

(3s.) **v. 38** 5 (2020): 175–185. ISSN-00378712 in press doi:10.5269/bspm.v38i5.41022

Three Weak Solutions for a Class of Neumann Boundary Value Systems Involving the (p_1, \ldots, p_n) -Laplacian

Armin Hadjian

ABSTRACT: In this paper, we establish the existence of two intervals of positive real parameters λ for which a class of Neumann boundary value equations involving the (p_1, \ldots, p_n) -Laplacian admits three weak solutions, whose norms are uniformly bounded with respect to λ belonging to one of the two intervals. The approach is based on variational methods.

Key Words: p-Laplacian, Neumann problem, Mmultiplicity results, Variational methods.

Contents

1	Introduction	173	5

2	Preliminaries	176

3 Main results

1. Introduction

Throughout the paper, $\Omega \subset \mathbb{R}^N$ $(N \ge 1)$ is a bounded domain with a smooth boundary $\partial \Omega$, $p_i > N$ (and $p_i \ge 2$) for $1 \le i \le n$ are natural numbers and λ is a positive parameter.

The aim of this paper is to investigate the following quasilinear elliptic system

$$\begin{cases} \Delta_{p_i} u_i + \lambda F_{u_i}(x, u_1, \dots, u_n) = a_i(x) |u_i|^{p_i - 2} u_i & \text{in } \Omega, \\ \partial u_i / \partial \nu = 0 & \text{on } \partial \Omega, \end{cases}$$
(1.1)

for $1 \leq i \leq n$, where $\Delta_{p_i} u_i := \operatorname{div}(|\nabla u_i|^{p_i-2}\nabla u_i)$ is the so called p_i -Laplacian operator, $a_1, \ldots, a_n \in L^{\infty}(\Omega)$ be *n* functions such that $\min_{1\leq i\leq n} \{\operatorname{ess\,inf}_{\Omega} a_i\} > 0$, $F: \Omega \times \mathbb{R}^n \to \mathbb{R}$ is a function such that the map $x \mapsto F(x, t_1, t_2, \ldots, t_n)$ is measurable in Ω for all $(t_1, \ldots, t_n) \in \mathbb{R}^n$ and the map $(t_1, t_2, \ldots, t_n) \mapsto F(x, t_1, t_2, \ldots, t_n)$ is C^1 in \mathbb{R}^n for a.e. $x \in \Omega$, F_{u_i} denotes the partial derivative of F with respect to u_i , and ν is the outer unite normal to $\partial\Omega$.

Moreover, F satisfy the following additional assumptions:

(F₁) for every M > 0,

 $\sup_{|(t_1,\ldots,t_n)|\leq M} |F_{u_i}(x,t_1,\ldots,t_n)| \in L^1(\Omega).$

2010 Mathematics Subject Classification: 35D30, 35B38, 35J50. Submitted December 17, 2017. Published February 27, 2018

> Typeset by $\mathcal{B}^{s}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. de Mat.

(F₂) F(x, 0, ..., 0) = 0 for a.e. $x \in \Omega$.

In recent years, many publications (see, e.g., [2,4,5,6,7,8,9,11,13] and references therein) have appeared concerning quasilinear elliptic systems which have been used in a great variety of applications. Multiplicity results for this kind of systems have been broadly investigated in which the technical approach is based on the three critical points theorems.

Bonanno in [3] established the existence of two intervals of positive real parameters λ for which the functional $\Phi - \lambda J$ has three critical points, whose norms are uniformly bounded with respect to λ belonging to one of the two intervals. He illustrated the result for a two point boundary value problem. In this paper, by assuming that $F(x, \cdot)$ has a (p-1)-sublinear growth at ∞ and satisfies a certain local condition near to 0, we prove the existence of two intervals Λ'_1 and Λ'_2 such that, for each $\lambda \in \Lambda'_1 \cup \Lambda'_2$, the system (1.1) admits at least three weak solutions whose norms are uniformly bounded with respect to $\lambda \in \Lambda'_2$.

This paper is arranged as follows. In Section 2, we recall some basic notations and definitions and our main tool (Theorem 2.1), while Section 3 is devoted to our main result, some consequences and one example that illustrates the result. For a thorough account on the subject, we refer the reader to the very recent monographs [10,12].

