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abstract: In this article we will provide new multiplicity results of the solu-
tions for nonlocal problems with variable exponent and nonhomogeneous Neumann
conditions. We investigate the existence of infinitely many solutions for perturbed
nonlocal problems with variable exponent and nonhomogeneous Neumann condi-
tions. The approach is based on variational methods and critical point theory.
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1. Introduction

Let Ω ⊂ R
N be an open bounded domain with smooth boundary ∂Ω. The

aim of this paper is to investigate the existence of infinitely many solutions for the
following nonlocal problem

{
T (u) = λf(x, u(x)) + µh(x, u(x)), in Ω,

|∇u|p(x)−2 ∂u
∂v

= λg(ϑu(x)), on ∂Ω
(P f,h

g )

where

T (u) = M
(∫

Ω

1

p(x)

(
|∇u(x)|p(x) + α(x)|u(x)|p(x)

)
dx
)
(−∆p(x)u+ α(x)|u|p(x)−2u)

in which M : [0,+∞[→ R is a continuous function such that there are two positive
constants m0 and m1 with m0 ≤ M(t) ≤ m1 for all t ≥ 0, p ∈ C(Ω̄), ∆p(x)u :=

div(|∇u|p(x)−2∇u) is the p(x)-Laplacian operator and α ∈ L∞(Ω) with ess infΩ α >

0, λ ∈ [0,+∞), f, h : Ω × R → R are two L1-Carathéodory functions, λ > 0 and
µ ≥ 0 are two parameters, v is the outer unit normal to ∂Ω, g : R → R is a
non-negative continuous function and ϑ : W1,p(x)(Ω) → Lp(x)(∂Ω) is the trace
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operator. If Ω =]a, b[ and k : [a, b] → R is a continuous function, then
∫
∂Ω k(x)dx

reads k(b) + k(a).
Problems like (P f,h

g ) are usually called nonlocal problems because of the pres-
ence of the integral over the entire domain, and this implies that the first equation
in (P f,h

g ) is no longer a pointwise identity.

The problem (P f,h
g ) is related to the nonstationary problem

ρ
∂2u

∂t2
−
(ρ0
h

+
E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣
2

dx
)∂2u

∂x2
= 0, (1.1)

for 0 < x < L, t ≥ 0, where u = u(x, t) is the lateral displacement at the space
coordinate x and the time t, E the Young modulus, ρ the mass density, h the cross-
section area, L the length and ρ0 the initial axial tension, proposed by Kirchhoff
[38] as an extension of the classical D’Alembert’s wave equation for free vibrations
of elastic strings. The Kirchhoff’s model takes into account the length changes
of the string produced by transverse vibrations. Some interesting results can be
found, for example in [3,17]. On the other hand, Kirchhoff-type boundary value
problems model several physical and biological systems where u describes a process
which depends on the average of itself, for example the population density. It
received great attention only after Lions [40] proposed an abstract framework for
the problem. The solvability of the Kirchhoff type problems has been under various
authors’ attentions. Some early classical investigations of Kirchhoff equations can
be seen in the papers [2,30,32,33,41,44,45,54] and the references therein.

Differential equations and variational problems including p(x)-growth condi-
tions due to their applications have been studied deeply by many researchers. It
varies from nonlinear elasticity theory, electro-rheological fluids, and so on (see
[55,59]). The necessary framework for the study of these problems is represented
by the function spaces with variable exponent Lp(x)(Ω) and Wm,p(x)(Ω). Materials
which require such advanced theories have been under experimental studies from
the 1950s onwards. The first important discovery on electro-rheological fluids was
contributed by Willis Winslow in 1949. The viscosity of these fluids depends on
the electric field of the fluids. He discovered that the viscosity of such fluids as
instance lithium polymetachrylate in an electrical field is an inverse relation to the
strength of the field. The field causes string-like formations in the fluid, parallel
to the field. They can increase the viscosity five orders of magnitude. This event
is called the Winslow effect. For a general account of the underlying physics see
[31] and for some technical applications [48]. Electro-rheological fluids also have
functions in robotics and space technology. Many experimental researches have
been done chiefly in the USA, as in NASA laboratories. For more information on
properties, modeling and the application of variable exponent spaces to these fluids
we refer to [50,51,52]. The study of various mathematical problems with variable
exponent has received considerable attention in recent years. For background and
recent results, we refer the reader to [1,9,10,14,19,27,36,42,47,49,52,57,58] and the
references therein for details. For example, Yao in [57] by using the variational
method, under appropriate assumptions on f and g, obtained a number of results
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on existence and multiplicity of solutions for the nonlinear Neumann boundary
value problem of the form

{
−div(|∇u|p(x)−2∇u) + |u|p(x)−2u = λf(x, u), in Ω,

|∇u|p(x)−2 ∂u
∂v

= µg(x, u), on ∂Ω

where λ, µ ∈ R, p ∈ C(Ω̄) and p(x) > 1. Moschetto [47] under suitable assumptions
on the functions α, f , p and g, based on the Ricceri two-local-minima theorem,
together with the Palais-Smale property, studied the existence of at least three
solutions for the following Neumann problem:

{
−∆p(x)u+ α(x)|u|p(x)−2u = α(x)f(u) + λg(x, u), in Ω,
∂u
∂v

= 0, on ∂Ω.

