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Stability in Mixed Linear Delay Levin-Nohel Integro-dynamic

Equations on Time Scales

Kamel Ali Khelil, Abdelouaheb Ardjouni and Ahcene Djoudi

abstract: In this paper we use the contraction mapping theorem to obtain
asymptotic stability results about the zero solution for the following mixed linear
delay Levin-Nohel integro-dynamic equation

x∆(t) +

∫
t

t−r(t)
a(t, s)x(s)∆s+ b(t)x(t − h(t)) = 0, t ∈ [t0,∞) ∩ T,

where f△ is the △-derivative on T. An asymptotic stability theorem with a neces-
sary and sufficient condition is proved. The results obtained here extend the work
of Dung [13]. In addition, the case of the equation with several delays is studied.
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1. Introduction

The concept of time scales analysis is a fairly new idea. In 1988, it was in-
troduced by the German mathematician Stefan Hilger in his Ph.D. thesis [14]. It
combines the traditional areas of continuous and discrete analysis into one theory.
After the publication of two textbooks in this area by Bohner and Peterson [7] and
[8], more and more researchers were getting involved in this fast-growing field of
mathematics.

The study of dynamic equations brings together the traditional research areas
of differential and difference equations. It allows one to handle these two research
areas at the same time, hence shedding light on the reasons for their seeming
discrepancies. In fact, many new results for the continuous and discrete cases have
been obtained by studying the more general time scales case (see [1,3,4,15] and the
references therein).
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There is no doubt that the Lyapunov method have been used successfully to
investigate stability properties of wide variety of ordinary, functional and partial
equations. Nevertheless, the application of this method to problem of stability in
differential equations with delay has encountered serious difficulties if the delay is
unbounded or if the equation has unbounded term. It has been noticed that some
of theses difficulties vanish by using the fixed point technic. Other advantages of
fixed point theory over Lyapunov’s method is that the conditions of the former
are average while those of the latter are pointwise (see [2,5,6,9,10,11,12,13] and
references therein).

In paper, we consider the following mixed linear Levin-Nohel integro-dynamic
equation with variable delays

x∆(t) +

∫ t

t−r(t)

a(t, s)x(s)∆s + b(t)x(t− h(t)) = 0, t ∈ [t0,∞) ∩ T, (1.1)

with an assumed initial function

x (t) = φ (t) , t ∈ [m (t0) , t0] ∩ T,

where T is an unbounded above and below time scale and such that 0, t0 ∈ T,
φ : [m (t0) , t0] ∩ T → R is rd-continuous and

m (t0) = min (inf {t− r (t) : t ∈ [t0,∞) ∩ T} , inf {t− h (t) : t ∈ [t0,∞) ∩ T}) .

Throughout this paper, we assume that b : [t0,∞) ∩ T → R is rd-continuous and
a : ([t0,∞) ∩ T)×([m (t0) ,∞) ∩ T) → R is rd-continuous. In order for the functions
x (t− r (t)) and x (t− h (t)) to be well-defined over [t0,∞)∩T, we assume that r, h :
[t0,∞)∩T → T are positive rd-continuous, and that id− r, id−h : [t0,∞)∩T → T

are increasing mappings such that (id− r) ([t0,∞) ∩ T) and (id− h) ([t0,∞) ∩ T)
are closed where id is the identity function.

Our purpose here is to use the contraction mapping theorem (see [16]) to show
the asymptotic stability of the zero solution for Eq. (1.1). An asymptotic stability
theorem with a necessary and sufficient condition is proved. In the special case
T = R, Dung [13] shows the zero solution of (1.1) is asymptotically stable with
a necessary and sufficient condition by using the contraction mapping theorem.
Then, the results presented in this paper extend the main results in [13].

In Section 2, we present some preliminary material that we will need through
the remainder of the paper. We will state some facts about the exponential function
on a time scale. We present our main results on asymptotic stability in Section 3.
A study of the general form of (1.1) (with several delays) is given in section 4.

