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Lr-biharmonic hypersurfaces in E
4

Akram Mohammadpouri and Firooz Pashaie

abstract: An Euclidean hypersurface defined by isometric immersion x : Mn
→

E
n+1 is said to be biharmonic if the map x satisfies the condition ∆2x = 0, where ∆

is the Laplace operator onMn. Based on a well-known conjecture of Bang-Yen Chen,
the only biharmonic submanifolds in E

n+1 are the minimal ones. In this paper, we
consider an extension of biharmonicity condition as L2

rx = 0 on hypersurfaces of
4-dimensional Euclidean space E

4, where Lr is the linearized operator from the
first variation of (r + 1)-th mean curvature of Mn and specially we have L0 =
∆. We prove that any L2-biharmonic hypersurface in E

4 with constant 2-th mean
curvature is 2-minimal. We also prove that any L1-biharmonic hypersurface in E

4

with constant mean curvature is 1-minimal.
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1. Introduction

Biharmonic functions as the solution of some well-known partial differential
equations frequently appear in mathematical physics. Especially, when it becomes
very difficult to find harmonic maps, sometimes the biharmonic ones are helpful.
From geometric points of view, the role of biharmonic surfaces in elasticity and fluid
mechanics can be considered as a physical motivation for the theory of biharmonic-
ity. In eighteen decade, B.Y.Chen has investigated the properties of biharmonic
submanifolds in the Euclidean spaces (with position vector filed Mn → E

n+k sat-
isfying the condition ∆2x = 0, where ∆ is the Laplace operator). He introduced
some open problems and conjectures in [4], among them, a longstanding conjec-
ture says that a biharmonic submanifold in a Euclidean space is minimal. Chen
himself has proved the conjecture for surfaces in E

3. Later on, I. Dimitrić in his
doctoral thesis has verified Chen conjecture in several different cases such as spe-
cial curves, submanifolds of constant mean curvature and also, hypersurfaces of the
Euclidean spaces with at most two distinct principal curvatures ( [6]). T. Hasanis
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and T. Vlachos ( [8]) verified the conjecture for hypersurfaces in E
4. Having as-

sumed the completeness, Akutagawa and Maeta ( [1]) gave an affirmative answer
to the global version of Chen conjecture for biharmonic submanifolds in Euclidean
spaces. Recently, in [7], it has been shown that the only biharmonic hypersurfaces
in Euclidean spaces with three distinct principal curvatures are minimal ones. A
condition equivalent to biharmonicity on an Euclidean hypersurface can be ex-
pressed by ∆H = 0, where H is the ordinary mean curvature vector field on the
hypersurface.

On a hypersurface Mn in E
n+1, The Laplace operator ∆ stands for the lin-

earized operator of the first variation of the mean curvature arising from normal
variations ofMn ( [14]), and in general, the advanced operator Lk (where, L0 = ∆),
standing for the linearized operator of the first variation of (k + 1)-th mean cur-
vature arising from normal variations of Mn, is defined by the explicit formula
Lk(f) = tr(Pk ◦∇2f) for k = 0, 1, 2, . . . , n− 1, and f ∈ C∞(M), where Pk denotes
the k-th Newton transformation associated to the second fundamental from of Mn

and ∇2f is the hessian of f ( [13]). From this point of view, as an extension of
finite type theory, S.M.B. Kashani ( [9]) introduced the notion of Lr-finite type
hypersurface in the Euclidean space, which has been followed in the first authors
doctoral thesis. One can see our results in the last section of the last chapter of
second edition of Chen’s book ( [3]).

It seems interesting to generalize the definition of biharmonic hypersurface by
replacing △ by the operator Lr. We define the Lr-biharmonicity condition and
study on Lr-version of Chen conjecture. In [11], we solved the problem for hyper-
surfaces in E

n+1 with at most two distinct principal curvatures. In special case,
we showed that every L1-biharmonic surface in E

3 is flat and every L2-biharmonic
hypersurface in E

4 with at most two distinct principal curvatures is 2-minimal.
So, the next step is the study of Lr-biharmonic hypersurfaces with three distinct
principal curvatures in E

4. Recently, in [12], we proved that any L1-biharmonic
hypersurfaces in E

n+1 with at most three distinct principal curvatures and constant
mean curvature are 1-minimal. In this paper, we prove that each L1-biharmonic
hypersurface in E

4 with constant mean curvature is 1-minimal. Also, we show
that every L2-biharmonic hypersurface in E

4 with constant 2-th mean curvature is
2-minimal. Indeed, we follow Defevers techniques to prove our results ( [5]). Here
are our main theorems.

