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Convergence of a Two-parameter Family of Conjugate Gradient

Methods with a Fixed Formula of Stepsize
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abstract: We prove the global convergence of a two-parameter family of con-
jugate gradient methods that use a new and different formula of stepsize from Wu
[14]. Numerical results are presented to confirm the effectiveness of the proposed
stepsizes by comparing with the stepsizes suggested by Sun and his colleagues [2,12].
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1. Introduction

Let us consider the following unconstrained minimization problem:

min f (x) , x ∈ Rn, (1.1)

where f is a differentiable objective function, has the following form

xk+1 = xk + αkdk, (1.2)

where

dk =

{

−gk for k = 1,
−gk + β

µ
k
,ωk

k dk−1 for k ≥ 2,
(1.3)

where gk = ∇f(xk) is the gradient of f at xk with the following formulas

β
µ
k
,ωk

k =
gTk yk−1

Dk

, (1.4)

where
Dk = (1− µk − ωk) ‖gk−1‖

2
+ µkd

T
k−1yk−1 − ωkd

T
k−1gk−1, (1.5)
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where ‖.‖ means the Euclidean norm, yk−1 = gk − gk−1, and Dk depends on pa-
rameters µk ∈ [0, 1[ and ωk ∈ [0, 1− µk[. Let us remark that the descent direction
dk is defined such that

gTk dk = −c ‖gk‖
2
, (1.6)

where 0 < c < 1− µk − ωk.
The parametrized expression (1.4) is taken from [2]. It only covers a subset of a
larger family introduced by Dai and Yan [3]. Three classical versions of nonlinear
CG are particular cases of formula (1.4):

βHS
k =

gTk yk−1

dTk−1yk−1
, Hestenes-Stiefel [7]

βPRP
k =

gTk yk−1

‖gk−1‖
2 , Polak-Ribière-Polyak [10]

βLS
k =

−gTk yk−1

dTk−1gk−1
. Liu-Storey [8]

Other important cases are not covered by the present study, such as the Fletcher-
Reeves method [6], the Conjugate Descent method [5], and the Dai-Yuan method
[4]. In addition to studying the convergence of method in other conditions by Sell-
ami and all [11]. The efficiency of the conjugate gradient method depends majorly
on the stepsize. Line search technique has been used in various literatures to obtain
the stepsize. A very recent development is to obtain the stepsize with a unified
formula which is referred to as stepsize without line search. In the implementation
of any conjugate gradient (CG) method, the stepsize is often determined by certain
line search conditions such as the Wolfe conditions [13]. These types of line search
involve extensive computation of function values and gradients, which often be-
comes a significant burden for large-scale problems, which spurred Sun and Zhang
[12] to pursue the conjugate gradient method where they calculated the stepsize
instead of the line search according to the following formula

αk = −δgTk dk/ ‖dk‖
2
Qk
, (1.7)

where ‖dk‖Qk
=

√

dTkQkdk, δ ∈ (0, νmin/τ), τ is a Lipschitz constant of f , and

{Qk} is a sequence of positive definite matrices satisfying for positive constants
νmin and νmax that

νmind
Td ≤ dTQkd ≤ νmaxd

T d, ∀k, ∀d ∈ Rn.

But the formula for the stepsize above involve a positive matrix. For large scale
optimization problems, this may cost additional memory space and execution time
during the computations.
The aim of the paper is to employ a formula for αk without a matrix which uses both
available function value and gradient information. Under suitable assumptions,
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we prove the global convergence of a two-parameter family of conjugate gradient
methods.
Lately Wu [14] succeeded to obtain the derive formula from the stepsize, this
formula is

αk =
−δgTk dk

(ḡk+1 − gk)Tdk + γθk
, (1.8)

where
θk = 6(fk − f̄k+1) + 3(gk + ḡk+1)

T dk,

fk, gk, f̄k+1 and ḡk+1 denote f(xk), ▽f(xk), f(xk + dk), and ▽f(xk + dk), respec-
tively, δ and γ are parameters satisfying