2. Preliminaries

First we recall for the reader's convenience Theorem 2.1 of [3] to transfer the existence of three solutions of the system (1.1) into the existence of critical points of the Euler functional. Here, X^* denotes the dual space of X.

Theorem 2.1. Let X be a separable and reflexive real Banach space; $\Phi : X \to \mathbb{R}$ a non-negative continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on X^* ; $J : X \to \mathbb{R}$ a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact. Assume that there exists $x_0 \in X$ such that $\Phi(x_0) = J(x_0) =$ 0 and that

(i)
$$\lim_{\|x\|\to+\infty} (\Phi(x) - \lambda J(x)) = +\infty$$
 for all $\lambda \in [0, +\infty[$.

Further, assume that there are r > 0, $x_1 \in X$ such that:

- (ii) $r < \Phi(x_1);$
- (iii) $\sup_{x\in\overline{\Phi^{-1}(]-\infty,r[)}^w} J(x) < \frac{r}{r+\Phi(x_1)} J(x_1).$

Here $\overline{\Phi^{-1}(]-\infty,r[)}^w$ denotes the closure of $\Phi^{-1}(]-\infty,r[)$ in the weak topology. Then, for each

$$\lambda \in \Lambda_1 := \left[\frac{\Phi(x_1)}{J(x_1) - \sup_{x \in \overline{\Phi^{-1}(]-\infty, r[)}^w} J(x)}, \frac{r}{\sup_{x \in \overline{\Phi^{-1}(]-\infty, r[)}^w} J(x)} \right],$$

the equation

$$\Phi'(x) - \lambda J'(x) = 0 \tag{2.1}$$

has at least three solutions in X and, moreover, for each h > 1, there exists an open interval

$$\Lambda_2 \subseteq \left[0, \frac{hr}{r\frac{J(x_1)}{\Phi(x_1)} - \sup_{x \in \overline{\Phi^{-1}(]-\infty, r[)}^w} J(x)}\right]$$

and a positive real number σ such that, for each $\lambda \in \Lambda_2$, the equation (2.1) has at least three solutions in X whose norms are less than σ .

In the sequel, X will denote the Cartesian product of the n Sobolev spaces $W^{1,p_i}(\Omega)$ for $1 \leq i \leq n$, i.e., $X = W^{1,p_1}(\Omega) \times W^{1,p_2}(\Omega) \times \cdots \times W^{1,p_n}(\Omega)$ equipped with the norm

$$\|(u_1, u_2, \dots, u_n)\| := \sum_{i=1}^n \|u_i\|_{p_i},$$

where

$$\|u_i\|_{p_i} := \left(\int_{\Omega} |\nabla u_i(x)|^{p_i} dx + \int_{\Omega} a_i(x) |u_i(x)|^{p_i} dx\right)^{1/p_i}$$

for $1 \leq i \leq n$, which is equivalent to the usual one. Put

$$k := \max\left\{\sup_{u_i \in W^{1,p_i}(\Omega) \setminus \{0\}} \frac{\max_{x \in \overline{\Omega}} |u_i(x)|^{p_i}}{\|u_i\|_{p_i}^{p_i}} : \text{ for } 1 \le i \le n\right\}.$$
 (2.2)

Since $p_i > N$ for $1 \leq i \leq n$, the embedding $X \hookrightarrow (C^0(\overline{\Omega}))^n$ is compact, and so $k < +\infty$. It follows from Proposition 4.1 of [1] that

$$\sup_{u_i \in W^{1,p_i}(\Omega) \setminus \{0\}} \frac{\max_{x \in \overline{\Omega}} |u_i(x)|^{p_i}}{\|u_i\|_{p_i}^{p_i}} > \frac{1}{\|a_i\|_1} \quad \text{for} \ 1 \le i \le n,$$

where $||a_i||_1 := \int_{\Omega} |a_i(x)| dx$ for $1 \le i \le n$, and so $\frac{1}{||a_i||_1} \le k$ for $1 \le i \le n$. In addition, if Ω is convex, it is known [1] that

$$\sup_{u_i \in W^{1,p_i}(\Omega) \setminus \{0\}} \frac{\max_{x \in \overline{\Omega}} |u_i(x)|}{\|u_i\|_{p_i}} \le 2^{\frac{p_i - 1}{p_i}} \max\left\{ \left(\frac{1}{\|a_i\|_1}\right)^{\frac{1}{p_i}}, \frac{\operatorname{diam}(\Omega)}{N^{\frac{1}{p_i}}} \left(\frac{p_i - 1}{p_i - N} m(\Omega)\right)^{\frac{p_i - 1}{p_i}} \frac{\|a_i\|_{\infty}}{\|a_i\|_1} \right\}$$

for $1 \leq i \leq n$, where $m(\Omega)$ is the Lebesgue measure of the set Ω , and equality occurs when Ω is a ball.