Theorem 1.1. Every L1-biharmonic hypersurface in E
4 with contant mean cur-

vature and three distinct principal curvatures is 1-minimal.

Theorem 1.2. Every L2-biharmonic hypersurface in E
4 with constant 2-th mean

curvature and three distinct principal curvatures is 2-minimal.

2. Preliminaries

In this section, we recall some prerequisites from [2]. Let x : M3 → E
4 be

an isometric immersion of a Riemannian 3-dimensional manifold M into the Eu-
clidean space E

4 with the Gauss map N . We denote ∇0 and ∇ the Levi-Civita
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connections on E
4 and M3, respectively. The Gauss and Weingarten formulae on

the hypersurface are given by

∇0
XY = ∇XY+ < SX, Y > N, SX = −∇0

XN,

for all tangent vector fields X,Y ∈ X(M3), where S : X(M3) → X(M3) is the
shape operator (or Weingarten endomorphism) of M3 with respect to the Gauss
map N .

As is well-known, for every point p ∈ M3, S defines a linear self-adjoint endo-
morphism on the tangent space TpM

3, and its eigenvalues λ1(p), λ2(p) and λ3(p)
are the principal curvatures of the hypersurface. The characteristic polynomial
QS(t) of S is defined by

QS(t) = det(tI − S) = (t− λ1)(t− λ2)(t− λ3) = t3 + a1t
2 + a2t+ a3,

where the coefficients of QS(t) are given by

a1 = −(λ1 + λ2 + λ3), a2 = λ1λ2 + λ1λ3 + λ2λ3, a3 = −λ1λ2λ3.

The r-th mean curvature Hr or mean curvature of order r of M3 in E
4 is defined

by
(

3

r

)

Hr = (−1)rar,

with H0 = 1.
If Hr+1 ≡ 0 then we say that M3 is a r-minimal hypersurface, a 0-minimal

hypersurface is nothing but a minimal hypersurface in E
4 . The r-th Newton

transformation of M3 is the operator Pr : X(M3) → X(M3) defined by

Pr =

r
∑

j=0

(−1)j
(

3

r − j

)

Hr−jS
j = (−1)r

r
∑

j=0

ar−jS
j .

In particular,

P0 = I, P1 = 3HI − S, P2 = 3H2I − S ◦ P1, P3 = H3I − S ◦ P2.

Note that by Cayley-Hamilton theorem we have P3 = 0. Let us recall that, for
every point p ∈ M3, each Pr(p) is also a self-adjoint linear operator on the tangent
hyperplane TpM which commutes with S(p). Indeed, S(p) and Pr(p) can be simul-
taneously diagonalized. If {e1, e2, e3} are the eigenvectors of S(p) corresponding to
the eigenvalues λ1(p), λ2(p), λ3(p), respectively, then they are also the eigenvectors
of Pr(p) with corresponding eigenvalues given by

µi,r =

3
∑

i1<···<ir
ij 6=i

λi1 · · ·λir for every i = 1, 2, 3 and k = 1, 2.



12 A. Mohammadpouri and F.Pashaie

In particular,

µ1,1 = λ2 + λ3, µ2,1 = λ1 + λ3, µ3,1 = λ1 + λ2,

µ1,2 = λ2λ3, µ2,2 = λ1λ3, µ3,2 = λ1λ2.
(2.1)

We have the following formula for the Newton transformations, [2].

a) tr(Pr) = crHr,

b) tr(S ◦ Pr) = crHr+1,

c) tr(S2 ◦ P1) = 9HH2 − 3H3,

d) tr(S2 ◦ P2) = 3HH3,

(2.2)

where r = 1, 2, c1 = 6 and c0 = 3. Associated to each Newton transformation Pr,
we consider the second-order linear differential operator Lr : C

∞(M3) → C∞(M3)
given by Lr(f) = tr(Pr ◦ ∇2f), where, ∇2f : X(M) → X(M) denotes the self-
adjoint linear operator metrically equivalent to the Hessian of f and is given by

< ∇2f(X), Y >=< ∇X(∇f), Y >, X, Y ∈ X(M3).

