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On the Capitulation of the 2-ideal Classes of the Field Q(
√
p1p2q, i) of

Type (2, 2, 2)
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abstract: We study the capitulation of the 2-ideal classes of the field k =
Q(

√
p1p2q,

√
−1), where p1 ≡ p2 ≡ −q ≡ 1 (mod 4) are different primes, in its

three quadratic extensions contained in its absolute genus field k∗ whenever the
2-class group of k is of type (2, 2, 2).
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1. Introduction

Let k be an algebraic number field, and denote by Cl2(k) its 2-class group, that
is the 2-Sylow subgroup of the ideal class group, Cl(k), of k. We denote by k∗ the
absolute genus field of k. Suppose F is a finite extension of k, then we say that an
ideal class of k capitulates in F if it is in the kernel of the homomorphism

JF : Cl(k) −→ Cl(F )

induced by extension of ideals from k to F . An important problem in Number
Theory is to explicitly determine the kernel of JF , which is usually called the
capitulation kernel. If F is the relative genus field of a cyclic extension K/k, which
we denote by (K/k)∗ and that is the maximal unramified extension of K which
is obtained by composing K and an abelian extension over k, F. Terada states in
[11] that all the ambiguous ideal classes of K/k, which are classes of K fixed under
any element of Gal(K/k), capitulate in (K/k)∗. In [12], H. Furuya confirmed that
if F is the absolute genus field of an abelian extension K/Q, then every strongly
ambiguous class of K/Q, that is an ambiguous ideal class containing at least one
ideal invariant under any element of Gal(K/Q), capitulates in F .

Let k = Q(
√
d, i) and K be a quadratic extension of k contained in its genus

field k
∗. In [5], we studied the capitulation problem in the field K for the radicand

d = 2pq where p ≡ q ≡ 1 (mod 4) are different primes, and in [6], we have
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dealt with the same problem assuming p ≡ −q ≡ 1 (mod 4). In [7,8,9] under the
assumption Cl2(k) ≃ (2, 2, 2), we studied the capitulation problem of the 2-ideal
classes of k in its fourteen unramified extensions, within the first Hilbert 2-class
field of k, and we gave the abelian type invariants of the 2-class groups of these
fourteen fields. In these series of papers, we also determined the structure of the

metabelian Galois group k
(2)
2 /k of the second Hilbert 2-class field k

(2)
2 of k.

Let p1 ≡ p2 ≡ −q ≡ 1 (mod 4) be different primes and k = Q(
√
p1p2q, i). In

[10], we studied the capitulation of the 2-ideal classes of k in its three quadratic
extensions K contained in k

∗ without any conditions on the type of Cl2(k), the
2-class group of k. In the present note, we apply these results to compute the
capitulation kernel of K/k whenever Cl2(k) is of type (2, 2, 2).

Notations

Let k be a number field, during this paper, we adopt the following notations:

• p1 ≡ p2 ≡ −q ≡ 1 (mod 4) are different primes.

• k: denotes the field Q(
√
p1p2q,

√
−1).

• κK : the capitulation kernel of an unramified extension K/k.

• Ok: the ring of integers of k.

• Ek: the unit group of Ok.

• Wk: the group of roots of unity contained in k.

• F.S.U : the fundamental system of units.

• k+: the maximal real subfield of k.

• Qk = [Ek : WkEk+ ] is Hasse’s unit index, if k is a CM-field.

• q(k/Q) = [Ek :
∏s

i=1 Eki
] is the unit index of k, if k is multiquadratic, where

k1, ..., ks are the quadratic subfields of k.

• k∗: the absolute genus field of k.

• Cl2(k): the 2-class group of k.

• i =
√
−1.

• ǫm: the fundamental unit of Q(
√
m), if m > 1 is a square-free integer.

• N(a): denotes the absolute norm of a number a, i.e., Nk/Q(a), where k =
Q(

√
a).

• x± y means x+ y or x− y for some numbers x and y.
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2. Preliminary results

Let us first collect some results that will be useful in what follows.

Lemma 2.1 ( [1], Lemma 5). Let d > 1 be a square-free integer and ǫd = x+ y
√
d,

where x, y are integers or semi-integers. If N(ǫd) = 1, then 2(x + 1), 2(x − 1),
2d(x+ 1) and 2d(x− 1) are not squares in Q.

