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Numerical Simulations of Two Components Ecological Models with

Sinc Collocation Method

Ali Barati ∗ and Ali Atabaigi

abstract: It is well known that reaction-diffusion systems can describe the in-
teractions of different species in ecological systems. In this work, we propose a
numerical method for solving a general two-species reaction-diffusion system. The
method comprises a standard finite difference to discretize in time direction and
Sinc collocation method in spatial direction. A series of numerical experiments
demonstrate the accuracy and good performance of the algorithm. The biological
significance of the numerical results was also discussed and plotted in figures.
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1. Introduction

Reaction-diffusion equations may be used to model many natural phenomena
and practical problems which arise from a variety of disciplines such as physics,
chemistry, medicine and so on. These equations are a useful tool for modeling the
spatiotemporal dynamics of populations in ecology [1,2]. The study of reaction-
diffusion problems in ecological context have gained a huge amount of scientific
interest, due to their practical relevance and emergence of some interesting phe-
nomena such as spatial patterns, oscillating solutions, phase planes and multiple
steady states to mention a few.
In recent years, there have been considerable interests in spatial and temporal
behavior of interacting species in ecosystems. Pattern formation study in reaction-
diffusion systems is a very active research area. Since Turing [3] first proposed
reaction-diffusion theory to describe the range of spatial patterns observed in the
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developing embryo, reaction-diffusion systems have been studied extensively to ex-
plain patterns in fish skin, mammalian coat markings, phyllotaxis, predator-prey
systems, terrestrial vegetation, plankton, intertidal communities and so on (see
Ref. [5,6,7,8,9]).
Predator-prey model is one of the most important population dynamical models.
There are many factors which affect population dynamics in predator-prey mod-
els. One crucial component of predator-prey relationships is predator-prey interac-
tion (also called functional response), which can be classified in to many different
types, such as Holling I-IV types, Hassell-Varley type, Beddington-DeAngelis type,
Crowley-Martin type, and etc.
Predator-prey systems have been studied by many researchers in various forms.
For instance, in bacteria ecology, computer simulations of complex spatiotempo-
ral patterns [10,11] of Bacillus subtilis based on deterministic models [12], Allee
effect of patchy invasion on predator-prey dynamics [13]. Jiang et al. in [14]
consider a predator-prey model with Beddington-DeAngelis functional response
subject to the homogeneous Neumann boundary condition. Moreover, Wang et
al. [15] investigated the spatial pattern formation of a predator-prey system with
prey-dependent functional response of Ivlev type and reaction-diffusion whereas the
analysis of predator-prey systems showing the Holling type II functional response
is examined in Garvie and Trenchea [16]. Moreover, we can point to other efficient
numerical methods for solving the reaction-diffusion equations arising in biology
such as [17,18,19,20,21].
In this paper, we consider the following general two-species reaction-diffusion sys-
tem







∂u
∂t = du

∂2u
∂x2 + f(u, v), (x, t) ∈ Ω× (0,∞),

∂v
∂t = dv

∂2v
∂x2 + g(u, v), (x, t) ∈ Ω× (0,∞),

(1.1)

subject to the initial conditions:

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ Ω, (1.2)

and zero-flux boundary conditions

∂u

∂ν
=
∂v

∂ν
= 0, (x, t) ∈ ∂Ω× (0,∞), (1.3)

where u(x,t) and v(x,t) represent the species densities, Ω is a bounded region with
the smooth boundary ∂Ω in R ( here we assume Ω = (a, b)), ν is the outward unit
normal vector on ∂Ω. The positive constants du and dv are the diffusion coefficients
corresponding to u and v, also f and g are reaction kinetics.
The homogeneous Neumann boundary condition means that model (1.1) is self-
contained and has no population flux across the boundary ∂Ω.
We assume that the point (us, vs) is a positive equilibrium point of the homogeneous
system

du

dt
= f(u, v),

du

dt
= g(u, v), (1.4)
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that is f(us, vs) = 0, g(us, vs) = 0
In [3], Turing concluded that the reaction-diffusion model (1.1) may exhibit spatial
patterns under the following two conditions: the equilibrium (us, vs) is linearly
stable in the absence of diffusion; and the equilibrium becomes linearly unstable
in the presence of diffusion. Such an instability is called a Turing instability or
diffusion-driven instability.