Therefore by considering the local orthonormal frame {e1, e2, e3}, Lr(f) is given
by

Lr(f) = µ1,r(∇e1e1f−e1e1f)+µ2,r(∇e2e2f−e2e2f)+µ3,r(∇e3e3f−e3e3f). (2.3)

3. Lr-biharmonic hypersurfaces in E
4

Let x : M3 → E
4 be a connected orientable hypersurface immersed into the Eu-

clidean space, with Gauss map N . Then M3 is called a Lr-biharmonic hypersurface
if and only if L2

rx = 0 or equivalently, Lr(Hr+1N) = 0, r = 1, 2 (see [2]).
By definition of the Lr-biharmonic hypersurface, it is clear that r-minimal im-

mersions are trivially r-biharmonic. By using formula for L2
rx of [2] and the iden-

tifying normal and tangent parts of the Lr-biharmonic condition L2
rx = 0, one

obtains necessary and sufficient conditions for M3 to be Lr-biharmonic in E
4,

namely
LrHr+1 = tr(S2 ◦ Pr)Hr+1 (3.1)

and

(S ◦ Pr)(∇Hr+1) = −1

2

(

3

r + 1

)

Hr+1∇Hr+1. (3.2)

Example 3.1. Let M3 be the rotational hypersurface in E
4 parameterized by

x(u1, u2, v) = vY (u1, u2) +

∫

a dv√
v − a2

η4, v > 0, (3.3)

where a is nonzero constant, η4 = (0, 0, 0, 1) ∈ E
4 and Y (u1, u2) is defined by

Y (u1, u2) = (Y1(u1, u2), Y2(u1, u2), Y3(u1, u2), 0),
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where
Y1 = cosu1, Y2 = sinu1 cosu2, Y3 = sinu1 sinu2 cosu3.

M3 is the 1-minimal hypersurface (see example 3.1 of [10]), and hence by using
(3.1) and (3.2), we get that M3 is L1-biharmonic in E

4.

3.1. L1-biharmonic hypersurfaces

We now turn to the question whether there are non r-minimal Lr-biharmonic
hypersurfaces of E4. In [11], we proved that every Lr-biharmonic hypersurface of
E
4 with at most two principal curvatures is in fact r-minimal. We remark that in

this paper all three principal curvatures have to be mutually different. Otherwise,
M3 would be a Lr-biharmonic hypersurface with at most two different principal
curvatures.

Proof of Theorem 1.1: Let x : M3 → E
4 be an isometrically immersed

L1-biharmonic Euclidean hypersurface, first we show that H2 is constant. Let us
consider the open set U = {p ∈ M3 : ∇H2

2 (p) 6= 0}, our objective is to show that
U is empty.

We assume that {e1, e2, e3} be a local orthonormal frame of principal directions
of the shape operator S on U such that Sei = λiei (i = 1, 2, 3). Then we have
P2ei = µi,2ei, for every i. We get

H2 =
1

3
(λ1λ2 + λ1λ3 + λ2λ3). (3.4)

From (3.2) (using the inductive definition of P2) we get

P2(∇H2) =
9

2
H2∇H2 on U. (3.5)

On the other hand, we have

∇H2 =

3
∑

i=1

ei(H2)ei. (3.6)

From (3.6) and (3.5) we get

ei(H2)(µi,2 −
9

2
H2) = 0 on U, (3.7)

for i = 1, 2, 3. There exists at least one i (1 ≤ i ≤ 3) that ei(H2) 6= 0, so, we can
assume that e1(H2) 6= 0, then we have,

µ1,2 =
9

2
H2 (locally) on U, (3.8)

which gives λ2λ3 = 9
2H2.
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Now, we claim that

e2(H2) = e3(H2) = 0. (3.9)

Because, if e2(H2) 6= 0 or e3(H2) 6= 0, we get from (3.7) and (3.8) that µ1,2 = µ2,2

or µ1,2 = µ3,2, which gives λ3(λ2−λ1) = 0 or λ2(λ1−λ3) = 0. But, by assumption

λ′
is are mutually distinct, then we get λ3 = 0 or λ2 = 0, which implies H2 = 0 on U,

that contradicts with the definition of U.

