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Boundedness and Convergence Analysis of Stochastic Differential

Equations with Hurst Brownian Motion
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abstract: In this paper, we discuss about the boundedness and convergence
analysis of the fractional Brownian motion (FBM) with Hurst parameter H. By the
simple analysis and using the mean value theorem for stochastic integrals we con-
clude that in case of decreasing diffusion function, the solution of FBM is bounded
for any H ∈ (0, 1). Also, we derive the convergence rate which shows efficiency and
accuracy of the computed solutions.
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1. Introduction

The self-similarity and long-range dependence properties make the fractional
Brownian motion a suitable driving noise in different applications like mathemat-
ical finance and network traffic analysis. he convergence analysis of stochastic
differential equations in this paper is useful for fractional calculus. For example, in
[3], [25], and [26] it is established suffient explicit conditions for globally asymp-
totic stability of linear fractional differential system with distributed delays. In
addition recent achievements in mathematical finance theory [24], [14], and [15]
could be extended with Hurst Brownian motion. As well some stochastic concepts
of almost sure and exponential mean-square stability of Hurst Brownian motion
can be investigated ( [11], [12] and [13]).

Recently, there have been several attempts to construct a stochastic calculus
with respect to the FBM (see [8], [19]). It is highly important to identify the
value of the Hurst parameter in order to understand the structure of the process
and its applications, since the calculations differ dramatically according to the
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value of H , therefore, some techniques have been developed for estimating the
Hurst parameter, for example in [2] and [1], authors investigated to construct a
stochastic integral with respect to the FBM with Hurst parameter H ∈ (0, 1

2 ), by
using Malliavin calculus, or in [7], authors present a path-wise approach towards
a stochastic analysis for fractional Brownian motions. Also in some papers such
as [21], authors study such a stochastic integrals to a smaller class of processes,
namely the bounded sure processes, on finite time intervals. Moreover Duncan et
al. (see [9]) study the FBM, in Hilbert space with the Hurst parameter in the
interval H ∈ (12 , 1). As well some numerical methods are presented to estimate the
Hurst parameter H (see [5], [20], [23] and [18]) and some numerical solutions are
presented to prove the convergence rate of this kind of equations (see in [16] and
[17]).
In [22], the existence and uniqueness of the multi dimensional, time dependent
FBM is driven with Hurst parameter H > 1

2 .
Based on these papers we first show that the solution of FBM is bounded and
subsequently by following the [10], we prove the convergence solution of FBM with
Hurst parameter H ∈ (0, 1). To this aim, first we evaluate the boundedness of
the solution of FBM. We use the elementary chain rule calculus and the mean
value theorem for stochastic functions develepoed in [6], which cause to restrict
the diffusion function g(t,X(t)) to a decreasing diffusion function.
The rest of the paper is organized as follows. Section 2 begins with notations and
preliminaries of Hurst Brownian motion. Section 3 examines the conditions under
which the solution of FBM is bounded. Section 4 describes the convergence analysis
of this kind equations.

2. Preliminaries and Notations

In this section, we review some of the standard facts on the fractional calculus.
Let t ∈ (0,∞) be a real number and (Ω,F,P) be a complete probability space.
The scalar stochastic differential equation with a standard Hurst parameter has
the following general form

{

dX(t) = f
(

t,X(t)
)

dt+ g
(

t,X(t)
)

dWH(t), t > 0,
X(t0) = X0.

(2.1)

The following definition provides an infinite-dimensional analogue of a fractional
Brownian motion in a finite-dimensional space with Hurst parameter H ∈ (0, 1)
(see [19]).

Definition 2.1. A U -valued Gaussian process (WH(t), t ∈ R) on (Ω,F,P) is called
a fractional Brownian motion with Hurst parameter H ∈ (0, 1) if

E
(

WH
t

)

= 0,

E
(

WH
t WH

s

)

=
1

2

{

|t|2H + |s|2H − |t− s|2H
}

. (2.2)

The constant H determines the sign of the covariance of the future and past
increments. This covariance is positive when H > 1/2 and negative when H < 1/2.
The case H = 1

2 corresponds to the ordinary Brownian motion.
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Assumption 1. Let the functions f and g satisfy the local Lipschitz condition, that

is, for each j > 0 there exists a positive constant Kj such that for any X,X ∈ R
n

with |X | ∨ |X| ≤ j, and t > 0,

|f(t,X)− f(t,X)| ∨ |g(t,X)− g(t,X)| ≤ Kj(|X −X|). (2.3)

3. Boundedness Analysis of the FBM with Hurst Index

In this section, let us firstly investigate boundedness of the solution of the FBM
with Hurst parameter.