In this paper, a numerical method applied for solving couple system (1.1) which
is based on Sinc basis functions. Sinc methods have been studied extensively and
found to be a very effective technique, particularly for problems with singular
solutions and those on unbounded domain. In addition, Sinc function seems that
be useful for problems that their solutions have oscillatory behavior in domain.
Sinc method originally introduced by Stenger [22] which is based on the Whittaker-
Shannon-Kotel’ nikov sampling theorem for entire functions. The books [23] and
[24] provide excellent overviews of the existing Sinc methods for solving ODEs and
PDEs.

In recent years, a lot of attentions have been devoted to the study of the Sinc
method to investigate various scientific models. The efficiency of the Sinc method
has been formally proved by many researchers Bialecki [25], Rashidinia et al. [26,
27], EL-Gamel [28], Okayama et al. [29] and Saadatmandi and Dehghan [30].
The paper is organized as follows. In section 2, we review some basic facts about
the Sinc approximation. In section 3, we discretized the reaction-diffusion system
in temporal variable by means of implicit Euler method and then we applied the
Sinc-collocation method for solving of the arising system of nonlinear ordinary
differential equations in each time level. Some numerical examples will be presented
in section 4, and at the end we conclude implementation, application and efficiency
of the proposed scheme.

2. Notation and background

The goal of this section is to recall notations and definitions of the Sinc function
and state some known theorems that are important for this paper.
The Sinc function is defined on −∞ < x <∞ by

Sinc(x) =

{

sin(πx)
πx , x 6= 0,

1, x = 0.

For h > 0 we will denote the Sinc basis functions by

S(k, h)(x) = sinc(
x− kh

h
), k = 0,±1,±2, . . .

let f be a function defined on R then for h > 0 the series

C(f, h)(x) =

∞
∑

k=−∞
f(kh)S(k, h)(x),

is called the Whittaker cardinal expansion of f whenever this series converges. The
properties of Whittaker cardinal expansions have been studied and are thoroughly
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surveyed in Stenger [24]. These properties are derived in the infinite strip Dd of
the complex plane where d > 0

Dd = {ζ = ξ + iη : |η| < d ≤
π

2
}.

Approximations can be constructed for infinite, semi-finite, and finite intervals. To
construct approximation on the interval (a, b),we consider the conformal map

φ(z) = ln(
z − a

z − b
), (2.1)

which maps the eye-shaped region

DE = {z = x+ iy; | arg(
z − a

z − b
)| < d ≤

π

2
},

onto the infinite strip Dd.
For the Sinc method, the basis functions on the interval (a, b) for z ∈ DE are
derived from the composite translated Sinc function:

Sk(z) = S(k, h) ◦ φ(z) = sinc(
φ(z)− kh

h
). (2.2)

The function

z = φ−1(ω) =
a+ beω

1 + eω
,

is an inverse mapping of ω = φ(z). We define the range of φ−1 on the real line as

Γ = {ψ(u) = φ−1(u) ∈ DE : −∞ < u <∞} = (a, b).

The sinc grid points zj ∈ (a, b) in DE will be denoted by xj because they are
real. For the evenly spaced nodes {jh}∞j=−∞ on the real line, the image which
corresponds to these nodes is denoted by

xj = φ−1(jh) =
a+ bejh

1 + ejh
, j = 0,±1,±2, .... (2.3)

Definition 2.1. Let B(DE) is the class of functions f which are analytic in DE

such that

∫

ψ(u+Σ)

|f(z)|dz → 0, as u→ ±∞ (2.4)

where Σ = {iη : |η| < d ≤ π
2 } and satisfy

N(f) ≡

∫

∂DE

|f(z)|dz <∞, (2.5)

where ∂DE represents the boundary of DE.
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Definition 2.2. Let Lα(DE) be the set of all analytic function u in DE, for which
there exists a constant C such that

|u(z)| ≤ C
|ρ(z)|α

[1 + |ρ(z)|]2α
, z ∈ DE, 0 < α ≤ 1. (2.6)

where ρ(z) = eφ(z).