Bonanno and Chinǹı in [10] by applying variational methods under appropriate
growth conditions on the nonlinearity, obtained the existence of multiple solutions
for nonlinear elliptic Dirichlet problems with variable exponent. Yin in [58] based
on three critical points theorem due Ricceri, obtained the existence of three so-
lutions to a Neumann problem with nonstandard growth conditions. D’Agùı and
Sciammetta in [19] established the existence of an unbounded sequence of weak
solutions for a class of differential equations with p(x)-Laplacian and subject to
small perturbations of nonhomogeneous Neumann conditions. Qian et al. in [49]
by the theory of the generalized Lebesgue-Sobolev space W1,p(x)(Ω), a nonsmooth
Mountain Pass theorem and the Weierstrass theorem, studied the nonhomogeneous
Neumann problem of p(x)-Laplacian equations, where the weighted function V (x)
is indefinite and the potential is only locally Lipschitz.

On the other hand, p(x)-Kirchhoff problems which are investigated on func-
tion spaces with variable exponents, have been studied by many researchers, see
[15,16,20,21,23,24,34,35,37,56] and the references therein. For example, Dai and
Hao in [20] by means of a direct variational approach and the theory of the vari-
able exponent Sobolev spaces, established conditions ensuring the existence and
multiplicity of solutions for the p(x)-Kirchhoff-type problem with Dirichlet bound-
ary data. Viasi in [56] used variational techniques to prove an eigenvalue theorem
for a stationary p(x)-Kirchhoff problem, and provided an estimate for the range
of such eigenvalues. He employed a specific family of test functions in variable
exponent Sobolev spaces. His approach permits to handle both non-degenerate
and degenerate Kirchhoff coefficients. In [16], Cammaroto and Vilasi by using
variational nature and weak formulation takes place in suitable variable exponent
Sobolev spaces, established the existence of three weak solutions for a nonlinear
transmission problem involving degenerate nonlocal coefficients of p(x)-Kirchhoff
type. In [24] multiplicity results for the problem (P f,h

g ), in the case µ = 0 were es-
tablished. In fact, using variational methods and critical point theory the existence
results for the problem under algebraic conditions with the classical Ambrosetti-
Rabinowitz (AR) condition on the nonlinear term were ensured. Furthermore, by
combining two conditions on the nonlinear term which guarantees the existence of
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two solutions, applying the mountain pass theorem given by Pucci and Serrin the
existence of third solution for the problem was proved while in [23] based on varia-
tional methods the existence of at least one weak solution for the same problem was
discussed. In [34] using two kinds of three critical point theorem the existence of at
least three weak solutions for a class of differential equations with p(x)-Kirchhoff-
type and subject to perturbations of nonhomogeneous Neumann conditions was
studied.

The existence and multiplicity of solutions for stationary higher order problems
of Kirchhoff type (in n-dimensional domains, n ≥ 1) were also treated in some
recent papers, via variational methods like the symmetric mountain pass theorem
in [18] and a three critical point theorem in [6]. Moreover, in [4,5], some evolu-
tionary higher order Kirchhoff type problems were treated, mainly focusing on the
qualitative properties of the solutions.

We refer to the recent monograph by Molica Bisci, Rădulescu and Servadei [46]
for related problems concerning the variational analysis of solutions of some classes
of nonlocal problems.

Motivated by the above works, in the present paper, by employing a smooth
version of [13, Theorem 2.1], which is more precise version of Ricceri’s Variational
Principle [53, Theorem 2.5] under some hypotheses on the behavior of the nonlin-
ear terms at infinity, we prove the existence of definite intervals about λ and µ in
which the problem (P f,h

g ) admits a sequence of solutions which is unbounded in

the generalized Lebesgue-Sobolev space W1,p(x)(Ω) which will be introduced later
(Theorem 3.1). Furthermore, some consequences of Theorem 3.1 are listed. Re-
placing the conditions at infinity on the nonlinear terms, by a similar one at zero,
we obtain a sequence of pairwise distinct solutions strongly converging at zero; see
Theorem 3.12. Three examples of applications are pointed out (see Examples 3.5,
3.11 and 3.15).

For a discussion of the existence of infinitely many solutions for some differen-
tial and difference equations, applying Ricceri’s Variational Principle [53] and its
variants we refer to the paper [7,11,12,22,33,43].

The paper is organized as follows. In Section 2, we recall some basic definitions
and our main tool, while Section 3 is devoted to our abstract results.