Lemma 3.1. Let T > 0 and X(t) be the solution of equation (2.1) at t ∈ [0, T ],
then for any H ∈ (0, 1) and dereasing diffusion function g(t,X(t)), there exists a

finite positive constant C such that

sup
0≤t≤T

E(|X(t)|2) ≤ C
(

1 + E|X(0)|2
)

. (3.1)

Proof: From equation (2.1), we have

X(t) = X(0) +

∫ t

0

f(s,X(s))ds+

∫ t

0

g(s,X(s))dWH(s) = X(0) +A+B. (3.2)

By using the cauchy-schwarz inegaulty and linear growth condition for f , it is clear
that:

E(|A|2) ≤ E

(

|

∫ t

0

f2(s,X(s))ds|

)

≤ CE

(

|

∫ t

0

(1 +X2(s))ds|

)

. (3.3)

Now we want to obtain the similar result for the term B, so we have

E(|B|2) = E

(

|

∫ t

0

g(s,X(s))dWH(s)|2
)

= E

(

|

∫ t

0

g′(s,X(s))WH(s)ds|2
)

= E

(

|

∫ t

0

∫ t

0

g′(s,X(s))g′(u,X(u))WH(s)WH(u)|dsdu

)

=

∫ t

0

∫ t

0

E
(

|g′(s,X(s))g′(u,X(u))|
)

E
(

WH(s)WH(u)
)

dsdu, (3.4)
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by the Definition 2.1 we have

E
(

|B|2
)

=
1

2

∫ t

0

∫ t

0

E
(

|g′(s,X(s))g′(u,X(u))|
) [

|u|2H + |s|2H − |u− s|2H
]

dsdu

=
1

2

∫ t

0

∫ t

0

E
(

|g′(s,X(s))g′(u,X(u))|
)

|u|2Hdsdu

+
1

2

∫ t

0

∫ t

0

E
(

|g′(s,X(s))g′(u,X(u))|
)

|s|2Hdsdu

−
1

2

∫ t

0

∫ u

0

E
(

|g′(s,X(s))g′(u,X(u))|
)

(u− s)2Hdsdu

−
1

2

∫ t

0

∫ t

u

E
(

|g′(s,X(s))g′(u,X(u))|
)

(s− u)2Hdsdu

= B1 +B2 +B3 +B4, (3.5)

then we evaluate the terms of B1, B2, B3 and B4 separately. First we consider the
value of B1

B1 =
1

2

∫ t

0

∫ t

0

E (|g′(s,X(s))g′(u,X(u))|) |u|2Hdsdu

=
1

2
E|

∫ t

0

g′(s,X(s))

(
∫ t

0

g′(u,X(u))|u|2Hdu

)

|ds

=
1

2
g(s,X(s)) |t0

∫ t

0

E
(

|g′(u,X(u))|
)

|u|2Hdu. (3.6)

By using the chain rule in B1 we have

B1 =
1

2

(

g(t,X(t))− g(0, X(0))
)

(

|t|2Hg(t,X(t))− 2HE

(∫

t

0

(g(u,X(u)))|u|2H−1
du

))

=
t2H

2
g
2(t,X(t))−Hg(t,X(t))E

(
∫

t

0

g(u,X(u))|u|2H−1
du

)

−
t2H

2
g(t,X(t))g(0,X(0)) +Hg(0,X(0))E

(
∫

t

0

g(u,X(u))|u|2H−1
du

)

. (3.7)

Similary for evaluating the term B2 we can conclude that B2 = B1.
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For the third term of (3.5), similarly by using the chain rule we derive

B3 = −
1

2

∫

t

0

∫

u

0

E
(

|g′(s,X(s))g′(u,X(u))|
)

(u− s)2Hdsdu

= −
1

2
E

∫

t

0

g
′(u,X(u))

(∫

u

0

(u− s)2Hg
′(s,X(s))ds

)

du

= −
1

2
E

∫

t

0

g
′(u,X(u))

{

(u− s)2Hg(s,X(s)) |u0 +2H

∫

u

0

(u− s)2H−1
g(s,X(s))ds

}

du

= −
1

2
E

∫

t

0

g
′(u,X(u))

{

−u
2H

g(0,X(0)) + 2H

∫

u

0

(u− s)2H−1
g(s,X(s))ds

}

du

=
1

2
E

∫

t

0

u
2H

g(0,X(0))g′(u,X(u))du

−HE

∫

t

0

g
′(u,X(u))

(
∫

u

0

(u− s)2H−1
g(s,X(s))ds

)

du

= B31 +B32. (3.8)