δ ∈ (0, κ/τ), (1.9)

and

γ ≥ 0 if τ = κ, or γ ∈ (0,
κ− δτ

3(τ − κ)
) if τ > κ, (1.10)

κ and τ are defined in Assumption 2.1 below.
He proved that the above formula for αk can ensure global convergence for CD,
FR and PR methods.
In this paper, our goal is to employ the step-formula (1.8) to prove the Two-
parameter family of conjugate gradient method, which was expounded by Chen
and Sun [2] using the formula (1.7).
This paper is organized as follows. Some preliminary results on the family of CG
methods with the fixed-form stepsize formula (1.8) are given in Section 2. Section 3
includes the main convergence properties of the two-parameter family of conjugate
gradient methods without line search. Numerical experiments and discussions are
given in Section 4.

2. Properties of the stepsize

The present section gathers technical results concerning the stepsize αk gener-
ated by (1.8), which will be useful to derive the global convergence properties of
the next section.
Assumption 2.1 The function f is LC1 and strongly convex in Rn, i.e, there
exists constants τ > 0 and κ ≥ 0 such that

‖▽f(u)−▽f(v)‖ ≤ τ ‖u− v‖ , ∀u, v ∈ Rn, (2.1)

and
[▽f(u)−▽f(v)]T (u− v) ≥ κ ‖u− v‖

2
, ∀u, v ∈ Rn, (2.2)

or equivalently,

f(u)− f(v) ≥ ▽f(v)T (u − v) +
κ

2
‖u− v‖

2
, ∀u, v ∈ Rn. (2.3)

Note that Assumption 2.1 implies that the level set

L = {x ∈ Rn|f(x) ≤ f(x1)} is bounded.
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Lemma 2.2 Suppose that xk is given by (1.2), (1.3) and (1.8). Then

gTk+1dk = ρkg
T
k dk, (2.4)

holds for all k, where

0 < ρk = 1− δΦk ‖dk‖
2
/[(ḡk+1 − gk)

Tdk + γθk], (2.5)

and

Φk =

{

0 for αk = 0,

(gk+1 − gk)
T (xk+1 − xk)/ ‖xk+1 − xk‖

2
for αk 6= 0.

(2.6)

Proof [14] Lemma 2.
Lemma 2.3 Suppose that Assumption 2.1 holds. Then the following inequalities

κ ≤ Φk ≤ τ, (2.7)

and

[κ+ 3γ(κ− τ )] ‖dk‖
2
≤ (ḡk+1 − gk)

Tdk + γθk ≤ (1 + 3γ)τ ‖dk‖
2
, (2.8)

hold for all k.
Proof The lemma can be proved by the same way of the proof of lemma 1 in [14].
Corollary 2.4 Suppose that Assumption 2.1 holds. Then

δκ

(1 + 3γ)τ
≤ 1− ρk ≤

δτ

κ+ 3γ(κ− τ )
, (2.9)

holds for all k.
Lemma 2.5 Suppose that Assumption 2.1 holds and {xk} is generated by (1.2),
(1.3) and (1.8). Then

∑

dk 6=0

(gTk dk)
2

‖dk‖
2 <∞. (2.10)

Proof [14] Lemma 3.
Lemma 2.6 Suppose that Assumption 2.1 holds, then we have

∑

k

α2
k ‖dk‖

2
<∞. (2.11)

Proof By (1.8), (2.8) and (2.10) we have

∑

k

α2
k ‖dk‖

2 =
∑

k

(δgTk dk)
2

[(ḡk+1 − gk)T dk + γθk]2
‖dk‖

2 (2.12)

≤ [
δ

κ+ 3γ(κ− τ )
]2

∑

dk 6=0

(gTk dk)
2

‖dk‖
2 (2.13)

<∞.
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3. Global convergence of the two-parameter family

In this section, we discuss the convergence properties of a two-parameter family
of conjugate gradient methods, in which β