Now, in order to prove the main claim, U = ∅, firstly, we show that e2(λ3) =
e3(λ2) = 0.

We take into account that, since H is constant and in view of (3.4) and (3.9),
one has that ei(λ1) = 0 for i > 1.
We write

∇eiej =

3
∑

k=1

ωk
ijek, i, j = 1, 2, 3. (3.10)

The compatibility conditions ∇ek < ei, ei >= 0 and ∇ek < ei, ej >= 0 imply
respectively that

ωi
ki = 0, ω

j
ki + ωi

kj = 0, (3.11)

for i 6= j and i, j, k = 1, 2, 3. Furthermore, it follows from the Codazzi equation
that

ei(λj) = (λi − λj)ω
j
ji, (3.12)

(λi − λj)ω
j
ki = (λk − λj)ω

j
ik (3.13)

for distinct i, j, k = 1, 2, 3. We take into account the action of S on the basis
{e1, e2, e3}, and use the Codazzi equations. The relations

< (∇e1S)e2, e1 >=< (∇e2S)e1, e1 >, < (∇e2S)e3, e3 >=< (∇e3S)e2, e3 >,

< (∇e1S)e3, e3 >=< (∇e3S)e1, e3 >, < (∇e2S)e3, e2 >=< (∇e3S)e2, e2 >,

< (∇e1S)e2, e3 >=< (∇e2S)e1, e3 >, < (∇e1S)e3, e2 >=< (∇e3S)e1, e2 >,

< (∇e2S)e3, e1 >=< (∇e3S)e2, e1 >, [e2, e3](H2) = 0,

(3.14)

imply that

ω1
12 = ω1

13 = ω2
13 = ω3

21 = ω1
32 = 0,

ω2
21 =

e1(λ2)

λ1 − λ2
, ω3

31 =
e1(λ3)

λ1 − λ3
,

ω2
23 =

e3(λ2)

λ3 − λ2
, ω3

32 =
e2(λ3)

λ2 − λ3
.

(3.15)
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Therefore, the covariant derivatives ∇eiej simplify to

∇e1e1 = 0, ∇e2e1 =
e1(λ2)

λ1 − λ2
e2, ∇e3e1 =

e1(λ3)

λ1 − λ3
e3,

∇e1e2 = 0, ∇e2e2 =
e1(λ2)

λ2 − λ1
e1, ∇e3e2 =

e2(λ3)

λ2 − λ3
e3,

∇e1e3 = 0, ∇e2e3 =
e3(λ2)

λ3 − λ2
e2, ∇e3e3 =

e1(λ3)

λ3 − λ1
e1 +

e2(λ3)

λ3 − λ2
e2.

(3.16)

Now, the Gauss equation for < R(e2, e3)e1, e2 > and < R(e2, e3)e1, e3 > show
that

e3

(

e1(λ2)

λ1 − λ2

)

=
e3(λ2)

λ3 − λ2

(

e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)

, (3.17)

e2

(

e1(λ3)

λ1 − λ3

)

=
e2(λ3)

λ2 − λ3

(

e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)

. (3.18)

We also have the Gauss equation for < R(e1, e2)e1, e2 > and < R(e3, e1)e1, e3 >,
which give the following relations

e1

(

e1(λ2)

λ1 − λ2

)

+

(

e1(λ2)

λ1 − λ2

)2

= λ1λ2, (3.19)

e1

(

e1(λ3)

λ1 − λ3

)

+

(

e1(λ3)

λ3 − λ1

)2

= λ1λ3. (3.20)

Finally, we obtain from the Gauss equation for < R(e3, e1)e2, e3 > that

e1

(

e2(λ3)

λ2 − λ3

)

=
e1(λ3)e2(λ3)

(λ3 − λ1)(λ2 − λ3)
. (3.21)

On the other hand, we consider the L1-biharmonic equation (3.1). It follows from
(2.3) and (3.9) that

− µ1,1e1e1(H2) +

(

µ2,1

e1(λ2)

λ2 − λ1
+ µ3,1

e1(λ3)

λ3 − λ1

)

e1(H2)− 9H2
2 (H − 3

2
λ1) = 0.