We recall that a function $u = (u_1, \ldots, u_n) \in X$ is said to be a (weak) solution of the system (1.1) if

$$\begin{split} \int_{\Omega} \sum_{i=1}^{n} |\nabla u_i(x)|^{p_i - 2} \nabla u_i(x) \nabla v_i(x) dx & - \lambda \int_{\Omega} \sum_{i=1}^{n} F_{u_i}(x, u_1(x), \dots, u_n(x)) v_i(x) dx \\ &+ \int_{\Omega} \sum_{i=1}^{n} a_i(x) |u_i(x)|^{p_i - 2} u_i(x) v_i(x) dx = 0 \end{split}$$

for all $v = (v_1, \ldots, v_n) \in X$.

For all c > 0 we denote by K(c) the set

$$\left\{ (t_1, \dots, t_n) \in \mathbb{R}^n : \sum_{i=1}^n \frac{|t_i|^{p_i}}{p_i} \le c \right\}.$$

This set will be used in some of our hypotheses with appropriate choices of c.

3. Main results

Our main result is the following theorem.

Theorem 3.1. Assume that there exist n+1 positive constants r and s_i for $1 \le i \le n$, with $s_i < p_i$ for $1 \le i \le n$, and two functions $\alpha \in L^1(\Omega)$ and $w = (w_1, \ldots, w_n) \in X$ such that

(j)
$$\sum_{i=1}^{n} \frac{\|w_i\|_{p_i}^{p_i}}{p_i} > r;$$

(jj) $\int_{\Omega} \sup_{(t_1,\dots,t_n)\in K(kr)} F(x,t_1,\dots,t_n) dx < \frac{r \int_{\Omega} F(x,w_1(x),\dots,w_n(x)) dx}{2\sum_{i=1}^{n} \frac{\|w_i\|_{p_i}^{p_i}}{p_i}};$

(jjj) $F(x,t_1,\ldots,t_n) \leq \alpha(x) \left(1 + \sum_{i=1}^n |t_i|^{s_i}\right)$ for a.e. $x \in \Omega$ and all $(t_1,\ldots,t_n) \in \mathbb{R}^n$.

Then, for each

$$\lambda \in \Lambda_{1}' := \left] \frac{\sum_{i=1}^{n} \frac{\|w_{i}\|_{P_{i}}^{p_{i}}}{p_{i}}}{\int_{\Omega} F(x, w_{1}(x), \dots, w_{n}(x)) dx - \int_{\Omega} \sup_{(t_{1}, \dots, t_{n}) \in K(kr)} F(x, t_{1}, \dots, t_{n}) dx}, \frac{r}{\int_{\Omega} \sup_{(t_{1}, \dots, t_{n}) \in K(kr)} F(x, t_{1}, \dots, t_{n}) dx} \right],$$

the system (1.1) admits at least three weak solutions in X and, moreover, for each h > 1, there exist an open interval

$$\Lambda_{2}^{'} \subseteq \left[0, \frac{hr}{r \frac{\int_{\Omega} F(x, w_{1}(x), \dots, w_{n}(x)) dx}{\sum_{i=1}^{n} \frac{\|w_{i}\|_{p_{i}}^{p_{i}}}{p_{i}}} - \int_{\Omega} \sup_{(t_{1}, \dots, t_{n}) \in K(kr)} F(x, t_{1}, \dots, t_{n}) dx\right]$$

and a positive real number σ such that, for each $\lambda \in \Lambda'_2$, the system (1.1) admits at least three weak solutions in X whose norms are less than σ .