µ
k
,ωk

k is given by (1.4) and (1.5).
We give the following algorithm firstly.
Algorithm 3.1 Step 0: Given x1 ∈ Rn, set d1 = −g1, k = 1.
Step 1: If ‖gk‖ = 0 then stop else go to Step 2.
Step 2: Set xk+1 = xk + αkdk where dk is defined by (1.3), and αk is defined by
(1.8).
Step 3: Compute β

µ
k+1,ωk+1

k+1 using formula (1.4).
Step 4: Set k := k + 1, go to Step 1.
Lemma 3.2 Under Assumption 2.1, the method defined by (1.2), (1.3), (1.8) and
(1.4) will generate a sequence {xk} such that f(xk+1) ≤ f(xk).
Proof The lemma can be proved by the same way of the proof of lemma 3 in [14],
with slightly modification.
Lemma 3.3 Suppose that Assumption 2.1 holds. Then.

Dk ≥ (1 − µk − ωk) ‖gk−1‖
2
− (ωk +

δκµk

(1 + 3γ)τ
)dTk−1gk−1 ≥ 0. (3.1)

Proof Since yk−1 = gk − gk−1, (2.4) also reads

Dk = (1− µk − ωk) ‖gk−1‖
2
+ (µkρk−1 − µk − ωk)d

T
k−1gk−1

= (1− µk − ωk) ‖gk−1‖
2
− (µk(1− ρk−1) + ωk)d

T
k−1gk−1.

According to (2.9) and dTk−1gk−1 ≤ 0 the conclusion is immediate �

Remark 3.4 Let us suppose first that Assumption 2.1 is valid. If Dk cancels, then
(3.1) implies

(1 − µk − ωk) ‖gk−1‖
2 − (ωk +

δκµk

(1 + 3γ)τ
)dTk−1gk−1 = 0.

Since the left-hand side is the sum of two nonnegative terms, we obtain







(1− µk − ωk) ‖gk−1‖
2
= 0 (a),

(ωk +
δκµk

(1 + 3γ)τ
)dTk−1gk−1 = 0 (b),

- Case 1: If µk + ωk < 1, (a) boils down to ‖gk−1‖
2
= 0, which means that

convergence is reached at iteration k − 1.
- Case 2: If µk = 0: then Dk is the sum of two nonnegative terms, so Dk = 0
implies that both cancel:

{

(1 − ωk) ‖gk−1‖
2 = 0,

ωkd
T
k−1gk−1 = 0.
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If ωk < 1, the conclusion is the same as in Case 1.
Lemma 3.5 Under Assumption 2.1 we have

lim
k−→∞

inf ‖gk‖ > 0 =⇒ lim
k−→∞

β
µ
k
,ωk

k = 0,

where β
µ
k
,ωk

k is defined by (1.4).
Proof According to (2.11), we conclude that

lim
k−→∞

‖xk+1 − xk‖
2 = lim

k−→∞
‖αkdk‖

2 = 0.

Because f is continuously differentiable, ‖gk‖ is bounded according to Assumption
2.1 and the boundedness of L, we have also limk−→∞ yk−1 = 0 and

lim
k−→∞

gTk yk−1 = 0. (3.2)

If lim infk−→∞ ‖gk‖ > 0, there exists a positive constant ψ > 0 such that

‖gk‖ ≥ ψ for all k. (3.3)

According to (1.4), we have

| gTk yk−1 |=| β
µ
k
,ωk

k || Dk | . (3.4)

Let us consider the iteration indices k such that µk + ωk ∈ [0, 1/2]. According to
(3.1) and dTk−1gk−1 ≤ 0, (3.4) implies that

| gTk yk−1 |≥| β
µ
k
,ωk

k | (1− µk − ωk) ‖gk−1‖
2
,

which leads to
| gTk yk−1 |≥| β

µ
k
,ωk

k | ψ2/2, (3.5)

given (3.3).
Let us establish a similar result in the more complex case µk + ωk ∈ (1/2, 1[. As a
preliminary step, let us show that

gTk dk ≤ −ψ2/2, (3.6)

for all sufficiently large values of k.
In the case gTk−1dk−1 = 0, we have β

µ
k
,ωk

k = 0, so dk = –gk and (3.6) is valid
according to (3.3).
Now let us consider the case where gTk−1dk−1 < 0. Given (1.3), (1.4) and (2.4) we
have

gTk dk = gTk (−gk + β
µ
k
,ωk

k dk−1)