2. Preliminaries

Our main tool to ensure the existence of infinitely many solutions for the
problem (P f,h

g ) is a smooth version of Theorem 2.1 of [13] which is a more precise
version of Ricceri’s Variational Principle [53] that we now recall here.

Theorem 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semi-
continuous, strongly continuous, and coercive and Ψ is sequentially weakly upper
semicontinuous. For every r > infX Φ, let us put

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r])Ψ(v)−Ψ(u)

r − Φ(u)
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and
γ := lim inf

r→+∞
ϕ(r), δ := lim inf

r→(infX Φ)+
ϕ(r).

Then, one has

(a) for every r > infX Φ and every λ ∈]0, 1
ϕ(r) [, the restriction of the functional

Iλ = Φ− λΨ to Φ−1(]−∞, r[) admits a global minimum, which is a critical point
(local minimum) of Iλ in X.

(b) If γ < +∞ then, for each λ ∈]0, 1
γ
[, the following alternative holds:

either
(b1) Iλ possesses a global minimum,
or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞ then, for each λ ∈]0, 1
δ
[, the following alternative holds:

either
(c1) there is a global minimum of Φ which is a local minimum of Iλ,
or

(c2) there is a sequence of pairwise distinct critical points (local minima) of
Iλ which weakly converges to a global minimum of Φ.

Here and in the sequel, meas(Ω) denotes the Lebesgue measure of the set Ω,
and we also assume that p ∈ C(Ω̄) verifies the following condition:

N < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) < +∞ (2.1)

and is globally log-Hölder continuous on Ω (see Definition 4.1.1 and Remark 4.1.5
of [26]). Define the variable exponent Lebesgue space by

Lp(x)(Ω) :=
{
u : Ω → R measurable and

∫

Ω

|u(x)|p(x)dx < +∞
}
,

Lp(x)(∂Ω) :=
{
u : ∂Ω → R measurable and

∫

∂Ω

|u(x)|p(x)dσ < +∞
}
.

On Lp(x)(Ω) and Lp(x)(∂Ω) we consider the norms respectively

‖u‖Lp(x)(Ω) = inf
{
η > 0 :

∫

Ω

∣∣∣u(x)
η

∣∣∣
p(x)

dx ≤ 1
}
,

‖u‖Lp(x)(∂Ω) = inf
{
η > 0 :

∫

∂Ω

∣∣∣u(x)
η

∣∣∣
p(x)

dσ ≤ 1
}
,

where dσ is the surface measure on ∂Ω.
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Consider the generalized Lebesgue-Sobolev space

W1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}

endowed with the following norm

‖u‖W1,p(x)(Ω) := ‖u‖Lp(x)(Ω) + ‖|∇u|‖Lp(x)(Ω). (2.2)

It is well known (see [29]) that, in view of (2.1), both Lp(x)(Ω) and W1,p(x)(Ω),
with the respective norms, are separable, reflexive and uniformly convex Banach
spaces. Moreover, since α ∈ L∞(Ω), with α− := ess infx∈Ω α(x) > 0 is assumed,
then the following norm

‖u‖α = inf
{
σ > 0 :

∫

Ω

(
α(x)

∣∣∣u(x)
σ

∣∣∣
p(x)

+
∣∣∣∇u(x)

σ

∣∣∣
p(x))

dx ≤ 1
}
,

on W1,p(x)(Ω) is equivalent to that introduce in (2.2). Since W1,p(x)(Ω) is con-

tinuously embedded in W1,p−

(Ω) (see [29] or [39]) and p− > N , W1,p(x)(Ω) is
continuously embedded in C0(Ω̄) and one has

‖u‖C0(Ω̄) ≤ kp−‖u‖W1,p−(Ω).

When Ω is convex, an explicit upper bound for the constant kp− is

kp− ≤ 2
p−−1

p− max

{( 1

‖α‖L1(Ω)

) 1

p−

,
D

N
1

p−

( p− − 1

p− −N
meas(Ω)

) p−−1

p− ‖α‖∞
‖α‖L1(Ω)

}
,

where D = diam(Ω) and meas(Ω) is the Lebesgue measure of Ω (see [8, Remark
1]). On the other hand, taking into account that p− ≤ p(x), [39, Theorem 2.8]

ensures that Lp(x)(Ω) →֒ Lp−

(Ω) and the constant of such embedding does not
exceed 1 + meas(Ω). So, one has

‖u‖W1,p−(Ω) ≤ (1 + meas(Ω))‖u‖W1,p(x)(Ω) ≤ (1 + meas(Ω))‖α‖L1(Ω).