Proof: In order to apply Theorem 2.1, we begin by setting

$$\Phi(u) := \sum_{i=1}^{n} \frac{\|u_i\|_{p_i}^{p_i}}{p_i}$$
(3.1)

and

$$J(u) := \int_{\Omega} F(x, u_1(x), \dots, u_n(x)) dx$$
(3.2)

for all $u = (u_1, \ldots, u_n) \in X$. It is known that Φ and J are well defined and continuously Gâteaux differentiable functionals with

$$\Phi'(u)(v) = \int_{\Omega} \sum_{i=1}^{n} |\nabla u_i(x)|^{p_i - 2} \nabla u_i(x) \nabla v_i(x) dx$$
$$+ \int_{\Omega} \sum_{i=1}^{n} a_i(x) |u_i(x)|^{p_i - 2} u_i(x) v_i(x) dx$$

and

$$J'(u)(v) = \int_{\Omega} \sum_{i=1}^{n} F_{u_i}(x, u_1(x), \dots, u_n(x)) v_i(x) dx$$

for every $u = (u_1, \ldots, u_n), v = (v_1, \ldots, v_n) \in X$, as well as Φ is sequentially weakly lower semicontinuous (see Proposition 25.20 of [15]). Also, $\Phi' : X \to X^*$ is a uniformly monotone operator in X (for more details, see (2.2) of [14]), and since Φ' is coercive and hemicontinuous in X, by applying Theorem 26.A of [15], Φ' admits a continuous inverse on X^* .

We claim that $J': X \to X^*$ is a compact operator. To this end, it is enough to show that J' is strongly continuous on X. For this, for fixed $(u_1, \ldots, u_n) \in$ X, let $(u_{1m}, \ldots, u_{nm}) \to (u_1, \ldots, u_n)$ weakly in X as $m \to +\infty$. Then we have (u_{1m}, \ldots, u_{nm}) converges uniformly to (u_1, \ldots, u_n) on Ω as $m \to +\infty$ (see [15]). Since $F(x, \cdot, \ldots, \cdot)$ is C^1 in \mathbb{R}^n for every $x \in \Omega$, the derivatives of F are continuous in \mathbb{R}^n for every $x \in \Omega$, so for $1 \leq i \leq n$, $F_{u_i}(x, u_{1m}, \ldots, u_{nm}) \to$ $F_{u_i}(x, u_1, \ldots, u_n)$ strongly as $m \to +\infty$. By the Lebesgue control convergence theorem, $J'(u_{1m}, \ldots, u_{nm}) \to J'(u_1, \ldots, u_n)$ strongly as $m \to +\infty$. Thus we proved that J' is strongly continuous on X, which implies that J' is a compact operator by [15, Proposition 26.2]. Hence the claim is true.

Thanks to the assumption (jjj), for each $\lambda > 0$ one has

$$\lim_{\|u\|\to+\infty} (\Phi(u) - \lambda J(u)) = +\infty.$$

Also, from (j) and (3.1) we get $\Phi(w) > r$. Due to (2.2), for each $u_i \in W^{1,p_i}(\Omega)$

$$\sup_{x \in \Omega} |u_i(x)|^{p_i} \le k ||u_i||_{p_i}^{p_i}$$

for $1 \leq i \leq n$, so we have

$$\sup_{x \in \Omega} \sum_{i=1}^{n} \frac{|u_i(x)|^{p_i}}{p_i} \le k \sum_{i=1}^{n} \frac{\|u_i\|_{p_i}^{p_i}}{p_i} = k\Phi(u)$$
(3.3)

for every $u = (u_1, \ldots, u_n) \in X$. From (3.3), for each r > 0 we obtain

$$\Phi^{-1}(] - \infty, r]) = \left\{ u = (u_1, \dots, u_n) \in X : \Phi(u) \le r \right\}$$