= −‖gk‖
2
+

gTk yk−1

(1− µk − ωk) ‖gk−1‖
2
+ µkd

T
k−1yk−1 − ωkdTk−1gk−1

gTk dk−1,

= −‖gk‖
2 +

ρk−1g
T
k yk−1

(1− µk − ωk) ‖gk−1‖
2 + (µkρk−1 − µk − ωk)dTk−1gk−1

gTk−1dk−1

≤ −ψ2 +
|ρk−1g

T
k yk−1|

|µkρk−1 − µk − ωk|
, (3.7)



Convergence of a Two-parameter Family 133

thus for sufficiently large k, (3.6) is also true.
From (1.4) and (3.6) we have

|gTk yk−1| ≥ |β
µ
k
,ωk

k |[(1 − µk − ωk)ψ
2 + (µk(1− ρk−1) + ωk)ψ

2/2].

From (2.9), we have

|gTk yk−1| ≥ |β
µ
k
,ωk

k |{(1− µk − ωk)ψ
2 + [

δκµk

(1 + 3γ)τ
+ ωk]ψ

2/2}.

= |β
µ
k
,ωk

k |[1 − ωk/2− (1−
δκ

2(1 + 3γ)τ
)µk]ψ

2, (3.8)

for all sufficiently large values of k. Given µk + ωk ∈ (1/2, 1[, the latter inequality
implies

| gTk yk−1 |≥| β
µ
k
,ωk

k | Sψ2. (3.9)

Since S ≤ 1/2, (3.9) is implied by (3.5), so that (3.9) holds in the whole domain
µk ∈ [0, 1[, ωk ∈ [0, 1− µk[.
Finally, (3.2) and (3.9) jointly imply limk−→∞ |β

µ
k
,ωk

k | = 0.
On the other hand, consider the case where Assumption 2.1 is not necessarily valid.
If µk = 0, then we have

| gTk yk−1 |≥| β0,ωk

k | ψ2/2.

The proof is similar to that of (3.9), where the two cases to examine are ωk ∈ [0, 1/2]
and ωk ∈ (1/2, 1[.
Finally, according (3.2) we have limk−→∞ |β0,ωk

k | = 0. �

Theorem 3.6 Under Assumption 2.1, the method defined by (1.2), (1.3), (1.8)
and (1.4) will generate a sequence {xk} such that

lim
k−→∞

inf ‖gk‖ = 0.

Proof Suppose on the contrary that ‖gk‖ ≥ ψ for all k.
Since lim infk−→∞ ‖gk‖ 6= 0, by lemma 3.5 we have β

µ
k
,ωk

k −→ 0, as k −→ 0. Since
L is bounded, both {xk} and {gk} are bounded. By using

‖dk‖ ≤ ‖gk‖+ |β
µ
k
,ωk

k | ‖dk−1‖ , (3.10)

one can show that {‖dk‖} is uniformly bounded. Definition (1.3) implies the fol-
lowing relation

|gTk dk| = |gTk (−gk + β
µ
k
,ωk

k dk−1)| (3.11)

≥ ‖gk‖
2
− |β

µ
k
,ωk

k | ‖gk‖ ‖dk−1‖ . (3.12)

From (1.4), (2.4) and using the Cauchy-Schwarz inequality, we have

|β
µ
k
,ωk

k | = |
gTk (gk − gk−1)

(1 − µk − ωk) ‖gk−1‖
2
+ µkd

T
k−1yk−1 − ωkdTk−1gk−1

|

≤
‖gk‖ ‖gk − gk−1‖

|(1 − µk − ωk) ‖gk−1‖
2
− [(1− ρk−1)µk + ωk]dTk−1gk−1|

. (3.13)
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From (2.1) and (2.13) we have