2. Preliminaries

In this section, we consider some advanced topics in the theory of dynamic
equations on a time scales. Again, we remind that for a review of this topic we
direct the reader to the monographs of Bohner and Peterson [7] and [8].
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A time scale T is a closed nonempty subset of R. For t ∈ T the forward
jump operator σ, and the backward jump operator ρ, respectively, are defined as
σ (t) = inf {s ∈ T : s > t} and ρ (t) = sup {t ∈ T : s < t}. These operators allow
elements in the time scale to be classified as follows. We say t is right scattered
if σ (t) > t and right dense if σ (t) = t. We say t is left scattered if ρ (t) < t

and left dense if ρ (t) = t. The graininess function µ : T → [0,∞), is defined by
µ (t) = σ (t) − t and gives the distance between an element and its successor. We
set inf ∅ = supT and sup ∅ = inf T. If T has a left scattered maximum M , we
define Tk = T� {M}. Otherwise, we define Tk = T. If T has a right scattered
minimum m, we define Tk = T� {m}. Otherwise, we define Tk = T.

Let t ∈ Tk and let f : T → R. The delta derivative of f (t), denoted f△ (t), is
defined to be the number (when it exists), with the property that, for each ǫ > 0,
there is a neighborhood U of t such that

∣∣f (σ (t))− f (s)− f△ (t) [σ (t)− s]
∣∣ ≤ ǫ |σ (t)− s| ,

for all s ∈ U . If T = R then f△ (t) = f ′ (t) is the usual derivative. If T = Z then
f△ (t) = △f (t) = f (t+ 1)− f (t) is the forward difference of f at t.

A function f is right dense continuous (rd-continuous), f ∈ Crd = Crd (T,R),
if it is continuous at every right dense point t ∈ T and its left-hand limits exist
at each left dense point t ∈ T. The function f : T → R is differentiable on Tk

provided f△ (t) exists for all t ∈ Tk.
We are now ready to state some properties of the delta-derivative of f . Note

fσ (t) = f (σ (t)).

Theorem 2.1 ( [7, Theorem 1.20]). Assume f, g : T → R are differentiable at
t ∈ Tk and let α be a scalar.

(i) (f + g)
△
(t) = g△ (t) + f△ (t).

(ii) (αf)
△
(t) = αf△ (t).

(iii) The product rules

(fg)△ (t) = f△ (t) g (t) + fσ (t) g△ (t) ,

(fg)△ (t) = f (t) g△ (t) + f△ (t) gσ (t) .

(iv) If g (t) gσ (t) 6= 0 then

(
f

g

)△

(t) =
f△ (t) g (t)− f (t) g△ (t)

g (t) gσ (t)
.

The next theorem is the chain rule on time scales ( [7, Theorem 1.93], Theorem
1.93).

Theorem 2.2 (Chain Rule). Assume ν : T → R is strictly increasing and T̃ :=

ν (T) is a time scale. Let ω : T̃ → R. If ν△ (t) and ω△̃ (ν (t)) exist for t ∈ Tk, then

(ω ◦ ν)△ =
(
ω△̃ ◦ ν

)
ν△.
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In the sequel we will need to differentiate and integrate functions of the form
f (t− r (t)) = f (ν (t)) where, ν (t) := t−r (t). Our next theorem is the substitution
rule ( [7, Theorem 1.98], Theorem 1.98).

Theorem 2.3 (Substitution). Assume ν : T → R is strictly increasing and T̃ :=
ν (T ) is a time scale. If f : T → R is rd-continuous function and ν is differentiable
with rd-continuous derivative, then for a, b ∈ T ,

∫ b

a

f (t) ν△ (t)△t =

∫ ν(b)

ν(a)

(
f ◦ ν−1

)
(s) △̃s.

A function p : T → R is said to be regressive provided 1 + µ (t) p (t) 6= 0
for all t ∈ Tk. The set of all regressive rd-continuous function f : T → R is
denoted by R. The set of all positively regressive functions R

+, is given by R
+ =

{f ∈ R : 1 + µ (t) f (t) > 0 for all t ∈ T}.
Let p ∈ R and µ (t) 6= 0 for all t ∈ T. The exponential function on T is defined

by

ep (t, s) = exp

(∫ t

s

1

µ (τ)
log (1 + µ (τ ) p (τ))∆τ

)
.

It is well known that if p ∈ R
+, then ep (t, s) > 0 for all t ∈ T. Also, the exponential

function y (t) = ep (t, s) is the solution to the initial value problem y△ = p (t) y,
y (s) = 1. Other properties of the exponential function are given by the following
lemma.