Lemma 2.2 ( [2], 3.(1) p.19). Let d > 2 be a square-free integer and k = Q(
√
d, i),

put ǫd = x+ y
√
d.

1. If N(ǫd) = −1, then {ǫd} is a F.S.U of k.

2. If N(ǫd) = 1, then {
√
iǫd} is a F.S.U of k if and only if x ± 1 is a square in

N, i.e., 2ǫd is a square in Q(
√
d). Else {ǫd} is a F.S.U of k.

Let p1 ≡ p2 ≡ −q ≡ 1 (mod 4) be different primes, and consider the imaginary
bicyclic biquadratic number field k = Q(

√
p1p2q, i), so k admits three quadratic

extensions contained in its genus field k
∗ = Q(

√
p1,

√
p2,

√
q, i) (they are un-

ramified quadratic extensions of k abelian over Q), which are K1 = k(
√
p1) =

Q(
√
p1,

√
p2q, i), K2 = k(

√
p2) = Q(

√
p2,

√
p1q, i) and K3 = k(

√
q)

= Q(
√
q,
√
p1p2, i). Put ǫp1p2q = x+ y

√
p1p2q.

Theorem 2.3 ( [10]). Let Kj, 1 ≤ j ≤ 3, be the three unramified quadratic exten-
sions of k defined above.

1. Let ǫp2q = a+ b
√
p2q.

(a) If x± 1 is a square in N and a+ 1, a− 1 are not, then |κK1
| = 8.

(b) If a± 1 and (2p1(x± 1) or p2(x± 1)) are squares in N, then |κK1
| = 2.

(c) For the other cases |κK1
| = 4.

2. Let ǫp1q = a+ b
√
p1q.

(a) If x± 1 is a square in N and a+ 1, a− 1 are not, then |κK2
| = 8.

(b) If a± 1 and (2p1(x± 1) or p2(x± 1)) are squares in N, then |κK2
| = 2.

(c) For the other cases |κK2
| = 4.

3. Let ǫp1p2
= a+ b

√
p1p2.

(a) If N(ǫp1p2
) = 1, then

i. If x± 1 is a square in N, then |κK3
| = 4.

ii. Else |κK3
| = 2.

(b) If N(ǫp1p2
) = −1, then

i. If q(x± 1) or 2q(x± 1) is a square in N, then |κK3
| = 2.

ii. Else |κK3
| = 4.
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Theorem 2.4 ( [10]). Keep the notations and hypotheses previously mentioned,
and put ǫp2q = a+ b

√
p2q and ǫp1p2q = x+ y

√
p1p2q.

1. If x±1 is a square in N and a+1, a−1 are not, then κK1
= 〈[H1], [H2], [H3H4]〉.

2. If a± 1 and (p1(x± 1) or 2p1(x± 1)) are squares in N, then κK1
= 〈[H1]〉.

3. If a + 1, a − 1 are not squares in N and p1(x ± 1) or 2p1(x ± 1) is, then
κK1

= 〈[H1], [H3H4]〉.

4. In the other cases we have: κK1
= 〈[H1], [H2]〉.

Theorem 2.5 ( [10]). Keep the notations and hypotheses previously mentioned and
put ǫp1q = a+ b

√
p1q.

1. If x±1 is a square in N and a+1, a−1 are not, then κK2
= 〈[H3], [H4], [H1H2]〉.

2. If a± 1 and (p2(x± 1) or 2p2(x± 1)) are squares in N, then κK2
= 〈[H3]〉.

3. If a+ 1 and a− 1 are not squares in N and p2(x± 1) or 2p2(x± 1) is, then
κK2

= 〈[H3], [H1H2]〉.

4. In the other cases, κK2
= 〈[H3], [H4]〉.

Theorem 2.6 ( [10]). Keep the notations and hypotheses previously mentioned and
assume N(ǫp1p2

) = 1.

1. If x± 1 is a square in N , then κK3
= 〈[H1H2], [H3H4]〉.

2. If p1(x± 1) or 2p1(x± 1) is a square in N, then κK3
= 〈[H3H4]〉.

3. If p2(x± 1) or 2p2(x± 1) is a square in N, then κK3
= 〈[H1H2]〉.

4. If q(x± 1) or 2q(x± 1) is a square in N, then κK3
= 〈[H1H2]〉 = 〈[H3H4]〉.

Theorem 2.7 ( [10]). Keep the notations and hypotheses previously mentioned and
assume N(ǫp1p2

) = −1.