‖gk − gk−1‖ ≤ ταk−1 ‖dk−1‖

≤ (
τδ

κ+ 3γ(κ− τ )
)
|gTk−1dk−1|

‖dk−1‖
. (3.14)

According (1.9) and (1.10) we deduce that

‖gk − gk−1‖ ≤
|gTk−1dk−1|

‖dk−1‖
. (3.15)

From (1.6) we have

|(1− µk − ωk) ‖gk−1‖
2 − [(1− ρk−1)µk + ωk]d

T
k−1gk−1|

≥
| − 1 + µk + ωk|

c
|gTk−1dk−1|

= m|gTk−1dk−1|, (m ≥ 1). (3.16)

By (3.13), (3.15), and (3.16) we have

|β
µ
k
,ωk

k | ‖dk−1‖ ≤
‖gk‖

m
. (3.17)

Hence by substituting (3.17) in (3.12), we have

|gTk dk| ≥ A ‖gk‖
2
, A =

m− 1

m
, (3.18)

for large k. Thus we have

(gTk dk)
2

‖dk‖
2
‖gk‖

2 ≥ A2 ‖gk‖
2

‖dk‖
2 . (3.19)

Since ‖gk‖ ≥ ψ and ‖dk‖ is bounded above, we conclude that there is ε > 0 such
that

(gTk dk)
2

‖dk‖
2
‖gk‖

2 ≥ ε,

which implies
∑

dk 6=0

(gTk dk)
2

‖dk‖
2 = ∞. (3.20)

This is a contradiction to lemma 2.5. �
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4. Numerical experiments and discussions

In this part, we present the numerical experiments of the new formula (1.8) and
apply it using (1.4), computer (Processor: Intel(R)core(TM)i3-3110M cpu@2.40
GHZ, Ram 4.00 GB) through the Matlab programme.
20 testing problems have been taken from [1]. This will lead us to test for the
global convergence properties of our method. Stopping criteria is set to ‖gk‖ ≤ ε
where ε = 10−6. Taking into consideration the following parameters: δ = 0.75,
γ = 0.01, µk = µ = 0.5 and ωk = ω = 0.4.

Table 1 list numerical results. The meaning of each column is as follows :
“Problem ”the name of the test problem.
“N ”the dimension of the test problem.
“k ”the number of iterations.
“‖gk‖”the norm of the gradient.

On conducting the numerical experiments we reached the following conclusions:
The results of the Table 1 indicate that the expression (1.8) provides time and mem-
ory better than the expression (1.7) that uses the matrices {Qk} that may become
a burden at some times to show the converge.
The value of δ is set too large in the experience of the line search method may
generate xk+1 such that f(xk) < f(xk+1) and this should not occur theoretically,
therefore δ value should be sufficiently small, see lemma 3.2. The more the value δ
is small the bigger the iterations are, this fact allows for the convergence to occur
in the end.
If the value γ is small, the number of iterations diminishes and ‖gk‖ converges
rapidly and that is because it is bound to the parameters τ and κ. Furthermore,
the selection of the parameters values µ and ω determines the value of the ‖gk‖
and the number of iterations.

There is a number of 20 large-scale unconstrained optimization test problems
in generalized or extended from CUTE [1] collection. For each test function we
have taken six numerical experiments with the number of variables increasing as n
= 1000, 2000, 4000, 6000, 8000, 10000.
We adopt the performance profiles by Delan and Moré [9] to compare the perfor-
mance between the following tow conjugate gradient algorithms
T-PF1: two-parameter family of conjugate gradient methods by using a formula of
(1.7).
T-PF2: two-parameter family of conjugate gradient methods by using a formula of
(1.8).
Figure 1,2,3 and 4 give performance profiles of the two methods for the number of
iterations, CPU time, function evaluations, and gradient evaluations respectively.
From the above three figures, we can see that all the methods are efficient. The
new method T-PF2 performs better than the T-PF1 method, for the given test
problems. These obtained preliminary results are indeed encouraging.
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Table 1