Lemma 2.4 ( [7, Theorem 2.36]). Let p, q ∈ R. Then

(i) e0 (t, s) = 1 and ep (t, t) = 1,

(ii) ep (σ (t) , s) = (1 + µ (t) p (t)) ep (t, s),

(iii) 1
ep(t,s)

= e⊖p (t, s), where ⊖p (t) = − p(t)
1+µ(t)p(t) ,

(iv) ep (t, s) =
1

ep(s,t)
= e⊖p (s, t),

(v) ep (t, s) ep (s, r) = ep (t, r),

(vi) e△p (., s) = pep (., s) and
(

1
ep(.,s)

)△
= − p(t)

eσp (.,s)
.

Lemma 2.5 ( [1]). If p ∈ R
+, then

0 < ep (t, s) ≤ exp

(∫ t

s

p (u)△u

)
, ∀t ∈ T.

3. Main results

For the convenience of the reader, let us recall the definition of asymptotic
stability. For each t0 > 0, we denote Crd(t0) the space of rd-continuous functions
on [m(t0), t0] ∩ T with the supremum norm ‖.‖t0 . For each (t0, φ) ∈ T × Crd(t0),
denoted by x(t) = x(t, t0, φ) the unique solution of Eq. (1.1).
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Definition 3.1. The zero solution of Eq. (1.1) is called:
(i) stable if for each ε > 0, there exists a δ > 0 such that |x(t, t0, φ)| < ε for all

t ≥ t0 if ‖φ‖t0 < δ,
(ii) asymptotically stable if it is stable and lim

t→∞
|x(t, t0, φ)| = 0.

Theorem 3.2. Suppose that the following two conditions hold:

A ∈ R
+, lim

t→∞
inf

∫ t

0

1

µ(τ )
log(1 + µ(τ )A(τ ))∆τ > −∞, (3.1)

sup
t≥0

∫ t

0

ω(s)e⊖A(t, s)∆s = α < 1, (3.2)

where

A(τ ) =

∫ τ

τ−r(τ)

a(τ , s)∆s+ b(τ),

and

ω(s) =

∫ s

s−r(s)

|a(s, w)|

∫ σ(s)

w

(∫ u

u−r(u)

|a(u, v)|∆v + |b(u)|

)
∆u∆w

+ |b(s)|

∫ σ(s)

s−h(s)

(∫ u

u−r(u)

|a(u, v)|∆v + |b(u)|

)
∆u.

Then the zero solution of (1.1) is asymptotically stable if and only if
∫ t

0

1

µ(τ )
log(1 + µ(τ )A(τ ))∆τ → ∞ as t → ∞. (3.3)

Proof. In order to be able to construct a new fixed mapping, we transform the
Levin-Nohel equation into an equivalent equation. Obviously, we have

x(s) = xσ(t)−

∫ σ(t)

s

x∆(u)∆u, x(t − h(t)) = xσ(t)−

∫ σ(t)

t−h(t)

x∆(u)∆u.

Insetting these relations into (1.1), we get

x∆(t) +

∫ t

t−r(t)

a(t, s)

(
xσ(t)−

∫ σ(t)

s

x∆(u)∆u

)
∆s

+ b(t)xσ(t)− b(t)

∫ σ(t)

t−h(t)

x∆(u)∆u = 0, t ≥ t0,

or equivalently

x∆(t) + xσ(t)

(∫ t

t−r(t)

a(t, s)∆s+ b(t)

)
−

∫ t

t−r(t)

a(t, s)

(∫ σ(t)

s

x∆(u)∆u

)
∆s

− b(t)

∫ σ(t)

t−h(t)

x∆(u)∆u = 0, t ≥ t0.
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After substituting x∆ from (1.1), we obtain

x∆(t) +

(∫ t

t−r(t)

a(t, s)∆s+ b(t)

)
xσ(t)

+

∫ t

t−r(t)

a(t, s)

(∫ σ(t)

s

(∫ u

u−r(u)

a(u, v)x(v)∆v + b(u)x(u − h(u))

)
∆u

)
∆s

+ b(t)

∫ σ(t)

t−h(t)

(∫ u

u−r(u)

a(u, v)x(v)∆v + b(u)x(u − h(u))

)
∆u = 0, t ≥ t0.