1. If q(x± 1) or 2q(x± 1) is a square in N, then κK3
= 〈[H1H3]〉 or 〈[H1H4]〉.

2. If x± 1 is a square in N, then κK3
= 〈[H1H3], [H2H4]〉 or 〈[H1H4], [H2H3]〉.

3. If p1(x± 1) or 2p1(x± 1) is a square in N, then κK3
= 〈[H1H3], [H1H4]〉.

4. If p2(x± 1) or 2p2(x± 1) is a square in N, then κK3
= 〈[H1H3], [H2H3]〉.
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3. Main results

Let p1 ≡ p2 ≡ −q ≡ 1 (mod 4) be different primes such that Cl2(k) is of type
(2, 2, 2). According to [3], Cl2(k) is of type (2, 2, 2) if and only if p1, p2 and q
satisfy the following conditions:

1. p1 ≡ 5 or p2 ≡ 5 (mod 8).

2. Two at least of the elements of
{(

p1

p2

)

,
(

p1

q

)

,
(

p2

q

)}

are equal to −1.

These conditions are detailed in three types I, II and III, and each type consists
of three cases (a), (b) and (c) (see [4]). To continue we need the following results.

Lemma 3.1. Let p1 ≡ p2 ≡ −q ≡ 1 (mod 4) be different primes as above.

1. If p1, p2 and q are of type I, then p1(x± 1) is a square in N.

2. If p1, p2 and q are of type II, then p2(x± 1) is a square in N.

3. If p1, p2 and q are of type III, then q(x± 1), i.e., p1p2(x∓ 1) is a square in
N.

Proof. As p1 ≡ 5 or p2 ≡ 5 (mod 8), so the unit index of k is 1 (see [3, Corollary
3.2]). On the other hand, N(εd) = 1, i.e., x2 − 1 = y2p1p2q, hence by Lemma 2.2,
x ± 1 is not a square in N. Thus by the unique prime factorization in Z and by
Lemma 2.1, there exist y1, y2 in Z such that:

(1)

{

x± 1 = p1y
2
1 ,

x∓ 1 = p2qy
2
2 ;

or (2)

{

x± 1 = 2p1y
2
1 ,

x∓ 1 = 2p2qy
2
2 ;

or (3)

{

x± 1 = p2y
2
1 ,

x∓ 1 = p1qy
2
2 ;

or

(4)

{

x± 1 = 2p2y
2
1 ,

x∓ 1 = 2p1qy
2
2 ;

or (5)

{

x± 1 = qy21 ,
x∓ 1 = p1p2y

2
2 ;

or (6)

{

x± 1 = 2qy21 ,
x∓ 1 = 2p1p2y

2
2 ;

1. Suppose p1, p2 and q are of type I, then this contradicts systems (2), (3),
(4), (5) and (6), since:

1. system (2) implies that
(

p1

p2

)

=
(

p1

q

)

= 1

2. system (3) implies that
(

p1

p2

)

=
(

2
p1

)

and
(

p1q
p2

)

=
(

2
p2

)

3. system (4) implies that
(

p1

p2

)

=
(

p2

q

)

= 1

4. system (5) implies that
(

p1

q

)

=
(

2
p1

)

= 1

5. system (6) implies that
(

p1

q

)

= 1.

Thus only the system (1) occurs, which yields that p1(x± 1) is a square in N and
p2(x± 1), 2p2(x ± 1) are not.

Similarly one can check 2. and 3. ✷
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Using the similar argument, one can prove the following lemma.

Lemma 3.2. Let p1 ≡ p2 ≡ −q ≡ 1 (mod 4) be different primes and put εp2q =
a+ b

√
p2q.

1. If p1, p2 and q are of type I(a), then p2(a ± 1) or 2p2(a ± 1) is a square in
N.

2. If p1, p2 and q are of type I(b), then p2(a± 1) is a square in N.

3. If p1, p2 and q are of type I(c) or II(a), then a± 1 is a square in N.

4. If p1, p2 and q are of type II(c) or III(a) or III(b), then p2(a ± 1) is a
square in N.

5. If p1, p2 and q are of type II(b) or III(c), then 2p2(a± 1) is a square in N.

Denote by H1 and H2 (resp. H3 and H4) the prime ideals of k above p1 (resp.
p2), then we have:

Lemma 3.3 ( [4]). Let p1 ≡ p2 ≡ −q ≡ 1 (mod 4) be different primes and assume
Cl2(k) ≃ (2, 2, 2).