Theorem 2.3. (Stenger [24]) If φ
′

u ∈ B(DE), and let

sup
−π
h

≤t≤π
h

∣

∣

∣

∣

∣

(

d

dx

)l

eitφ(x)

∣

∣

∣

∣

∣

≤ C1h
−l, x ∈ Γ,

for l = 0, 1, . . . ,m with C1 a constant depending only on m and φ. If u ∈ Lα(DE)
then taking h =

√

πd/αN it follows that

sup
x∈Γ

∣

∣

∣

∣

∣

u(l)(x)−

(

d

dx

)l N
∑

k=−N
u(xk)Sk(x)

∣

∣

∣

∣

∣

≤ CN (l+1)/2 exp(−(πdαN)1/2),

where C is a constant depending only on u, d,m, φ and α.

The Sinc-collocation method requires that the derivatives of composite Sinc
function be evaluated at the nodes. We need to recall the following lemma.

Lemma 2.4. (Lund and Bowers [23]) Let φ be the conformal one-to-one mapping
of the simply connected domain DE onto Dd, given by (2.2). Then

δ
(0)
kj = [S(k, h) ◦ φ(x)]|x=xj

=

{

1, k = j,
0, k 6= j,

(2.7)

δ
(1)
kj = h

d

dφ
[S(k, h) ◦ φ(x)]|x=xj

=

{

0, k = j,
(−1)(j−k)

j−k , k 6= j,
(2.8)

δ
(2)
kj = h2

d2

dφ2 [S(k, h) ◦ φ(x)]|x=xj
=

{

−π2

3 , k = j,
−2(−1)(j−k)

(j−k)2 , k 6= j,
(2.9)

in relations (2.7-2.9) h is step size and xj is sinc grid given by (2.3).

It is convenient to define the following matrices:

I(l) = [δ
(l)
kj ], l = 0, 1, 2, (2.10)

where δ
(l)
kj denotes the (k, j)th element of the matrix I(l). Note that the matrix

I(2) and I(1) are symmetric and skew-symmetric matrices respectively, also I(0) is
identity matrix.
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3. Description of method

First, we discretize reaction-diffusion system (1.1) in time direction by means
of the implicit Euler method with uniform step size ∆t as

ut =
un+1 − un

∆t
, vt =

vn+1 − vn

∆t
,

where un = u(x, tn), u
0 = u(x, 0), vn = v(x, tn), v

0 = v(x, 0) and tn = n∆t, n =
1, 2, ...,

to get the following system of nonlinear ordinary differential equations:







un+1−un

∆t = duD
2un+1 + f(un+1, vn+1),

vn+1−vn
∆t = dvD

2vn+1 + g(un+1, vn+1),

(3.1)

where un+1 = u(x, tn+1) and vn+1 = v(x, tn+1) are the solutions of Eqs.(3.1) at
(n+ 1)th time level and D = d

dx .
Now we can rewrite equation (3.1) in the following form







duD
2û+ f(û, v̂)− 1

∆t û = −un

∆t ,

dvD
2v̂ + g(û, v̂)− 1

∆t v̂ = − vn

∆t ,

(3.2)

where û = un+1, v̂ = vn+1 and associated with homogeneous Neumann boundary
conditions:

û
′

(x) = v̂
′

(x) = 0, x ∈ ∂Ω. (3.3)

Then, we apply the Sinc-collocation method for solution of the system of equation
(3.2)with given boundary conditions.
Since the Sinc basis functions in (2.2) do not have a derivative at endpoints a and
b, and because the Neumann boundary conditions (3.3) must be handled at a and
b by approximate solutions, Thus the approximate solutions for û(x) and v̂(x) in
Eqs(3.2) are represented by formula







û(x) ≈ ûm(x) = c−N−1wa(x) +
∑N

k=−N ckξ(x)Sk(x) + cN+1wb(x),

v̂(x) ≈ v̂m(x) = ρ−N−1wa(x) +
∑N

k=−N ρkξ(x)Sk(x) + ρN+1wb(x),

(3.4)

m = 2N + 3

where ξ(x) = (a − x)(b − x), we note that the first derivative of the modified
Sinc basis function of ξ(x)Sk(x) is defined at endpoints a and b and is equal to
zero. Moreover, the functions wa(x) and wb(x) satisfy in the following boundary
conditions

wa(a) = wb(b) = 1, w
′

a(a) = w
′

b(b) = 0, wa(b) = wb(a) = 0, w
′

a(b) = w
′

b(a) = 0,
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and are obtained by Hermite interpolation as

wa(x) =
(2x+ b− 3a)(b− x)2

(b− a)3
, wb(x) =

(−2x+ 3b− a)(x− a)2

(b− a)3
.