(3.4)

For the convenience of the statement, we put

Lx(t) =

∫ t

t−r(t)

a(t, s)

(∫ σ(t)

s

(∫ u

u−r(u)

a(u, v)x(v)∆v

+b(u)x(u− h(u)))∆u)∆s,

Nx(t) = b(t)

∫ σ(t)

t−h(t)

(∫ u

u−r(u)

a(u, v)x(v)∆v + b(u)x(u− h(u))

)
∆u.

Then, (3.4) now becomes

x∆(t) +A(t)xσ(t) + Lx(t) +Nx(t) = 0, t ≥ t0,

which, by variation of constants formula, gives us

x(t) = φ(t0)e⊖A(t, t0)−

∫ t

t0

Lx(s)e⊖A(t, s)∆s−

∫ t

t0

Nx(s)e⊖A(t, s)∆s, t ≥ t0. (3.5)

Sufficient condition. Suppose that (3.3) holds. Denoted by Crd the space of
rd-continuous bounded functions x : [m(t0),∞) ∩ T → R such that x(t) = φ(t),
t ∈ [m(t0), t0] ∩ T. It is known that Crd is a complete metric space endowed with
a metric ‖x‖ = supt≥m(t0) |x(t)|. Define the operator P on Crd by (Px)(t) = φ(t),
t ∈ [m(t0), t0] ∩ T and

(Px)(t) = φ(t0)e⊖A(t, t0)−

∫ t

t0

Lx(s)e⊖A(t, s)∆s−

∫ t

t0

Nx(s)e⊖A(t, s)∆s, t ≥ t0.

Obviously, Px is rd-continuous for each x ∈ Crd. Moreover, it is a contraction
operator. Indeed, let x, y ∈ Crd,

|(Px)(t) − (Py)(t)|

≤

∫ t

t0

|Lx(s)− Ly(s)| e⊖A(t, s)∆s+

∫ t

t0

|Nx(s)−Ny(s)| e⊖A(t, s)∆s.
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Since x(t) = y(t) = φ(t) for all t ∈ [m(t0), t0] ∩ T this implies that

|Lx(s)− Ly(s)|

≤

(∫ s

s−r(s)

|a(s, w)|

∫ σ(s)

w

(∫ u

u−r(u)

|a(u, v)|∆v + |b(u)|

)
∆u∆w

)
‖x− y‖ ,

and

|Nx(s)−Ny(s)|

≤

(
|b(s)|

∫ σ(s)

s−h(s)

(∫ u

u−r(u)

|a(u, v)|∆v + |b(u)|

)
∆u

)
‖x− y‖ .

Consequently, it holds for all t ≥ t0 that

|(Px)(t) − (Py)(t)|

≤

[∫ t

t0

(∫ s

s−r(s)

|a(s, w)|

∫ σ(s)

w

(∫ u

u−r(u)

|a(u, v)|∆v + |b(u)|

)
∆u∆w

)
e⊖A(t, s)∆s

+

∫ t

t0

|b(s)|

(∫ σ(s)

s−h(s)

(∫ u

u−r(u)

|a(u, v)|∆v + |b(u)|

)
∆u

)
e⊖A(t, s)∆s

]
‖x− y‖ .

Hence, it follows from (3.2) that

|(Px)(t)− (Py)(t)| ≤ α ‖x− y‖ , t ≥ t0.

Thus P is a contraction operator on Crd.

We now consider a closed subspace S of Crd that is defined by

S = {x ∈ Crd : |x(t)| → 0 as t → ∞} .

We will show that P (S) ⊂ S. To do this, we need to point out that for each x ∈ S,
|(Px)(t)| → 0 as t → ∞. Let x ∈ S, by the definition of P we have

|(Px)(t)| ≤ |φ(t0)| e⊖A(t, t0) +

∣∣∣∣
∫ t

t0

Lx(s)e⊖A(t, s)∆s

∣∣∣∣ +
∣∣∣∣
∫ t

t0

Nx(s)e⊖A(t, s)∆s

∣∣∣∣

= I1 + I2 + I3, t ≥ t0.