In conclusion, put
̺ = kp−(1 + meas(Ω)),

it results

‖u‖C0(Ω̄) ≤ ̺‖u‖α (2.3)

for each u ∈ W1,p(x)(Ω).
Put

F (x, t) :=

∫ t

0

f(x, ξ)dξ for all (x, t) ∈ Ω× R,

H(x, t) :=

∫ t

0

h(t, ξ)dξ for all (t, x) ∈ Ω× R,
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G(t) :=

∫ t

0

g(ξ)dξ for all t ∈ R

and

M̂(t) =

∫ t

0

M(ξ)dξ for all t ≥ 0.

Definition 2.2. We mean by a (weak) solution of the problem (P f,h
g ), any function

u ∈ W1,p(x)(Ω) such that

M
(∫

Ω

1

p(x)

(
|∇u(x)|p(x) + α(x)|u(x)|p(x)

)
dx
)

∫

Ω

(
|∇u(x)|p(x)−2∇u(x)∇v(x) + α(x)|u(x)|p(x)−2u(x)v(x)

)
dx

− λ

∫

Ω

f(x, u(x))v(x)dx − λ

∫

∂Ω

g(ϑu(x))ϑv(x)dσ − µ

∫

Ω

h(x, u(x))v(x)dx = 0

for every v ∈ W1,p(x)(Ω).

Proposition 2.3 ( [25, Proposition 2.4]). Let

ρα(u) =

∫

Ω

(
|∇u|p(x) + α(x)|u|p(x)

)
dx

for u ∈ W1,p(x)(Ω), we have

(1) ‖u‖α ≥ 1 =⇒ ‖u‖p−

α ≤ ρα(u) ≤ ‖u‖p+

α ,

(2) ‖u‖α ≤ 1 =⇒ ‖u‖p+

α ≤ ρα(u) ≤ ‖u‖p−

α .

A special case of our main result is the following theorem.

Theorem 2.4. Let meas(Ω) =
∫
∂Ω dσ = 1, f : R −→ R be a continuous function

and put F (t) =
∫ t

0 f(ξ)dξ for all t ∈ R. Assume that

lim inf
ξ→+∞

(F +G)(ξ)

ξp
= 0 and lim sup

ξ→+∞

(F +G)(ξ)

ξp
= +∞.

Then, for every continuous function h : R −→ R whose H(t) =
∫ t

0
h(ξ)dξ for every

t ∈ R, is a nonnegative function satisfying in the condition

h⋆ :=
̺pp

m0
lim

ξ→+∞

sup|t|≤ξ H(t) +G(ξ)

ξp
< +∞

and for every µ ∈ [0, µ⋆,λ) where µ⋆,λ := 1
h⋆

(
1− λ̺pp lim infξ→+∞

F (ξ)
ξp

)
, the

problem




M
( ∫

Ω
1
p

(
|∇u(x)|p + |u(x)|p

)
dx
)
(−∆pu(x) + |u(x)|p−2u(x))

= λf(u(x)) + µh(u(x)), in Ω,

|∇u|p−2 ∂u
∂v

= λg(ϑu(x)), on ∂Ω

has an unbounded sequence of solutions.
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3. Main results

We present our main result as follows.
Put

Γ(∂Ω) =

∫

∂Ω

dσ and B
∞ = lim sup

ξ→+∞

∫
Ω F (x, ξ)dx+ Γ(∂Ω)G(ξ)

ξp
+ .

Theorem 3.1. Assume that there exist two real sequences {an} and {bn} with
an > 1 for all n ∈ N and limn→+∞ bn = +∞, such that

(A1) ap
+

n <
m0p

−bp
−

n

m1p+̺p−‖α‖L1(Ω)

;

(A2) A∞ := limn→+∞

∫
Ω
sup|t|≤bn

F (x,t)dx−
∫
Ω
F (x,an)dx+Γ(∂Ω)(G(bn)−G(an))

m0p−b
p−
n −m1p+̺p−‖α‖L1(Ω)a

p+
n

< m0p
−

m1‖α‖L1(Ω)̺
p−p+

B
∞.

Then, for each λ ∈ (λ1, λ2) with λ1 :=
m1‖α‖L1(Ω)

p−B∞ and λ2 := m0

̺p−p+A∞
, for every

continuous function h : Ω×R −→ R whose H(x, t) =
∫ t

0 g(x, ξ)dξ for every (x, t) ∈
Ω× R, is a nonnegative function satisfying the condition

hbn :=
̺p

−

p+

m0
(3.1)

× lim
n→∞

∫
Ω sup|t|≤bn

H(x, t)dx−
∫
Ω H(x, an)dx + Γ(∂Ω) (G(bn)−G(an))

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

< +∞

and for every µ ∈
[
0, µh,λ

)
with µh,λ := m0−λp+̺p−

A∞

m0hbn
, the problem (P f,h

g ) has an

unbounded sequence of solutions in W1,p(x)(Ω).