The 4N + 6 unknown coefficients ck and ρk in relation (3.4) are determined
by substituting ûm(x) and v̂m(x) into (3.2) and evaluating the result at the Sinc
points (2.3).
Setting

di

dφi
[Sk(x)] = S

(i)
k (x), 0 ≤ i ≤ 2, (3.5)

and noting that
d

dx
[Sk(x)] = S

(1)
k (x)φ

′

(x), (3.6)

d2

dx2
[Sk(x)] = S

(2)
k (x)[φ

′

(x)]2 + S
(1)
k (x)φ

′′

(x), (3.7)

and

δ
(l)
kj = hl

dl

dφl
[Sk(x)]x=xj

. (3.8)

By given approximations in (3.4) and using (3.5-3.7), we have

û
′

m(x) = c−N−1w
′

a(x) +

N
∑

k=−N

ck
[

ξ
′

(x)Sk(x) + ξ(x)φ
′

(x)S
(1)
k (x)

]

+ cN+1w
′

b(x), (3.9)

v̂
′

m(x) = ρ
−N−1w

′

a(x) +
N
∑

k=−N

ρk
[

ξ
′

(x)Sk(x) + ξ(x)φ
′

(x)S
(1)
k (x)

]

+ ρN+1w
′

b(x), (3.10)

û
′′

m(x) = c−N−1w
′′

a (x) +

N
∑

k=−N

ck

[

ξ
′′

(x)Sk(x) + 2ξ
′

(x)φ
′

(x)S
(1)
k (x)

+ξ(x)φ
′′

(x)S
(1)
k (x) + ξ(x)(φ

′

(x))2S
(2)
k (x)

]

+ cN+1w
′′

b (x), (3.11)

v̂
′′

m(x) = ρ
−N−1w

′′

a (x) +

N
∑

k=−N

ρk

[

ξ
′′

(x)Sk(x) + 2ξ
′

(x)φ
′

(x)S
(1)
k (x)

+ξ(x)φ
′′

(x)S
(1)
k (x) + ξ(x)(φ

′

(x))2S
(2)
k (x)

]

+ ρN+1w
′′

b (x). (3.12)

Now by substituting each terms of (3.2) with given approximations in (3.4),(3.11)
and (3.12) and evaluating the result at the Sinc points xj , we can obtain the
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discrete Sinc-collocation system of nonlinear equations to determining the unknown
coefficients {ck}

N+1
k=−N−1 and {ρk}

N+1
k=−N−1 as



















































































































































































du

{

c−N−1w
′′

a (xj) +
∑N

k=−N ck

[

ξ
′′

(xj)Sk(xj) + 2ξ
′

(xj)φ
′

(xj)S
(1)
k

(xj)+

ξ(xj)φ
′′

(xj)S
(1)
k

(xj) + ξ(xj)(φ
′

(xj))
2S

(2)
k

(xj)
]

+ cN+1w
′′

b
(xj)

}

+ f
(

c−N−1

wa(xj) +
∑N

k=−N ckξ(xj)Sk(xj) + cN+1wb(xj), ρ−N−1wa(xj)+

∑N
k=−N ρkξ(xj)Sk(xj) + ρN+1wb(xj)

)

−

1
∆t

(

c−N−1wa(xj)+

∑N
k=−N ckξ(xj)Sk(xj) + cN+1wb(xj)

)

= −

un

∆t
,

dv

{

ρ
−N−1w

′′

a (xj) +
∑N

k=−N ρk

[

ξ
′′

(xj)Sk(xj) + 2ξ
′

(xj)φ
′

(xj)S
(1)
k

(xj)+

ξ(xj)φ
′′

(xj)S
(1)
k

(xj) + ξ(xj)(φ
′

(xj))2S
(2)
k

(xj)
]