The first term I1 tends to 0 by (3.3). For any T ∈ (t0, t), we have the following
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estimate for the second term

I2 ≤

∣∣∣∣∣

∫ T

t0

Lx(s)e⊖A(t, s)∆s

∣∣∣∣∣ +
∣∣∣∣
∫ t

T

Lx(s)e⊖A(t, s)∆s

∣∣∣∣

≤

∫ T

t0

(∫ s

s−r(s)

|a(s, w)|

(∫ σ(s)

w

(∫ u

u−r(u)

|a(u, v)| ‖x‖∆v

+ |b(u)| ‖φ‖t0
)
∆u
)
∆w
)
e⊖A(t, s)∆s

+

∫ t

T

(∫ s

s−r(s)

|a(s, w)|

(∫ σ(s)

w

(∫ u

u−r(u)

|a(u, v)| |x(v)|∆v

+ |b(u)| |x(u − h(u))|)∆u)∆w) e⊖A(t, s)∆s

≤

∫ T

t0

(∫ s

s−r(s)

|a(s, w)|

(∫ σ(s)

w

(∫ u

u−r(u)

|a(u, v)|∆v

+ |b(u)|)∆u)∆w) e⊖A(t, s)∆s
(
‖x‖+ ‖φ‖t0

)

+

∫ t

T

(∫ s

s−r(s)

|a(s, w)|

(∫ σ(s)

w

(∫ u

u−r(u)

|a(u, v)| |x(v)|∆v

+ |b(u)| |x(u − h(u))|)∆u)∆w) e⊖A(t, s)∆s

= I21 + I22.

Since t − r(t) → ∞ as t → ∞, this implies that u − r(u) → ∞ as T → ∞. Thus,
from the fact |x(v)| → 0, v → ∞ we can infer that for any ε > 0 there exists
T1 = T > t0 such that

I22 <
ε

2α

∫ t

T1

(∫ s

s−r(s)

|a(s, w)|

∫ σ(s)

w

(∫ u

u−r(u)

|a(u, v)|∆v

+ |b(u)|)∆u∆w) e⊖A(t, s)∆s,

and hence, I22 < ε
2 for all t ≥ T1. On the other hand, ‖x‖ < ∞ because x ∈ S.

This combined with (3.3) yields I21 → 0 as t → ∞. As a consequence, there exists
T2 ≥ T1 such that I21 < ε

2 for all t ≥ T2. Thus, I2 < ε for all t ≥ T2; that is,
I2 → 0 as t → ∞. Similarly, I3 → 0 as t → ∞. So P (S) ⊂ S.

By the Contraction Mapping Principle, P has a unique fixed point x in S which
is a solution of (1.1) with x(t) = φ(t) on [m(t0), t0] ∩ T and x(t) = x(t, t0, φ) → 0
as t → ∞.

To obtain the asymptotic stability, we need to show that the zero solution of
(1.1) is stable. By condition (3.1), we can define

K = sup
t≥0

e⊖A(t, 0) < ∞. (3.6)

Using the formula (3.5) and condition (3.2), we can obtain

|x(t)| ≤ K ‖φ‖t0 eA(t0, 0) + α(‖x‖ + ‖φ‖t0), t ≥ t0,
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which leads us to

‖x‖ ≤
Ke

∫ t0
0

A(τ)∆τ + α

1− α
‖φ‖t0 . (3.7)

Thus for every ε > 0, we can find δ > 0 such that ‖φ‖t0 < δ implies that ‖x‖ < ε.
This shows that the zero solution of (1.1) is stable and hence, it is asymptotically
stable.

Necessary condition. Suppose that the zero solution of (1.1) is asymptoti-
cally stable and that the condition (3.3) fails. It follows from (3.1) that there exists
a sequence {tn}, tn → ∞ as n → ∞ such that

lim
n→∞

∫ tn

0

1

µ(τ )
log(1 + µ(τ )A(τ ))∆τ ,

exists and is finite. Hence, we can choose a positive constant L satisfying

− L < lim
n→∞

∫ tn

0

1

µ(τ )
log(1 + µ(τ )A(τ ))∆τ < L, ∀n ≥ 1. (3.8)

Then, condition (3.2) gives us

cn =

∫ tn

0

ω(s)eA(s, 0)∆s ≤ αeA(tn, 0) < eL.