Proof: Fix λ ∈ (λ1, λ2) and let h be a function satisfying the condition (3.1).
Since, λ < λ2, one has µh,λ > 0. Fix µ ∈ [0, µh,λ[ and put ν1 := λ1 and ν2 :=

λ2

1+µ

λ
λ2hbn

. If hbn = 0, clearly, ν1 = λ1, ν2 = λ2 and λ ∈]ν1, ν2[. If hbn 6= 0, since

µ < µg,λ, we obtain λ
λ2

+ µhbn < 1, and so λ2

1+µ

λ
λ2hbn

> λ, namely, λ < ν2. Hence,

since λ > λ1 = ν1, one has λ ∈]ν1, ν2[. Now, set Q(x, t) = F (x, t) + µ

λ
H(x, t) for

all (x, t) ∈ Ω×R. Take X = W1,p(x)(Ω) and define on X two functionals Φ and Ψ
by setting, for each u ∈ X , as follows

Φ(u) = M̂
(∫

Ω

1

p(x)

(
|∇u(x)|p(x) + α(x)|u(x)|p(x)

)
dx
)

and

Ψ(u) =

∫

Ω

F (x, u(x))dx +

∫

∂Ω

G(ϑu(x))dσ +
µ̄

λ̄

∫

Ω

H(x, u(x))dx.
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Since X is a finite dimensional Banach space Ψ is a Gâteaux differentiable func-
tional and sequentially weakly upper semi-continuous whose Gâteaux derivative at
the point u ∈ X is the functional Ψ′(u) ∈ X∗, given by

Ψ′(u)(v) =

∫

Ω

f(x, u(x))v(x)dx +

∫

∂Ω

g(ϑu(x))ϑv(x)dσ +
µ

λ

∫

Ω

h(x, u(x))v(x)dx

for every v ∈ X , and Ψ′ : X → X∗ is a compact operator. Moreover, Φ is a
Gâteaux differentiable functional which Gâteaux derivative at the point u ∈ X is
the functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) =M
(∫

Ω

1

p(x)

(
|∇u(x)|p(x) + α(x)|u(x)|p(x)

)
dx
)

×
∫

Ω

(
|∇u(x)|p(x)−2∇u(x)∇v(x) + α(x)|u(x)|p(x)−2u(x)v(x)

)
dx

for every v ∈ X . Furthermore, Φ is sequentially weakly lower semi-continuous (see
[8, Remark 2.2 and Remark 2.3]). Put Iλ := Φ − λΨ. We observe that the weak
solutions of the problem (P f,h

g ) are exactly the solutions of the equation I ′
λ
(u) = 0.

So, our end is to apply Theorem 2.1 to Φ and Ψ. Now, we wish to prove that
γ < +∞, where γ is defined in Theorem 2.1. Put rn = m0

p+ ( bn
̺
)p

−

for all n ∈ N.

For all u ∈ X with Φ(u) < rn, owing to [14, Poroposition 2.2], one has

‖u‖α ≤ max{(p+rn)
1

p+ , (p+rn)
1
p1 } =

bn

̺
.

So, due to the embedding X →֒ C0(Ω) (see (2.3)), one has ‖u‖∞ ≤ ̺‖u‖α < bn. It
follows that

Φ−1(−∞, rn) = {u ∈ X ; Φ(u) < rn} ⊆ {u ∈ X ; |u| ≤ bn}.

Now, for each n ∈ N, let wn be defined by wn(x) = an for every x ∈ Ω, Clearly,
wn ∈ X ,

Φ(wn) = M̂
(∫

Ω

1

p(x)

(
|∇an|p(x) + α(x)|an|p(x)

)
dx
)

= M̂
(∫

Ω

1

p(x)
α(x)ap(x)n dx

)

and since an > 1 for all n ∈ N,

m0a
p−

n

p+
‖α‖L1(Ω) ≤ Φ(wn) ≤

m1a
p+

n

p−
‖α‖L1(Ω).

Moreover, from the assumption (A1) one has Φ(wn) < rn. Hence, for every n large
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enough, one has

ϕ(rn) = inf
u∈Φ−1(]−∞,rn[)

(supv∈Φ−1(]−∞,rn])Ψ(v))−Ψ(u)

rn − Φ(u)
≤

supv∈Φ−1(]−∞,rn])Ψ(v)

rn − Φ(u)

(3.2)

≤
∫
Ω sup|t|≤bn

Q(x, t)dx +
∫
∂Ω sup|t|≤bn

G(ϑ(t))dσ −Ψ(wn)
m0

p+ ( bn
̺
)p− − Φ(wn)

=

∫
Ω sup|t|≤bn

(
F (x, t) + µ

λ
H(x, t)

)
dx+

∫
∂Ω sup|t|≤bn

G(ϑ(bn))dσ −Ψ(an)
m0

p+ ( bn
̺
)p− − Φ(an)

≤ ̺p
−

p+

m0

(∫
Ω
sup|t|≤bn

F (x, t)dx −
∫
Ω
F (x, an)dx + Γ(∂Ω)(G(bn)−G(an))

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

+
µ

λ

∫
Ω
sup|t|≤bn

H(x, t)dx −
∫
Ω
H(x, an)dx

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

)
.