= $\left\{ u = (u_1, \dots, u_n) \in X : \sum_{i=1}^n \frac{\|u_i\|_{p_i}}{p_i} \le r \right\}$
 $\subseteq \left\{ u = (u_1, \dots, u_n) \in X : \sum_{i=1}^n \frac{|u_i(x)|^{p_i}}{p_i} \le kr \text{ for all } x \in \Omega \right\},$

and, since $\overline{\Phi^{-1}(]-\infty,r[)}^w = \Phi^{-1}(]-\infty,r])$, owing to our assumptions, we have

$$\sup_{u \in \overline{\Phi^{-1}(]-\infty,r[)}^{w}} J(u) \leq \int_{\Omega} \sup_{(t_{1},\dots,t_{n}) \in K(kr)} F(x,t_{1},\dots,t_{n}) dx$$

$$< \frac{r \int_{\Omega} F(x,w_{1}(x),\dots,w_{n}(x)) dx}{2\sum_{i=1}^{n} \frac{\|w_{i}\|_{p_{i}}^{p_{i}}}{p_{i}}}$$

$$< r \frac{\int_{\Omega} F(x,w_{1}(x),\dots,w_{n}(x)) dx}{r + \sum_{i=1}^{n} \frac{\|w_{i}\|_{p_{i}}^{p_{i}}}{p_{i}}}$$

$$= \frac{r}{r + \Phi(w)} J(w).$$

We can apply Theorem 2.1 at this point and obtain two intervals Λ_1 and Λ_2 such that if $\lambda \in \Lambda_1 \cup \Lambda_2$, then system (1.1) has at least three weak solutions. Next, we derive the upper and lower bounds of Λ_1 and Λ_2 . For each $x \in \Omega$ we have

$$\frac{r}{\sup_{u\in\Phi^{-1}(]-\infty,r[)^w}J(u)} \ge \frac{r}{\int_{\Omega}\sup_{(t_1,\dots,t_n)\in K(kr)}F(x,t_1,\dots,t_n)dx}$$

and

$$\frac{\Phi(w)}{J(w) - \sup_{u \in \overline{\Phi^{-1}(]-\infty,r[]}^w} J(u)} = \frac{\sum_{i=1}^n \frac{\|w_i\|_{p_i}^{p_i}}{p_i}}{\int_{\Omega} F(x,w_1(x),\dots,w_n(x))dx - \int_{\Omega} \sup_{(t_1,\dots,t_n) \in K(kr)} F(x,t_1,\dots,t_n)dx}.$$

Note also that (jj) immediately implies

$$\begin{split} & \frac{\sum_{i=1}^{n} \frac{\|w_i\|_{p_i}^{p_i}}{p_i}}{\int_{\Omega} F(x, w_1(x), \dots, w_n(x)) dx - \int_{\Omega} \sup_{(t_1, \dots, t_n) \in K(kr)} F(x, t_1, \dots, t_n) dx} \\ & < \frac{\sum_{i=1}^{n} \frac{\|w_i\|_{p_i}^{p_i}}{p_i}}{\left(\frac{2\sum_{i=1}^{n} \frac{\|w_i\|_{p_i}^{p_i}}{p_i}}{r} - 1\right) \int_{\Omega} \sup_{(t_1, \dots, t_n) \in K(kr)} F(x, t_1, \dots, t_n) dx} \\ & < \frac{\sum_{i=1}^{n} \frac{\|w_i\|_{p_i}^{p_i}}{p_i}}{\left(\frac{r + \sum_{i=1}^{n} \frac{\|w_i\|_{p_i}^{p_i}}{p_i}}{r} - 1\right) \int_{\Omega} \sup_{(t_1, \dots, t_n) \in K(kr)} F(x, t_1, \dots, t_n) dx} \\ & = \frac{r}{\int_{\Omega} \sup_{(t_1, \dots, t_n) \in K(kr)} F(x, t_1, \dots, t_n) dx}. \end{split}$$

 Also

$$\begin{split} &\frac{hr}{r\frac{J(w)}{\Phi(w)} - \frac{\sup}{u \in \overline{\Phi^{-1}(]-\infty,r[)}^w} J(u)} \\ &\leq \frac{hr}{r\frac{\displaystyle\int_{\Omega} F(x,w_1(x),\ldots,w_n(x))dx}{\displaystyle\sum_{i=1}^n \frac{\|w_i\|_{p_i}^{p_i}}{p_i}} - \int_{\Omega} \sup_{(t_1,\ldots,t_n) \in K(kr)} F(x,t_1,\ldots,t_n)dx} \\ &= \rho. \end{split}$$