(3.22)
By differentiating (3.22) along on e2 respectively e3, and using (3.17), (3.18) we
obtain

e2

(

e1(λ2)

λ2 − λ1

)

=
e2(λ3)

λ2 − λ3

(

e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)

, (3.23)

e3

(

e1(λ3)

λ3 − λ1

)

=
e3(λ2)

λ3 − λ2

(

e1(λ2)

λ1 − λ2
− e1(λ3)

λ1 − λ3

)

. (3.24)

Using (3.16), we find that

[e1, e2] =
e1(λ2)

λ2 − λ1
e2. (3.25)
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Applying both sides of the equality (3.25) on e1(λ2)
λ2−λ1

, using (3.23), (3.19), (3.20),
and (3.21), we deduce that

e2(λ3)

λ2 − λ3

(

e1(λ3)

λ3 − λ1
+

e1(λ2)

λ1 − λ2

)

= 0. (3.26)

(3.26) shows that

e2(λ3) = 0 or

e1(λ3)

λ3 − λ1
=

e1(λ2)

λ2 − λ1
. (3.27)

Suppose that
e1(λ3)

λ3 − λ1
=

e1(λ2)

λ2 − λ1
, (3.28)

we will derive a contradiction. By differentiating on both sides of (3.28) along on
e1, in view of (3.19), (3.20), gives λ2 = λ3, this is a contradiction.

Hence, we conclude that e2(λ3) = 0.

Analogously, using (3.16), we find that [e1, e3] =
e1(λ3)
λ3−λ1

e3. Applying both sides

of this equality on e1(λ3)
λ3−λ1

, using (3.24), (3.19), (3.20), and (3.21), we deduce that

e3(λ2)

λ3 − λ2

(

e1(λ2)

λ2 − λ1
+

e1(λ3)

λ1 − λ3

)

= 0. (3.29)

In a similar way as above, one can show that e3(λ2) necessarily has to vanish.

Hence, we conclude that both

e2(λ3) = 0 and e3(λ2) = 0. (3.30)

In view of (3.30), the Gauss equation for < R(e2, e3)e1, e3 >, gives the following
relation

e1(λ3)e1(λ2)

(λ3 − λ1)(λ2 − λ1)
= λ2λ3. (3.31)

By differentiating (3.31) along on e1, using (3.19) and (3.20) gives

λ2λ3

(

e1(λ3)

λ3 − λ1
+

e1(λ2)

λ1 − λ2

)

= 0. (3.32)

Hence, we conclude that λ2λ3 = 0, therefore H2 = 0 on U, which is a contradic-
tion. Hence H2 is constant on M3. If H2 6= 0, by using (3.1) and (2.2)(c) we obtain
that H3 is constant. Therefore all the mean curvatures Hi are constant functions,
this is equivalent to M3 is isoparametric. An isoparametric hypersurface of Eu-
clidean space can have at most two distinct principal curvatures ( [15]), which is a
contradiction. So H2 = 0. This finishes the proof.
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3.2. L2-biharmonic hypersurfaces

Now, we consider the case r = 2.
Proof of Theorem 1.2: Let x : M3 → E

4 be an isometrically immersed
L2-biharmonic Euclidean hypersurface, first we show that H3 is constant. Let us
consider the open set U = {p ∈ M3 : ∇H2

3 (p) 6= 0}, our objective is to show that
U is empty. By using formulaes (3.1), (3.2) and (2.2)(d) on U we get

(SoP2)∇H3 = −1

2
H3∇H3, (3.33)

L2H3 = 3HH2
3 . (3.34)

But by the Cayley-Hamilton theorem we have P3 = 0, so

SoP2 = H3I, (SoP2)∇H3 = H3∇H3,

which jointly with (3.33) yields ∇H2
3 = 0 on U, which is a contradiction.

If H3 6= 0, by using (3.34) we obtain that the mean curvature is constant.
Therefore all the mean curvatures Hi are constant functions, this is equivalent to
M3 is isoparametric. An isoparametric hypersurface of Euclidean space can have at
most two distinct principal curvatures ( [15]), which is a contradiction. So, H3 = 0.
This finishes the proof.
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