Now by (A2) we have

lim inf
ξ→+∞

∫
Ω
sup|t|≤bn

F (x, t)dx −
∫
Ω
F (x, an)dx+ Γ(∂Ω)(G(bn)−G(an))

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

(3.3)

≤ A∞ < +∞.

Then, in view of (3.1) and (3.3), we have

limn→∞

∫
Ω
sup|t|≤bn

F (x, t)dx−
∫
Ω
F (x, an)dx+ Γ(∂Ω)(G(bn)−G(an))

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

+ lim
n→∞

µ

λ

∫
Ω sup|t|≤bn

H(x, t)dx−
∫
ΩH(x, an)dx

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

< +∞.

Therefore,

γ ≤ lim inf
n→+∞

ϕ(rn) (3.4)

≤ lim
n→∞

∫
Ω
sup|t|≤bn

F (x, t)dx −
∫
Ω
F (x, an)dx+ Γ(∂Ω)(G(bn)−G(an))

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

+ lim
n→∞

µ

λ

∫
Ω sup|t|≤bn

H(x, t)dx−
∫
ΩH(x, an)dx

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

< +∞.

Since∫
Ω sup|t|≤bn

Q(x, t)dx −
∫
ΩQ(x, an)dx

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

≤
∫
Ω sup|t|≤bn

F (x, t)dx −
∫
Ω F (x, an)dx

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

+
µ

λ

∑
Ω sup|t|≤bn

H(x, t)dx +
∫
Ω
H(x, an)dx

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

,
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taking (3.1) into account, one has

̺p
−

p+

m0
lim

n→+∞

∫
Ω
sup|t|≤bn

Q(x, t)dx −
∫
Ω
Q(x, an)dx

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

(3.5)

≤ ̺p
−

p+

m0
lim

n→+∞

∫
Ω sup|t|≤bn

F (x, t)dx −
∫
Ω F (x, an)dx

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

+
µ

λ
hbn .

Moreover, since H is nonnegative, we have

lim sup
|ξ|→+∞

∫
Ω
Q(x, ξ)dx+ Γ(∂Ω)G(ξ)

ξp
+ ≥ lim sup

|ξ|→+∞

∫
Ω
F (x, ξ)dx+ Γ(∂Ω)G(ξ)

ξp
+ . (3.6)

Therefore, from (3.5) and (3.6), and from Assumption (A1) and (3.4) one has

λ ∈ (ν1, ν2) ⊆
(m1‖α‖L1(Ω)

p−B∞ ,
m0

̺p
−
p+A∞

)
⊆
(
0,

1

γ

)
.

For the fixed λ, the inequality (3.4) assures that the condition (b) of Theorem 2.1
can be used and either Iλ has a global minimum or there exists a sequence {un}
of solutions of the problem (P f,h

g ) such that limn→∞ ‖u‖α = +∞.

The other step is to verify that the functional Iλ has no global minimum. Since

1

λ
<

p−

m1‖α‖L1(Ω)
lim sup
|ξ|→+∞

∫
Ω F (x, ξ)dx+ Γ(∂Ω)G(ξ)

ξp
+ ,

we can consider a real sequence {cn} with cn > 1 for all n ∈ N and a positive
constant τ such that cn → +∞ as n → ∞ and

1

λ
< τ <

p−

m1‖α‖L1(Ω)

∫
Ω
F (x, cn)dx+ Γ(∂Ω)G(ξ)

c
p+

n

(3.7)

for each n ∈ N large enough. Thus, if we consider a sequence {yn} in X defined by
setting

yn(x) = cn for allx ∈ Ω. (3.8)

Thus yn ∈ X and

m0c
p−

n

p+
‖α‖L1(Ω) ≤ Φ(yn) ≤

m1c
p+

n

p−
‖α‖L1(Ω). (3.9)

On the other hand, since H and G are nonnegative functions, we observe

Ψ(yn) ≥
∫

Ω

F (x, cn)dx. (3.10)

So, from (3.7), (3.9) and (3.10) we conclude

Iλ(yn) = Φ(yn)− λΨ(yn) ≤
m1‖α‖L1(Ω)

p−
cp

+

n − λ

∫

Ω

F (x, cn)dx

<
m1‖α‖L1(Ω)(1− λτ)

p−
cp

+

n ,
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for every n ∈ N large enough. Hence, the functional Iλ is unbounded from below,
and it follows that Iλ has no global minimum. Therefore, Theorem 2.1 assures that
there is a sequence {un} ⊂ X of critical points of Iλ such that limn→∞ Φ(un) =
+∞, which it follows that limn→∞ ‖un‖α = +∞. Hence, we have the conclusion.