+ ρN+1w
′′

b
(xj)

}

+

g
(

c−N−1wa(xj) +
∑N

k=−N ckξ(xj)Sk(xj) + cN+1wb(xj), ρ−N−1wa(xj)+

∑N
k=−N ρkξ(xj)Sk(xj) + ρN+1wb(xj)

)

−

1
∆t

(

ρ
−N−1wa(xj)+

∑N
k=−N ρkξ(xj)Sk(xj) + ρN+1wb(xj)

)

= −

vn

∆t
,

(3.13)

j = −N − 1,−N + 1, ..., N + 1.

Also, we set

ξ(i)(xj) = ξ
(i)
j , φ(i)(xj) = φ

(i)
j , w

(i)
a (xj) = w

(i)
aj , w

(i)
b (xj) = w

(i)
bj , i = 0, 1, 2.

Using above relations and (3.8), system of equations (3.13) can be represented as


































































































































du

{

c−N−1w
′′

aj +
∑N

k=−N ck

[

ξ
′′

j δ
(0)
kj

+ 2
h
ξ
′

jφ
′

jδ
(1)
kj

+ 1
h
ξjφ

′′

j δ
(1)
kj

+

1
h2 ξj(φ

′

j)
2δ

(2)
kj

]

+ cN+1w
′′

bj

}

+ f
(

c−N−1waj +
∑N

k=−N ckξjδ
(0)
kj

+

cN+1wbj , ρ
−N−1waj +

∑N
k=−N ρkξjδ

(0)
kj

+ ρN+1wbj

)

−

1
∆t

(

c−N−1waj +
∑N

k=−N ckξjδ
(0)
kj

+ cN+1wbj

)

= −

un

∆t
,

dv

{

ρ
−N−1w

′′

aj +
∑N

k=−N ρk

[

ξ
′′

j δ
(0)
kj

+ 2
h
ξ
′

jφ
′

jδ
(1)
kj

+ 1
h
ξjφ

′′

j δ
(1)
kj

+

1
h2 ξj(φ

′

j)
2δ

(2)
kj

]

+ ρN+1w
′′

bj

}

+ g
(

c−N−1waj +
∑N

k=−N ckξjδ
(0)
kj

+

cN+1wbj , ρ
−N−1waj +

∑N
k=−N ρkξjδ

(0)
kj

+ ρN+1wbj

)

−

1
∆t

(

ρ
−N−1waj +

∑N
k=−N ρkξjδ

(0)
kj

+ ρN+1wbj

)

= −

vn

∆t
,

(3.14)

j = −N − 1,−N + 1, ..., N + 1.
To obtain a matrix representation of the equations (3.14). We define the m ×m
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diagonal matrix as follow:

D
(

s(x)
)

=























s(x−N−1) 0 0 . . . 0

0 s(x−N ) 0 . . . 0

...
. . .

...

0 . . . 0 s(xN+1)























.

By using the above definitions and notations in (2.10), the system (3.14) can be
represented by the following form:















du
[

w
′′

a ,A,w
′′

a

]

c+ f
(

[wa,B,wb]c, [wa,B,wb]d
)

− 1
∆t

[

wa,B,wb

]

c = −u
n

∆t ,

dv
[

w
′′

a ,A,w
′′

a

]

d+ g
(

[wa,B,wb]c, [wa,B,wb]d
)

− 1
∆t

[

wa,B,wb

]

d = −v
n

∆t

(3.15)
where A and B are (2N +3)× (2N +1) matrices and c,d,w

′′

a ,w
′′

b ,wa and wb are
m-vectors as:

A =
1

h2
D
(

ξ(φ
′

)2
)

I(2) +
1

h
D
(

2ξ
′

φ
′

+ ξφ
′′)

I(1) +D(ξ
′′

)I(0), B = D(ξ)I(0)

wa =











wa(x−N−1)
wa(x−N )

...
wa(xN+1)











, wb =











wb(x−N−1)
wb(x−N )

...
wb(xN+1)











, c =











c−N−1

c−N
...

cN+1











,

d =











ρ−N−1

ρ−N
...