The sequence {cn} is increasing and bounded, so it has a finite limit. For any
δ0 > 0, there exists n0 > 0 such that

∫ tn

tn0

ω(s)eA(s, 0)∆s <
δ0

2K
, ∀n ≥ n0, (3.9)

where K is as in (3.6). We choose δ0 such that δ0 < 1−α
KeL+1 and consider the

solution x(t) = x(t, tn, φ) of (1.1) with the initial data φ(tn0
) = δ0 and |φ(s)| ≤ δ0,

s ≤ tn0
. It follows from(3.7) that

|x(t)| ≤ 1− δ0, ∀t ≥ tn0
. (3.10)

Applying the fundamental inequality |a− b| ≥ |a|− |b| and then using (3.10), (3.9)
and (3.8), we get

|x(tn)| ≥ |φ(tn0
)e⊖A(tn, tn0

)| −

∣∣∣∣∣

∫ tn

tn0

(Lx(s) +Nx(s)) e⊖A(tn, s)∆s

∣∣∣∣∣

≥ δ0e⊖A(tn, tn0
)−

∫ tn

tn0

ω(s)e⊖A(tn, s)∆s

≥ e⊖A(tn, tn0
)

(
δ0 − e⊖A(tn0

, 0)

∫ tn

tn0

ω(s)eA(s, 0)∆s

)

≥ e⊖A(tn, tn0
)

(
δ0 −K

∫ tn

tn0

ω(s)eA(s, 0)∆s

)

≥
1

2
δ0e⊖A(tn, tn0

) ≥
1

2
δ0e

−2L > 0,
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which is a contradiction because x(tn) → 0 as tn → ∞. The proof is complete. ✷

For the special case b(t) = 0 we get the following.

Corollary 3.3. Suppose that the following two conditions hold

A0 ∈ R
+, lim

t→∞
inf

∫ t

0

1

µ(τ )
log(1 + µ(τ )A0(τ))∆τ > −∞, (3.11)

sup
t≥0

∫ t

0

(∫ s

s−r(s)

|a(s, w)|

∫ σ(s)

w

∫ u

u−r(u)

|a(u, v)|∆v∆u∆w

)
e⊖A0

(t, s)∆s = α < 1,

(3.12)
where

A0(τ ) =

∫ τ

τ−r(τ)

a(τ, s)∆s.

Then the zero solution of

x∆(t) +

∫ t

t−r(t)

a(t, s)x(s)∆s = 0,

is asymptotically stable if and only if
∫ t

0

1

µ(τ )
log(1 + µ(τ )A0(τ ))∆τ → ∞ as t → ∞. (3.13)

Example 3.1. Let T = R. Consider the following linear Levin-Nohel integro-
differential equation with variable delay

x′(t) +

∫ t

t−r(t)

a(t, s)x(s)ds = 0, (3.14)

where a(t, s) = 10
t2+1 , r(t) = 0.2t. Then the zero solution of (3.14) is asymptotically

stable.

Proof. We have

A0(t) =

∫ t

0.8t

a(t, s)ds =

∫ t

0.8t

10

t2 + 1
ds =

2t

t2 + 1
,

∫ t

0

A0(τ )dτ = ln(t2 + 1),

and
∫ s

s−r(s)

|a(s, w)|

∫ s

w

∫ u

u−r(u)

|a(u, v)| dvdudw

=

∫ s

0.8s

10

s2 + 1

∫ s

w

∫ u

0.8u

10

u2 + 1
dvdudw

=
1

s2 + 1
(4s+ 2 arctan0.8s− 2 arctan s

+8s ln
(
0.64s2 + 1

)
− 8s ln

(
s2 + 1

))
.
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Then

sup
t≥0

∫ t

0

(∫ s

s−r(s)

|a(s, w)|

∫ s

w

∫ u

u−r(u)

|a(u, v)| dvdudw

)
e−

∫
t

s
A0(τ)dτds

= sup
t≥0

{
1

t2 + 1

∫ t

0

(∫ s

0.8s

10

s2 + 1

∫ s

w

∫ u

0.8u

10

u2 + 1
dvdudw

) (
s2 + 1

)
ds

}

≤ 0.216 < 1.

It is easy to see that all the conditions of Corollary 3.3 hold for α = 0.216 < 1.
Thus Corollary 3.3 implies that the zero solution of (3.14) is asymptotically stable.
✷

Letting a(t, s) = 0 in (1.1), we get the following.