By using the chain rule for the first term of relation (3.8), we obtain

B31 =
1

2
g(0, X(0))E

(
∫ t

0

u2Hg′(u,X(u))du

)

=
1

2
g(0, X(0))

{

u2Hg(u,X(u)) |t0 −2HE

(
∫ t

0

u2H−1g(u,X(u))du

)}

=
1

2
g(0, X(0))

{

t2Hg(t,X(t))− 2HE

(
∫ t

0

u2H−1g(u,X(u))du

)}

=
1

2
g(0, X(0))t2Hg(t,X(t))−Hg(0, X(0))E

(
∫ t

0

u2H−1g(u,X(u))du

)

,

(3.9)

and for the second term of (3.8), we obtain

B32 = −HE

∫ t

0

g′(u,X(u))

(
∫ u

0

(u− s)2H−1g(s,X(s))ds

)

du

= −H

(

E

∫ u

0

g(s,X(s))(u− s)2H−1ds× g(u,X(u)) |t0

−(2H − 1)E

∫ t

0

g(u,X(u))

(
∫ u

0

(u− s)2H−2g(s,X(s))ds

)

du

)

= −H

(

g(u,X(u))E

∫ u

0

g(s,X(s))(u− s)2H−1ds |t0

+H(2H − 1)E

∫ t

0

g(u,X(u))

(
∫ u

0

(u− s)2H−2g(s,X(s))ds

)

du

)

. (3.10)

For the term B32 we can express similar evaluation as (3.10) too and derive
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that

B32 = −Hg(t,X(t))E

(
∫ t

0

g(s,X(s))(t− s)2H−1ds

)

+H(2H − 1)E

∫ t

0

g(u,X(u))

(
∫ u

0

(u− s)2H−2g(s,X(s))ds

)

du. (3.11)

Finally for the last term of (3.5), again we can compute that:

B4 = −
1

2

∫

t

0

∫

t

u

E
(

|g′(s,X(s))g′(u,X(u))|
)

(s− u)2Hdsdu

= −
1

2
E

∫

t

0

g
′(u,X(u))

(
∫

t

u

(s− u)2Hg
′(s,X(s))ds

)

du

= −
1

2
E

∫

t

0

g
′(u,X(u))

{

(s− u)2Hg(s,X(s)) |tu −2H

∫

t

u

(s− u)2H−1
g(s,X(s))ds

}

du

= −
1

2
E

∫

t

0

g
′(u,X(u))

{

(t− u)2Hg(t,X(t))− 2H

∫

t

u

(s− u)2H−1
g(s,X(s))ds

}

du

= −
1

2
g(t,X(t))E

∫

t

0

(t− u)2Hg
′(u,X(u))du

+HE

∫

t

0

g
′(u,X(u))

(∫

t

u

(s− u)2H−1
g(s,X(s))ds

)

du

= B41 +B42. (3.12)

By using the chain rule for the term B41, we obtain

B41 = −
1

2
g(t,X(t))E

∫ t

0

(t− u)2Hg′(u,X(u))du

= −
1

2
g(t,X(t))E

{

(t− u)2Hg(u,X(u)) |t0 +2H

∫ t

0

(t− u)2H−1g(u,X(u))du

}

=
1

2
g(t,X(t))t2Hg(0, X(0))−Hg(t,X(t))E

(
∫ t

0

(t− u)2H−1g(u,X(u))du

)

,

(3.13)

as well we can simply conclude that

B42 = −Hg(0, X(0))E

(
∫ t

0

s2H−1g(s,X(s))ds

)

−H(2H − 1)E

∫ t

0

g(u,X(u))

(
∫ t

u

(s− u)2H−2g(s,X(s))ds

)

du. (3.14)

By summing up the terms B1, B2, B31, B32, B41 and B42 and ommitting the same
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terms we obtain

E
(

|B|2
)

= t2HE
(

g2(t,X(t))
)

(3.15)

− 2HE
(

g(t,X(t))
)

E

(
∫ t

0

g(u,X(u))
(

|t− u|2H−1 + |u|2H−1
)

du

)

+H(2H − 1)E

∫ t

0

g(u,X(u))

(
∫ u

0

(u− s)2H−2g(s,X(s))ds

)

du

−H(2H − 1)E

∫ t

0

g(u,X(u))

(
∫ t

u

(s− u)2H−2g(s,X(s))ds

)

du. (3.16)

By using the mean value theorem for stochastic functions discuused in [6], we can
conclude for the the second term of (3.15)

E
(

g(t,X(t))
)

E

(
∫ t

0

g(u,X(u))
(

|t− u|2H−1 + |u|2H−1
)

du

)