 So

$$\int_{\Omega} \sup_{(t_1, \dots, t_n) \in K(kr)} F(x, t_1, \dots, t_n) dx < r \frac{\int_{\Omega} F(x, w_1(x), \dots, w_n(x)) dx}{\sum_{i=1}^n \frac{\|w_i\|_{p_i}^{p_i}}{p_i}},$$

and now apply (jj). Thus, by choosing $x_0 = 0$, $x_1 = w$, from Theorem 2.1 it follows that, for each $\lambda \in \Lambda_1'$ the system (1.1) admits at least three weak solutions and there exist an open interval $\Lambda_2' \subseteq [0, \rho]$ and a real positive number σ such that, for

each $\lambda \in \Lambda'_2$, the system (1.1) admits at least three weak solutions whose norms in X are less than σ .

Now, we give a particular consequence of Theorem 3.1 for a fixed test function w. Moreover, F dose not depend on $x \in \Omega$.

Corollary 3.2. Let $F : \mathbb{R}^n \to \mathbb{R}$ be a C^1 -function and assume that there exist n+3 positive constants γ , δ , α and s_i for $1 \le i \le n$, with $s_i < p_i$ for $1 \le i \le n$, such that

(k)
$$\sum_{i=1}^{n} \frac{\delta^{p_i}}{p_i} > \frac{\gamma}{\prod_{i=1}^{n} p_i};$$

(kk) $\max_{(t_1,...,t_n) \in K(\frac{\gamma}{\prod_{i=1}^{n} p_i})} F(t_1,...,t_n) < \frac{\gamma}{2k \prod_{i=1}^{n} p_i} \frac{F(\delta,...,\delta)}{\sum_{i=1}^{n} \frac{\delta^{p_i}}{p_i} \|a_i\|_1};$

(kkk) $F(t_1, \ldots, t_n) \leq \alpha (1 + \sum_{i=1}^n |t_i|^{s_i})$ for all $(t_1, \ldots, t_n) \in \mathbb{R}^n$.

Then, for each

$$\lambda \in \Lambda_1' := \left] \frac{\sum_{i=1}^n \frac{\delta^{p_i}}{p_i} \|a_i\|_1}{m(\Omega) \left(F(\delta, \dots, \delta) - \max_{\substack{(t_1, \dots, t_n) \in K(\frac{\gamma}{\prod_{i=1}^n p_i})} F(t_1, \dots, t_n) \right)}, \frac{\frac{\kappa \prod_{i=1}^n p_i}{m(\Omega) \max_{\substack{(t_1, \dots, t_n) \in K(\frac{\gamma}{\prod_{i=1}^n p_i})} F(t_1, \dots, t_n)}} \right],$$

the system

$$\begin{cases} \Delta_{p_i} u_i + \lambda F_{u_i}(u_1, \dots, u_n) = a_i(x) |u_i|^{p_i - 2} u_i & \text{in } \Omega, \\ \partial u_i / \partial \nu = 0 & \text{on } \partial \Omega, \end{cases}$$
(3.4)

for $1 \leq i \leq n$, admits at least three weak solutions in X and, moreover, for each h > 1, there exist an open interval

$$\Lambda_2' \subseteq \left[0, \frac{\frac{h\gamma}{k\prod_{i=1}^n p_i}}{m(\Omega)\left(\frac{\gamma}{k\prod_{i=1}^n p_i} \frac{F(\delta, \dots, \delta)}{\sum_{i=1}^n \frac{\delta^{p_i}}{p_i} \|a_i\|_1} - \max_{(t_1, \dots, t_n) \in K(\frac{\gamma}{\prod_{i=1}^n p_i})} F(t_1, \dots, t_n)\right)}\right]$$

and a positive real number σ such that, for each $\lambda \in \Lambda'_2$, the system (3.4) admits at least three weak solutions in X whose norms are less than σ .

Proof: We prove that all assumptions of Theorem 3.1 are fulfilled with $w(x) := (\delta, \ldots, \delta)$ and $r := \frac{\gamma}{k \prod_{i=1}^{n} p_i}$. If we put $w(x) := (\delta, \ldots, \delta)$ for each $x \in \Omega$, then we have $||w_i||_{p_i} = ||a_i||_1^{\frac{1}{p_i}} \delta$ for $1 \le i \le n$. By (k) and the fact that $\frac{1}{||a_i||_1} \le k$ for $1 \le i \le n$, we get $\Phi(w) = \sum_{i=1}^{n} \frac{\delta^{p_i}}{p_i} ||a_i||_1 > r$. The other assumptions of Theorem 3.1 are clearly satisfied.