ρN+1











, w
′′

a =











w
′′

a (x−N−1)

w
′′

a (x−N )
...

w
′′

a (xN+1)











, w
′′

b =











w
′′

b (x−N−1)

w
′′

b (x−N )
...

w
′′

b (xN+1)











,

also, the matrices I(0), I(1) and I(2) are (2N + 3)× (2N + 1) and defined in (2.10).
we rewrite the system (3.15) as following form

(

Au 0

0 Av

)(

c

d

)

+

(

f
(

Mc,Md
)

g
(

Mc,Md
)

)

= −
1

∆t

(

un

vn

)

, (3.16)

where

Au = du
[

w
′′

a ,A,w
′′

a

]

, Av = dv
[

w
′′

a ,A,w
′′

a

]

, M =
[

wa,B,wb

]

.
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The system (3.16) is a nonlinear system of equations which consists of 4N + 6
equations and 4N + 6 unknowns. By solving this system by means of Newton’s
method , we can obtain approximate solutions um(x) and vm(x) of (3.2) from (3.4).
Of course with initial guess zero and fix point algorithm we can obtain a starting
value for Newton’s method.

4. Numerical results

In this section, by applying the Sinc collocation method on (1.1) to three test
problems verify the analytical results discussed in the previous sections. In all of
the examples considered in this paper, we choose α = 1 and d = π

2 which yield
h = π√

2N
, also the errors are reported on uniform grids

U = {z0, z1, . . . , zk}, zs =
s

k
, s = 0, 1, . . . , k. (4.1)

Example 1. We consider a predator-prey model with Beddington-DeAngelis func-
tional response as following form











∂u
∂t = du

∂2u
∂x2 + u(δ − u)− βuv

1+pu+qv ,

∂v
∂t = dv

∂2v
∂x2 + v(1− v

u ), (x, t) ∈ (0, 2π)× (0,∞)

(4.2)

subject to the homogeneous Neumann boundary condition

∂u

∂x
(0, t) =

∂u

∂x
(2π, t) =

∂v

∂x
(0, t) =

∂v

∂x
(2π, t) = 0, t ∈ (0,∞).

All parameters appearing in model (4.2) are assumed to be positive constants.
For this example, a unique positive equilibrium point (coexistence of predator and
prey) has been derrived as

us = vs =
rδ − 1− β +

√

(1 + β − rδ)2 + 4rδ

2r
, r = p+ q.

The qualitative analysis for this example is discussed in [14]. Here, we represent
numerical simulations by Sinc-collocation method for various values of parameters
in (4.2). Figures 1 and 2 display numerical simulations of example 1 for fixed values
of parameters N = 32, p = 0.6, q = 0.4, β = 12, dv = 22,∆t = 0.01 and for various
values of δ and du. The example has been solved at final time t = 30. These
parameters are taken from the literature [14]. In figure 1 we choose δ = 6 such
that the conditions of Theorem 1(2)(i) in [14] are satisfied. Then, by Theorem
1(2)(i) in [14], we know that (us, vs) is locally asymptotically stable. In figure 2
we choose δ = 10 such that the conditions of Theorem 1(3) in [14] are satisfied.
Then, by Theorem 1(3) in [14], we know that (us, vs) is unstable and non constant
steady states appear.
The exact solution to this problem is unknown. So the accuracy of its numerical
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solution will be computed using double mesh principle, therefore for each δ the
maximum point wise errors are estimated as

Emi,δ = max
s

|ûmi (zs)− û2mi (zs)|, i = 1, 2, (4.3)

where ûm1 = ûm(x), ûm2 = v̂m(x) are the approximation solutions of (3.4) for num-
ber of m Sinc points. let

Emδ = max
i
Emi,δ, i = 1, 2. (4.4)

Table 1 represent values of Emδ for various values of δ and N also for fixed values
of β = 12, du = 0.8, dv = 22, p = 0.6, q = 0.4,∆t = 0.01 and t = 30. These results
show that the errors decrease with increasing N .