= E
(

g(t,X(t))
)

E(g(c,X(c)))E

(
∫ t

0

(

|t− u|2H−1 + |u2H−1
)

du

)

, (3.17)

for ome constant c ∈ (0, t). Now, if we impose g(t,X(t)) as a stochastic decreasing
function, then we have

2HE (g(t,X(t)))E (g(c,X(c)))E

(
∫ t

0

(

|t− u|2H−1 + |u|2H−1
)

du

)

≥ 2HE
(

g2(t,X(t))
)

×
t2H

H
, (3.18)

so we can conclude that from (3.15), for some constant C we have:

E
(

|B|2
)

≤ −t2HE
(

g2(t,X(t))
)

+H(2H − 1)E

∫ t

0

g(u,X(u))

(
∫ u

0

(u − s)2H−2g(s,X(s))ds

)

du

−H(2H − 1)E

∫ t

0

g(u,X(u))

(
∫ t

u

(s− u)2H−2g(s,X(s))ds

)

du

≤ CE

(
∫ t

0

g(u,X(u))

(
∫ u

0

(u − s)2H−2g(s,X(s))

+

∫ t

u

(u− s)2H−2g(s,X(s))

)

ds

)

du

= CE

(
∫ t

0

g(u,X(u))
(

∫ t

0

(u− s)2H−2g(s,X(s))
)

ds

)

du

≤ C1E

(
∫ t

0

g(u,X(u))
(

∫ t

0

|u|2H−2g(s,X(s))
)

ds

)

du. (3.19)
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Since 0 ≤ u ≤ t, we can conclude that

E
(

|B|2
)

≤ C1E

(
∫ t

0

g(u,X(u))du

)2

. (3.20)

By using the Cauchy-schwarz inequality, we obtain

E
(

|B|2
)

≤ C1E

(
∫ t

0

g2(u,X(u))du

)

, (3.21)

now by relation (3.2) and using the Gronwall inequality we can obtain the desired
inequality of (3.1). ✷

4. Convergence Analysis of the FBM with Hurst Index

In this section we follow the [10], and we consider the convergence analysis of
FBM with Hurst parameter H .
Define

{

X0(t) := X(0),

Xn+1(t) := X(0) +
∫ t

0
f(s,Xn(s))ds +

∫ t

0
g(s,Xn(s))dWH ,

(4.1)

for n = 0, 1, · · · and 0 ≤ t ≤ T . Define also

dn(t) := E(|Xn+1(t)−Xn(t)|2). (4.2)

We claim that

dn(t) ≤
(Mt)n+1

(n+ 1)!
for all n = 0, 1, · · · , 0 ≤ t ≤ T, (4.3)

for some constant M , depending on L, T and X(0). Indeed for n = 0, and by the
relation (3.21) which has been proven in section 3 we have:

d0(t) = E
(

|X1(t)−X0(t)|2
)

= E

(
∣

∣

∣

∣

∫ t

0

f(s,X(0))ds+

∫ t

0

g(s,X(0))dWH

∣

∣

∣

∣

2)

≤ 2E

(∣

∣

∣

∣

∫ t

0

L(1 +X(0))ds|2
)

+ 2E

(
∫ t

0

L2(1 + |X(0)|2)ds

)

≤ tM, (4.4)

for some large enough constant M . This confirms the claim for n = 0.
Next, to complete the proof by induction on n− 1, and by implementing the

lemma in section 3, we omit the proceding of the proof and refer the reader to
follow the (Chapter 5, Pages 92− 94) in [10].
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Remark 4.1. We consider the Mandelbrot-Van Ness representation of fractional

Brownian motion WH
t in terms of Wiener integrals

WH
t = CH

{
∫ t

−∞

dW P

s

(t− s)γ
−

∫ 0

−∞

dW P

s

(−s)γ

}

, (4.5)

where γ = 1/2−H with the choice CH =
√

2HΓ(3/2−H)
Γ(H+1/2)Γ(2−2H) .

Since, the right hand side of (4.5) is Ito integral, and it is proved to be martin-
gale, so we can state that WH

t is martingale (see [4]).

5. Conclusion

In this paper, we are interested to investigate whether the FBM with Hurst
index has bounded solution or convergent. We imploy the Definition 2.1 and using
the chain rule as well by the important remark of mean value theorem for stochastic
functions which has been proven in [6], we get a conclusion of boundedness of
solution of FBM, if the diffusion function g(t,X(t)) is a decrasing function under
some measurable probability. Also by using the proposed conclusion and following
[10], we directly prove the convergence of the solution of FBM with any Hurst
index H ∈ (0, 1).
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