✷

Remark 3.2. If {an} and {bn} are two real sequences with an > 1 for all n ∈ N

and limn→+∞ bn = +∞, such that the assumption (A1) in Theorem 3.1 is satisfied.
Then, under the conditions A∞ = 0 and B∞ = +∞, Theorem 3.1 assures that for
every λ > 0 and for each µ ∈ [0, 1

hbn
) the problem (P f,h

g ) admits infinitely many

solutions. Moreover, if hbn = 0, the result holds for every λ > 0 and µ ≥ 0.

Remark 3.3. If f is non-negative, then the strong maximum principle ensures that
the weak solutions the problem (P f,h

g ) are non-negative (see [28, Lemma 1.1]).

Theorem 3.4. Assume that

(A3) lim infξ→+∞

∫
Ω
sup|t|≤ξ F (x,t)dx+Γ(∂Ω)G(ξ)

ξp
−

< m0p
−

m1‖α‖L1(Ω)̺
p−p+

lim supξ→+∞

∫
Ω
F (x,ξ)dx+Γ(∂Ω)G(ξ)

ξp
+ .

Then, for each

λ ∈
(

m1‖α‖L1(Ω)

p− lim supξ→+∞

∫
Ω
F (x,ξ)dx+Γ(∂Ω)G(ξ)

ξp
+

,

m0

̺p
−
p+ lim infξ→+∞

∫
Ω
sup|t|≤ξ F (x,t)dx+Γ(∂Ω)G(ξ)

ξp
−

)
,

for every continuous function h : Ω×R → R whose H(x, t) =
∫ t

0
h(x, ξ)dξ for every

(x, t) ∈ Ω× R, is a nonnegative function satisfying the condition

h∞ :=
̺p

−

p+

m0
lim

ξ→+∞

∫
Ω
sup|t|≤ξ H(x, t)dx + Γ(∂Ω)G(ξ)

ξp
− < ∞ (3.11)

and for every µ ∈ [0, µ′
h,λ) where

µ′
h,λ :=

1

h∞

(
1− λ̺p

−

p+

m0
lim inf
ξ→+∞

∫
Ω sup|t|≤ξ F (x, t)dx + Γ(∂Ω)G(ξ)

ξp
−

)
, (3.12)

the problem (P f,h
g ) has an unbounded sequence of solutions in W1,p(x)(Ω).

Proof: We choose the sequence {bn} of positive numbers such that goes to infinity
and

lim
n→+∞

∫
Ω
sup|t|≤bn

F (x, t)dx + Γ(∂Ω)G(bn)

b
p−

n

= lim inf
ξ→+∞

∫
Ω sup|t|≤ξ F (x, t)dx + Γ(∂Ω)G(ξ)

ξp
− .
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Now, since Φ(0) = Ψ(0) = 0 we can taking an = 0 for every n ∈ N in (3.2), from
Theorem 2.1 the conclusion follows. ✷

Now, we give an application of Theorem 3.4.

Example 3.5. Let N = 1, Ω = (0, π
2 ) ⊂ R, M(t) = 1 + 1

cosh t
for all t ∈ R,

p(x) = 2(1+ sinx) for all x ∈ [0, π2 ], α(x) =
sin x

(π+2)2 for all x ∈ [0, π2 ], g(t) = 1+ t10

for all t ∈ R and an be a sequence defined by

{
a1 = 4,

an+1 = 1 + 10
√
22a2n forn ≥ 2

and bn be a sequence such that b1 = 44 and bn = a4n− a4n−1 for all n ≥ 2. Consider
the problem





{
1 + cosh

[( ∫ π
2

0
1

3+2 sin x

(
|u′(x)|3+2 sin x + sin x

(π+2)2 |u(x)|3+2 sin x
)
dx
)−1

]}
×

(
− (|u′(x)|1+2 sin xu′(x))′ + sin x

(π+2)2 |u(x)|1+2 sin xu(x)
)

= λf(x, t) + µexu(x), in (0, π
2 ),

|u′(0)|u′(0) = λ
(
1 + (ϑu(0))10

)
, |u′(π2 )|3u′(π2 ) = λ

(
1 + (ϑu(π2 ))

10
)

(3.13)
where f(x, t) = exk(t) for all (x, t) ∈ (0, π

2 )× R with

k(t) =

∞∑

n=1

2bn

(
1− 2

∣∣∣t− an +
1

2

∣∣∣
)
χ[an−1,an](t) for all t ∈ R

where χ[α,β] denotes the characteristic function of the interval [α, β]. According

to the above data we have, m0 = 1, m1 = 2, p− = 2, p+ = 4, meas(Ω) = π
2 ,

D = π
2 , Γ(∂Ω) = 0, ‖α‖L1(Ω) = ‖α‖∞ = 1

(π+2)2 , kp− = k2 ≤
√
2(π + 2) and

thus, ̺ ≤
√
2
2 (π + 2)2, H(x, t) = ext2

2 for all (x, t) ∈ (0, π2 ) × R and it is easy to

verify that an+1 − 1 > an and
∫ an

an−1
k(t)dt = bn for all n ∈ N. Then, one has

F (x, an) = ex
∫ an

0 k(ξ)dξ = exa4n and

lim inf
ξ→+∞

∫
Ω
sup|t|≤ξ F (x, t)dx + Γ(∂Ω)G(ξ)