Corollary 3.4. Suppose that the following two conditions hold

b ∈ R
+, lim

t→∞
inf

∫ t

0

1

µ(τ )
log(1 + µ(τ )b(τ ))∆τ > −∞, (3.15)

sup
t≥0

∫ t

0

|b(s)|

(∫ σ(s)

s−h(s)

|b(u)|∆u

)
e⊖b(t, s)∆s = α < 1. (3.16)

Then the zero solution of

x∆(t) + b(t)x(t− h(t)) = 0,

is asymptotically stable if and only if
∫ t

0

1

µ(τ )
log(1 + µ(τ )b(τ ))∆τ → ∞ as t → ∞. (3.17)

4. Levin-Nohel equations with several delays

The method in Section 3 can be extended to the following mixed Levin-Nohel
integro-dynamic equation with several delays

x∆(t) +

m∑

k=1

∫ t

t−rk(t)

ak(t, s)x(s)∆s +

M∑

k=1

bk(t)x(t − hk(t)) = 0. (4.1)

In a same way as in Theorem 3.2, we can rewrite (4.1) as follows

x∆(t) + xσ(t)

(
m∑

k=1

∫ t

t−rk(t)

ak(t, s)∆s+

M∑

k=1

bk(t)

)

−
m∑

k=1

∫ t

t−rk(t)

ak(t, s)

(∫ σ(t)

s

x∆(u)∆u

)
∆s

−
M∑

k=1

bk(t)

∫ σ(t)

t−hk(t)

x∆(u)∆u = 0,
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or equivalently

x∆(t) + xσ(t)

(
m∑

k=1

∫ t

t−rk(t)

ak(t, s)∆s+

M∑

k=1

bk(t)

)

+

m∑

k=1

∫ t

t−rk(t)

ak(t, s)

(∫ σ(t)

s

(
m∑

i=1

∫ u

u−ri(u)

ai(u, v)x(v)∆v

+

M∑

i=1

bi(u)x(u − hi(u))

)
∆u

)
∆s

+

M∑

k=1

bk(t)

∫ σ(t)

t−hk(t)

(
m∑

i=1

∫ u

u−ri(u)

ai(u, v)x(v)∆v

+
M∑

i=1

bi(u)x(u − hi(u))

)
∆u = 0, t ≥ t0.

Put

A(t) =

m∑

k=1

∫ t

t−rk(t)

ak(t, s)∆s+

M∑

k=1

bk(t),

Lx(t) =

m∑

k=1

∫ t

t−rk(t)

ak(t, s)

(∫ σ(t)

s

(
m∑

i=1

∫ u

u−ri(u)

ai(u, v)x(v)∆v

+

M∑

i=1

bi(u)x(u − hi(u))

)
∆u

)
∆s,

and

Nx(t) =

M∑

k=1

bk(t)

∫ σ(t)

t−hk(t)

(
m∑

i=1

∫ u

u−ri(u)

ai(u, v)x(v)∆v

+

M∑

i=1

bi(u)x(u− hi(u))

)
∆u.

Then, (4.1) now becomes

x∆(t) +A(t)xσ(t) + Lx(t) +Nx(t) = 0.

The proof of the following theorem is similar to that of Theorem 3.2 and hence, we
omit it.

Theorem 4.1. Suppose that the following two conditions hold

A ∈ R
+, lim

t→∞
inf

∫ t

0

1

µ(τ )
log(1 + µ(τ )A(τ ))∆τ > −∞,
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and

sup
t≥0

∫ t

0

ω(s)e
⊖A(t, s)∆s = α < 1,

where

ω(s)

=

m∑

k=1

∫ s

s−rk(s)

|ak(s, w)|

(∫ σ(s)

w

(
m∑

i=1

∫ u

u−ri(u)

|ai(u, v)|∆v +

M∑

i=1

|bi(u)|

)
∆u

)
∆w

+

M∑

k=1

|bk(s)|

∫ σ(s)

t−hk(s)

(
m∑

i=1

∫ u

u−ri(u)

|ai(u, v)|∆v +

M∑

i=1

|bi(u)|

)
∆u.

Then the zero solution of (4.1) is asymptotically stable if and only if

∫ t

0

1

µ(τ )
log(1 + µ(τ )A(τ ))∆τ → ∞ as t → ∞.
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