1. If p1, p2 and q are of type I, then Cl2(k) = 〈[H1], [H3], [H4]〉.

2. If p1, p2 and q are of type II or III, then Cl2(k) = 〈[H1], [H2], [H3]〉.

Theorem 3.4. Let k = Q(
√
d, i), where d = p1p2q with p1, p2 and q are different

primes such that Cl2(k), the 2-class groupe of k, is of type (2, 2, 2).

1. If p1, p2 and q are of type I(c), then κK1
= 〈[H1]〉.

2. If p1, p2 and q are of type I(a) or I(b), then κK1
= 〈[H1], [H3H4]〉.

3. If p1, p2 and q are of type II or III, then κK1
= 〈[H1], [H2]〉.

Proof. From Lemmas 3.1, 3.2 and 3.3 we get:

1. If p1, p2 and q are of type I(c), then a ± 1 and p1(x ± 1) are squares in N.
Hence Theorem 2.4 implies the result.

2. If p1, p2 and q are of type I(a) or I(b), then p2(a±1) or 2p2(a±1) is a square
in N, and since p1(x ± 1) is a square in N, hence Theorem 2.4 implies the
result.

3. a. If p1, p2 and q are of type II, then a ± 1 or p2(a ± 1) or 2p2(a ± 1) is a
square in N, and as in this case p2(x±1) is also a square in N, hence Theorem
2.4 implies the result.
b. If p1, p2 and q are of type III, then p2(a± 1) or 2p2(a± 1) is a square in
N, and since q(x± 1) is also a square in dans N, hence Theorem 2.4 implies
the result.
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✷

As p1 and p2 play symmetric roles, so with a similar argument to that used in
the previous theorem, we deduce the following theorem. Note that in this case H3

and H4 always capitulate in K2 (see [10, Proposition 14]). Note also that whenever
p1, p2 and q are of type II, then [H3] = [H4] since in this case p2(x±1) is a square
in N and the result is guaranteed by [4, Proposition 1]. Finally, note that if p1, p2
and q are of type III, then Q, the prime ideal of k lies above q, is principal in k;
hence H1H2H3H4 is too.

Theorem 3.5. Keep the hypotheses and notations mentioned in Theorem 3.4.

1. If p1, p2 and q are of type II(c), then κK2
= 〈[H3]〉.

2. If p1, p2 and q are of type II(a) or II(b) or III, then κK2
= 〈[H3], [H1H2]〉.

3. If p1, p2 and q are of type I, then κK2
= 〈[H3], [H4]〉.

Finally, we compute the 2-idea classes of k that capitulate in K3 =
Q(

√
q,
√
p1p2, i).

Theorem 3.6. Keep the hypotheses and notations mentioned in Theorem 3.4 and
assume N(εp1p2

) = 1.

1. If p1, p2 and q are of type I, then κK3
= 〈[H3H4]〉.

2. If p1, p2 and q are of type II or III, then κK3
= 〈[H1H2]〉.

Proof. From Lemmas 3.1 and 3.3 we get:

1. If p1, p2 and q are of type I(c), then then p1(x± 1) is a square in N. Hence
Theorem 2.6 implies the result.

2. a. If p1, p2 and q are of type II, then p2(x ± 1) is a square in N, hence
Theorem 2.6 implies the result.
b. If p1, p2 and q are of type III, then q(x± 1), i.e., p1p2(x± 1) is a square
in N, hence Theorem 2.6 implies the result.

✷

Theorem 3.7. Keep the hypotheses and notations mentioned in Theorem 3.4 and
assume N(εp1p2

) = −1.

1. If p1, p2 and q are of type III, then κK3
= 〈[H1H3]〉 or 〈[H2H3]〉.

2. If p1, p2 and q are of type II, then κK3
= 〈[H1H3], [H2H3]〉.

3. If p1, p2 and q are of type I, then κK3
= 〈[H1H3], [H1H4]〉.

Proof. It is a simple deduction from Theorem 2.7 and Lemma 3.1. ✷

From Theorems 3.4, 3.5, 3.6 and 3.7, we deduce the following result.

Theorem 3.8. Keep the hypotheses and notations mentioned in Theorem 3.4.
Then all the classes of Cl2(k) capitulate in k

∗, i.e., κk∗ = Cl2(k).
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