Table 1: Errors of Em
δ

for example 1 with β = 12, du = 0.8, dv = 22, p = 0.6, q = 0.4,∆t = 0.01

and t = 30
δ → 6 10 18
N ↓
8 2.4× 10−2 3.79× 10−2 1.99× 10−1

16 2.91× 10−3 6.50× 10−3 2.10× 10−2

32 6.71× 10−4 6.13× 10−4 6.14× 10−3

64 1.68× 10−4 1.73× 10−4 5.40× 10−4

Figure 1: Numerical solutions of example 1 for values of δ = 6, p = 0.6, q = 0.4, β = 12, du =
0.8, dv = 22, with ∆t = 0.01 at t = 30 and initial conditions (u0, v0) = (3, 2) also us = vs =
0.7720.
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Figure 2: Numerical solutions of example 1 for values of δ = 10, p = 0.6, q = 0.4, β = 12, du =
0.8, dv = 22, with ∆t = 0.01 at t = 30 and initial conditions (u0, v0) = (2.5 + 0.001 cos(x

2
), 2 +

0.001 cos(x)) also us = vs = 2.

Example 2. Second problem is given by











∂u
∂t = du

∂2u
∂x2 + u(1− u)−

√
uv

1+λ
√
u
,

∂v
∂t = dv

∂2v
∂x2 + βv

(

− γ+δv
1+v +

√
u

1+λ
√
u

)

, (x, t) ∈ (0, π)× (0,∞)

(4.5)
with Neumann boundary conditions and initial conditions

ux(0, t) = vx(0, t) = ux(π, t) = vx(π, t) = 0, u(x, 0) = u0, v(x, 0) = v0.

The system (4.5) is a spatial model exhibiting herd behavior in terms of square
root of prey population and hyperbolic mortality γ+δv

1+v of predator.
Existence and uniqueness of positive equilibrium for this model have been proved in
[31] analytically. Here, we present some numerical simulations by Sinc procedure,
also, the example has been solved at final time t = 2000, 1000 and t = 500.
Fix δ = 0.5, γ = 0.2, λ = 1.5, du = 0.01, dv = 0.8. According to Theorem 3.1 of
[31], the positive equilibrium (us, vs) is asymptotically stable for β > β0 ≈ 0.28
and unstable for β < β0. So, the system (4.5) undergoes a Hopf bifurcation at the
bifurcation value β = β0. The figures 3 and 4 verify the results of Theorem 3.1 in
[31].
Moreover, for the parameter values δ = 0.5, γ = 0.2, λ = 1.5, du = 0.01, dv = 5 and
β = 4, there exists a stable spatially inhomogeneous steady states. So, the system
(4.5) undergoes a pitchfork bifurcation. The figure 5 verify the results of Theorem
3.1 in [31].
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As the exact solution u(x, t) and v(x, t) of (4.5) are unknown, therefore the errors
are estimated as (4.3) and (4.4) in example 1. Table 2 displays the results for this
example for various values of N and β.

Table 2: Errors of Em
β

for example 2 with λ = 1.5, γ = 0.2, δ = 0.5, du = 0.01, dv = 0.8,∆t =

0.01 and t = 100
β → 0.28 0.32 1.5
N ↓
8 1.17× 10−2 1.15× 10−2 1.19× 10−2

16 2.30× 10−3 3.50× 10−3 1.15× 10−3

32 9.00× 10−4 8.84× 10−4 9.14× 10−4

64 2.08× 10−4 1.23× 10−4 4.10× 10−4

Figure 3: The positive equilibrium (us, vs) = (0.4153, 0.7410) of system (4.5) is asymptotically
stable. Here we set δ = 0.5, β = 0.32, γ = 0.2, λ = 1.5, du = 0.01, dv = 0.8, and N = 32 with
∆t = 0.1 at t = 2000 and initial conditions (u0, v0) = (us + 0.02, vs + 0.02).

Figure 4: Numerical simulation of spatially homogeneous stable periodic solution bifurcating
from the unstable equilibrium (us, vs) = (0.4153, 0.7410) of system (4.5). Here we set δ = 0.5, β =
0.28, γ = 0.2, λ = 1.5, du = 0.01, dv = 0.8, and N = 32 with ∆t = 0.1 at t = 1000 and initial
conditions (u0, v0) = (us + 0.02, vs + 0.02).