Problem N k ‖gk‖
1 Raydan 1 10 19 1.120790293916461e-07

50 51 1.389923874174295e-07
2 Diagonal 5 500 342 1.026183259422179e-07

1000 631 1.003760103090495e-07
3 Perturbed quadratic digonal 100 23 2.170295100224989e-07

500 29 1.155266677665186e-07
4 Extended quadratic penalty 1 100 18 1.884874483160104e-07

500 19 1.016400612612853e-07
5 QUARTC 100 15 1.643581275426157e-07

500 16 1.550430128841257e-07
6 Diagonal 7 100 15 1.279002965759446e-07

500 16 1.099362564544676e-07
7 Extended Maratos 100 173 1.594462458701618e-07

500 286 1.024825161025436e-07
8 Diagonal 8 50 20 3.247344971185945e-07

200 21 1.653875889473304e-07
9 Freudenstein and Roth 100 21 2.457891545157802e-07

500 24 1.623516986314701e-07
10 Rosenbrock 100 19 1.002347534497171e-07

500 21 1.001365348958891e-07
11 White and Holst 100 24 2.070125493427497e-07

500 27 1.810192036538758e-07
12 Beale 100 145 1.244578200376349e-07

500 221 1.067324585387475e-07
13 Penalty 100 71 1.532487962140017e-07

500 89 1.360078512369044e-07
14 Cliff 100 34 2.005665322082197e-07

500 39 1.897012587633221e-07
15 LIARWHD 100 248 1.185263304998455e-07

500 409 1.058770638716538e-07
16 Almost Perturbed Quadratic 2 21 1.148131830118244e-07

500 29 1.017343210015877e-07
17 Diagonal 4 2 30 1.319452728458628e-07

500 31 1.001055919601577e-07
18 Staircase 1 2 21 2.292660111210135e-07

500 25 1.025016344917332e-07
19 Power 2 21 2.251830705880973e-07

500 27 1.095143872286877e-07
20 Full Hessian 2 2 27 1.516469135063661e-07

500 29 1.100214389422758e-07
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Figure 1: Performance files based on Iterations

Figure 2: Performance files based on CPU Time
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Figure 3: Performance files based on Function Evaluations

Figure 4: Performance files based on Gradient Evaluations
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In the performance profile plot, the top curve corresponds to the method that
solved the most problems in time that is within a factor t of the best time. The
percentage of the test problems for which a method is reported as the fastest is
given on the left axis of the plot. The right side of the plot gives the percentage of
the test problems that were successfully solved by each of the methods. In essence,
the right side is a measure of the algorithm’s robustness.
The performance results of the number of iterations and CPU time are shown in
Figs. 1 and 2, respectively, to compare the performance based on the CPU time
between the T-PF1 method in (1.4) and T-PF2 method. That is, for each method.
In particular, T-PF2 is fastest for about 83%. Also, it is interesting to observe
in Figure 1 that the T-PF2 codes are the top performer, relative to the iteration
metric, for values of t ≥ 6.5. Figure 2 indicates that, relative to the CPU time
metric, T-PF2 is faster ( for 79%), than T-PF1. Hence, T-PF2 code is the top
performers, relative to the CPU time metric, for values of t ≥ 3.
In Figure 3, we compare performance based on the number of function evaluations.
Since the top curve in Figure 3 corresponds to T-PF2, this algorithm is clearly the
fastest for this set of 20 test problems. Also, it is interesting to observe in Figure
3 that the T-PF2 code is the top performers, relative to the number of function
evaluations, for values of t ≥ 6.
Finally in Figure 4, we compare performance based on the number of gradient
evaluations. T-PF2 is faster ( for 72%), than T-PF1. Hence, T-PF2 code is the
top performers, relative to the the number of gradient evaluations, for values of
t ≥ 4.5.
In conclusion, Figs. 1 - 4 suggest that our proposed method T-PF2 exhibits the
best overall performance since it illustrates the highest probability of being the
optimal solver, followed by the T-PF1 conjugate gradient method relative to all
performance metrics.
Acknowledgements. The authors would like to thank the referees and the editors
for their careful reading and some useful comments on improving the presentation
of this paper.
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