The nth partial sum sn(x) of Fourier series (5.1), is given by

sλ(n)(x) =
4

π

(

sinx+
1

3
sin 3x+ ...+

1

λ(n)
sinnx

)

(5.2)

and the average sub-mean of Fourier series (5.1), is given by

Cλ
n(f) =

2

π

λ(n)
∑

k=1

(

1−
k

λ(n)

)(

1− (−1)k

k

)

sin kx. (5.3)

In equation (1.6), if we take aλ(n),k =
pλ(n)−k

Pλ(n)
, pλ(n) = λ(n)+1 and aλ(n),k = 1

λ(n)+1 ,

then the sub-Nörlund and sub-Cesàro mean are respectively given as

Nλ
n (f) =

2

(λ(n) + 1)(λ(n) + 2)

λ(n)
∑

k=0

(λ(n)− k + 1)sk(f), (5.4)
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and

Cλ
n(f) =

1

(λ(n) + 1)

λ(n)
∑

k=0

sk(f). (5.5)

Finally, in (Cλ
n .N

λ
n ) summability the mean is given by

Aλ(n),k(f) =
2

(λ(n) + 1)2(λ(n) + 2)

λ(n)
∑

k=0

(λ(n)− k + 1)sk(f). (5.6)

Now the graphs for the signals, namely graph for nth partial sum sn(x), sub-
Cesàro Cλ

n(f), sub-Nörlund Nλ
n (f) and finally for the product sum Aλ(n),k(f) are

plotted in the following figure.

 

 

 

Figure-5(a):  The signals 
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Figure-5(b):  The signals  
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From the above graphs we can compare the different signals obtained by summa-
bility means with the signal of nth partial sum of Fourier series. Next as regards
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to Gibbs Phenomenon we conclude the convergence of signals as follows:

According to Gibbs Phenomenon, in the neighborhood of discontinuity, the
convergence of Fourier series is not uniform and the sequence of partial sum is over
estimated the signal by 18 percent, that is, in the neighborhood of discontinuity
overshoots in the peaks of partial sum sn(x) are noticed closure of the line passing
through a point of discontinuity as n- increases.

From the Figure 5(a) and 5(b), we observe that Cλ
n(f), Nλ

m(f) and Aλ(n),k(f)
converges quickly to f(x) than the sequence of partial sum sλ(n) in the interval
[−π, π]. We further notice that in the neighborhood of discontinuity that is, in the
neighborhood of −π, 0 and π, the graph of s7 and s14 show overshoots in peaks
and move closer the line passing through points of discontinuity as λ(n) increases,
but in the graph of Cλ

n(f), Nλ
n (f) and Aλ(n),k(f), λ(n) = 7, 14 the peaks become

flatter. Clearly, the product summability means of the Fourier series of f(x) over-
shoot the Gibbs Phenomenon and show the smoothing effect of the method. Thus
Cλ

n(f), N
λ
n (f) and Aλ(n),k(f) are the better approximates than sn(x) and product

Aλ(n),k(f) summability is better behaved than the individual sλ(n), C
λ
n and Nλ

n

summability methods.

References

1. D. H. Armitage and I. J. Maddox, A new type of Cesàro mean, Anal. 9 (1989), 195-204.
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