Corollary 3.3. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Put $F(t) = \int_0^t f(\xi) d\xi$ for each $t \in \mathbb{R}$. Assume that there exist four positive constants γ , δ , α and s with $\delta^p > \gamma$ and s < p, such that

(1)
$$\max_{t \in [-\sqrt[p]{\gamma}, \sqrt[p]{\gamma}]} F(t) < \frac{F(\delta)}{2k \|a\|_1};$$

(11)
$$F(t) \leq \alpha(1+|t|^s)$$
 for all $t \in \mathbb{R}$.

Then, for each

$$\lambda \in \Lambda_1' := \left] \frac{\delta^p \|a\|_1}{p \, m(\Omega) \Big(F(\delta) - \max_{t \in [-\sqrt[p]{\gamma}, \sqrt[p]{\gamma}]} F(t) \Big)}, \frac{\gamma}{(kp) m(\Omega) \max_{t \in [-\sqrt[p]{\gamma}, \sqrt[p]{\gamma}]} F(t)} \right[,$$

 $the\ problem$

$$\begin{cases} \Delta_p u + \lambda f(u) = a(x)|u|^{p-2}u & \text{in } \Omega, \\ \partial u/\partial \nu = 0 & \text{on } \partial \Omega \end{cases}$$
(3.5)

admits at least three weak solutions in $W^{1,p}(\Omega)$ and, moreover, for each h > 1, there exist an open interval

$$\Lambda_{2}^{'} \subseteq \left[0, \frac{h\gamma}{(kp)m(\Omega)\left(\frac{\gamma F(\delta)}{k\delta^{p}||a||_{1}} - \max_{t \in [-\sqrt[p]{\gamma}, \sqrt[p]{\gamma}]} F(t)\right)}\right]$$

and a positive real number σ such that, for each $\lambda \in \Lambda_{2}^{'}$, the problem (3.5) admits at least three weak solutions in $W^{1,p}(\Omega)$ whose norms are less than σ .

Finally, we present the application of Theorem 3.1 in the ordinary case with p = 2, that Example 3.5 illustrates the result. For simplicity, we put $\Omega = (0, 1)$. Note that in this situation we have

$$k = 2 \max\{\|a\|_1^{-1}, \|a\|_{\infty}^2 \|a\|_1^{-2}\}.$$

Corollary 3.4. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Put $F(t) = \int_0^t f(\xi) d\xi$ for each $t \in \mathbb{R}$. Assume that there exist four positive constants γ , δ , α and s with $\delta^2 > \gamma$ and s < 2, such that assumption (ll) in Corollary 3.3 holds, and

(m)
$$\max_{t \in [-\sqrt{\gamma},\sqrt{\gamma}]} F(t) < \frac{F(\delta)}{2k \|a\|_1}.$$

Then, for each

$$\lambda \in \Lambda_1' := \left] \frac{\delta^2 \|a\|_1}{2\left(F(\delta) - \max_{t \in [-\sqrt{\gamma}, \sqrt{\gamma}]} F(t)\right)}, \frac{\gamma}{2k \max_{t \in [-\sqrt{\gamma}, \sqrt{\gamma}]} F(t)} \right[,$$

the problem

$$\begin{cases} u'' + \lambda f(u) = a(x)u & in (0, 1), \\ u'(0) = u'(1) = 0 \end{cases}$$
(3.6)

admits at least three classical solutions in $C^2([0,1])$ and, moreover, for each h > 1, there exist an open interval

$$\Lambda_{2}^{'} \subseteq \left\lfloor 0, \frac{h\gamma}{2k \left(\frac{\gamma F(\delta)}{k\delta^{2} \|a\|_{1}} - \max_{t \in [-\sqrt{\gamma},\sqrt{\gamma}]} F(t)\right)} \right\rfloor$$

and a positive real number σ such that, for each $\lambda \in \Lambda'_2$, the problem (3.6) admits at least three classical solutions in $C^2([0,1])$ whose norms are less than σ .