160 A. Barati and A. Atabaigi

Figure 5: Numerical simulation of pitchfork bifurcation of positive constant equilibrium of
system (4.5) for parameter values as δ = 0.5, β = 4, γ = 0.2, λ = 1.5, du = 0.01, dv = 5, and N =
32 with ∆t = 0.01 at t = 500 and initial conditions (u0, v0) = (us + 0.2 cos(x), vs + 0.05 cos(x)).
The positive constant equilibrium (us, vs) = (0.4153, 0.7410) is unstable.

Example 3. We consider prey-predator reaction-diffusion system [32]











∂u
∂t = du

∂2u
∂x2 +Ru(1− u

K )− β u2v
1+λu2 ,

∂v
∂t = dv

∂2v
∂x2 + γ u2v

1+λu2 − δv, (x, t) ∈ (−20, 20)× (0,∞)

(4.6)

subject to boundary conditions

ux(−20, t) = vx(−20, t) = ux(20, t) = vx(20, t) = 0,

and initial conditions

u(x, 0) = 1−
1

2
sin10(π(x− 20)/40), v(x, 0) =

1

4
sin10(π(x − 20)/40).

The growth rate of the prey f(u) = Ru(1− u
K ) is logistic and the predator’s func-

tional response u2

1+λu2 is Holling type III, the ratio γ/β and parameter R represent
the maximal per capita predator and prey birth rates respectively, δ is the per
capita predator death rate and K is the prey carrying capacity.
In the following, we adopt the parameters of system (4.6) according to the corre-
sponding parameters in [32], our simulations confirm the results obtained in [32].
Figures present simulations of prey and predator for various cases of these param-
eters. In these figures the diffusion coefficient associated with the prey is much
greater than the diffusion coefficient of the predators(du = 1, dv = 10−5). Figure
6(a) illustrates the prey-predator interaction characterized by the type III (sigmoid)
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functional response, in which the rate of attack of the predator (v) accelerates at
first and then decelerates towards satiation. Such sigmoid functional responses are
typical of natural enemies which readily switch from one food species to another
and/or which concentrate their feeding in areas where certain resources are most
abundant. These are called prey-dependent responses because the feeding rate of
consumers is dependent only on the density of prey.
This characteristic profile for the prey population density appears to be affected
when we increase its carrying capacity K and the maximal per capita prey birth
rate R (see figure 6(b), or increase the prey carrying capacity K together with
decreasing the per capita predator death rate δ (see figure 7). Also, according to
(4.3) and (4.4), values of error for this example are given in table 3 for various
values of N and K.

Table 3: Values of error for example 3 for various values of N and K with λ = 10, γ = 0.001, δ =

0.05, β = 1, R = 0.075, du = 1, dv = 10−5,∆t = 0.01 and t = 100.

K → 1 5 10
N ↓
8 5.21× 10−1 3.61× 10−1 8.27× 10−2

16 4.18× 10−2 2.18× 10−2 9.01× 10−3

32 6.51× 10−3 5.01× 10−3 7.81× 10−4

64 8.01× 10−4 6.12× 10−4 3.13× 10−4

Figure 6: Comparative results on the densities of the prey u(x, t) and predators v(x, t) of
example 3 for values of du = 1, dv = 10−5, δ = 0.01, β = 100, γ = 0.1, λ = 10, and N = 32 with
∆t = 0.01 at t = 200.



162 A. Barati and A. Atabaigi

Figure 7: Comparative results on the densities of the prey u(x, t) and predators v(x, t) of
example 3 for values of du = 1, dv = 10−5, R = 0.075, β = 1, γ = 0.001, λ = 10, and N = 32 with
∆t = 0.01 at t = 200.

5. Conclusions

In this article, a numerical method was employed successfully for solving reaction-
diffusion systems arising from two-species ecological models. This approach is based
on the implicit Euler method for temporal discretization and the Sinc collocation
method in the spatial direction. Results from numerical experiments indicate the
efficiency and accuracy of proposed method. Also, from the figures 1-7 of numer-
ical simulations, we get some useful information about the biological behaviors of
species. Comparisons in given examples show the agreement of the approximate
solutions with those presented in [14,31,32].
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