Example 3.5. Consider the problem

$$\begin{cases} u'' + \lambda e^{-u} u^{11} (12 - u) = xu & in (0, 1), \\ u'(0) = u'(1) = 0. \end{cases}$$
(3.7)

Set $f(t) = e^{-t}t^{11}(12 - t)$ for all $t \in \mathbb{R}$. A direct calculation yields $F(t) = e^{-t}t^{12}$ for all $t \in \mathbb{R}$. Note that by choosing $\delta = 2$, $\gamma = 1$ and a(x) = x, we have k = 8. A simple computation shows

$$\frac{F(\delta)}{2k\|a\|_1} - \max_{t \in [-\sqrt{\gamma}, \sqrt{\gamma}]} F(t) = \frac{2^9}{e^2} - e > 0.$$

Moreover, with s = 1 and α sufficiently large, the assumption (ll) is satisfied. So, by Corollary 3.4, for each $\lambda \in \Lambda'_1 :=]\frac{1}{2^{12}e^{-2}-e}, \frac{1}{16e}[$, the problem (3.7) admits at least three classical solutions in $C^2([0,1])$ and, moreover, for each h > 1, there exist an open interval $\Lambda'_2 \subseteq [0, \frac{h}{16(2^8e^{-2}-e)}]$ and a positive real number σ such that, for each $\lambda \in \Lambda'_2$, the problem (3.7) admits at least three classical solutions in $C^2([0,1])$ whose norms are less than σ .

Acknowledgments

The author acknowledges the financial support of Iran's *National Elites Foundation* for this study.

References

- Anello, G. and Cordaro, G., An existence theorem for the Neumann problem involving the p-Laplacian, J. Convex Anal. 10, 185-198, (2003).
- Boccardo, L. and Figueiredo, D., An Some remarks on a system of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl. 9, 309-323, (2002).
- Bonanno, G., A critical points theorem and nonlinear differential problems, J. Global Optim. 28, 249-258, (2004).
- Bonanno, G., Heidarkhani, S. and O'Regan, D., Multiple solutions for a class of Dirichlet quasilinear elliptic systems driven by a (p,q)-Laplacian operator, Dynam. Systems Appl. 20, 89-100, (2011).
- Bonanno, G., Molica Bisci, G. and O'Regan, D., Infinitely many weak solutions for a class of quasilinear elliptic systems, Math. Comput. Modelling 52, 152-160, (2010).
- Bozhkova, Y. and Mitidieri, E., Existence of multiple solutions for quasilinear systems via fibering method, J. Differential Equations 190, 239-267, (2003).

- D'Aguí, G. and Molica Bisci, G., Three non-zero solutions for elliptic Neumann problems, Anal. Appl. 9, 383-394, (2011).
- Djellit, A. and Tas, S., On some nonlinear elliptic systems, Nonlinear Anal. 59, 695-706, (2004).
- Djellit, A. and Tas, S., Quasilinear elliptic systems with critical Sobolev exponents in ℝ^N, Nonlinear Anal. 99, 1485-1497, (2007).
- Ghergu, M. and Rădulescu, V., Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Ser. Math. Appl., vol. 37, Oxford Univ. Press, New York, (2008).
- Kristály, A., Existence of two non-trivial solutions for a class of quasilinear elliptic variational systems on strip-like domains, Proc. Edinb. Math. Soc. 48, 465-477, (2005).
- Kristály, A., Rădulescu, V. and Varga, Cs., Variational Principles in Mathematical Physics, Geometry and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia Math. Appl., vol. 136, Cambridge Univ. Press, Cambridge, (2010).
- 13. Li, C. and Tang, C.-L., Three solutions for a class of quasilinear elliptic systems involving the (p,q)-Laplacian, Nonlinear Anal. 69, 3322-3329, (2008).
- Simon, J., Régularité de la solution d'une équation non linéaire dans ℝ^N, In: Journées d'Analyse Non Linéaire (Proc. Conf., Besançon, 1977), In: Lecture Notes in Math., vol. 665, Springer, 205-227 (1978).
- Zeidler, E., Nonlinear Functional Analysis and its Application, vol. II/B, Springer-Verlag, Berlin-Heidelberg-New York, (1990).

Armin Hadjian, Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran. E-mail address: hadjian830gmail.com, a.hadjian@ub.ac.ir