ξp
−

≤ lim
n→+∞

∫ π
2

0 exF (an+1 − 1)dx

(an+1 − 1)2
=

1

2200
lim
n→∞

a4n
∫ π

2

0 exdx

a4n
=

e
π
2 − 1

2200

and

lim sup
ξ→+∞

∫
Ω
F (x, t)dx + Γ(∂Ω)G(ξ)

ξp
+ = lim

n→+∞

∫ π
2

0
F (x, an)dx

a4n
=

∫ π
2

0

exdx = e
π
2 − 1.
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Hence, using Theorem 3.4, since

h∞ :=
̺p

−

p+

m0
lim

ξ→+∞

∫
Ω
sup|t|≤ξ H(x, t)dx + Γ(∂Ω)G(ξ)

ξp
−

≤ 2(π + 2)4 lim
n→+∞

a2n
∫ π

2

0
exdx

a2n
= 2(π + 2)4(e

π
2 − 1) < +∞,

the problem (3.13) for every

λ ∈
(

1

(π + 2)2(e
π
2 − 1)

,
1100

(π + 2)4(e
π
2 − 1)

)

and µ ∈
[
0, 1

2(π+2)4(e
π
2 −1)

(1− λ
(π+2)4(e

π
2 −1)

1100 )
)
has an unbounded sequence of solu-

tions in the space W1,2(1+sin x)(0, π
2 ).

Here, we point out two simple consequences of Theorems 3.1 and 3.4, respec-
tively.

Corollary 3.6. Assume that there exist two real sequences {an} and {bn} with
an > 1 for all n ∈ N and limn→+∞ bn = +∞, such that the assumption (A1) in

Theorem 3.1 holds, A∞ < m0

̺p−p+
and B∞ >

m1‖α‖L1(Ω)
p− . Then, for every arbitrary

function h ∈ C(Ω×R,R) whose H(x, t) =
∫ t

0
h(x, ξ)dξ for every (x, t) ∈ Ω×R is a

nonnegative function satisfying the condition (3.1) and for every µ ∈ [0, µh,1[ with

µh,1 := m0−p+̺p−
A∞

m0hbn
, the problem

{
T (u) = f(x, u(x)) + µh(x, u(x)), in Ω,

|∇u|p(x)−2 ∂u
∂v

= g(ϑu(x)), on ∂Ω
(3.14)

has an unbounded sequence of solutions.

Corollary 3.7. Assume that B∞ >
m1‖α‖L1(Ω)

p− and

lim inf
ξ→+∞

∫
Ω sup|t|≤ξ F (x, t)dx + Γ(∂Ω)F (ξ)

ξp
− <

m0

̺p
−
p+

.

Then, for every arbitrary function h ∈ C(Ω×R,R) whose H(x, t) =
∫ t

0 h(x, ξ)dξ for
every (x, t) ∈ Ω × R is a nonnegative function satisfying the condition (3.11) and
for every µ ∈ [0, µ′

h,1[ where µ′
h,1 given by (3.12) with λ = 1, the problem (3.14)

has an unbounded sequence of solutions.

Remark 3.8. Theorem 2.4 is an immediately consequence of Corollary 3.7.

We here give the following two consequences of the main result.
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Corollary 3.9. Assume that there exist two real sequences {an} and {bn} with
an > 1 for all n ∈ N and limn→+∞ bn = +∞, such that the assumption (A1) in

Theorem 3.1 holds, f1 ∈ C(Ω × R,R) and F1(x, t) =
∫ t

0 f1(x, ξ)dt for all t ∈ R.
Moreover, assume that

(A3) limn→+∞

∫
Ω
sup|t|≤bn

F1(x,t)dx−
∫
Ω
F1(x,an)dx+Γ(∂Ω)(G(bn)−G(an))

m0p−b
p−
n −m1p+̺p−‖α‖L1(Ω)a

p+
n

< +∞;

(A4) lim supξ→+∞

∫
Ω
F1(x,ξ)dx+Γ(∂Ω)G(ξ)

ξp
+ = +∞.

Then, for every function fi ∈ C(Ω×R,R), denoting Fi(k, t) =
∫ t

0
fi(k, ξ)dξ for all

t ∈ R for 2 ≤ i ≤ n, satisfying

max

{
sup
ξ∈R

(Fi(x, ξ) + Γ(∂Ω)G(ξ)) ; 2 ≤ i ≤ n

}
≤ 0

and

min
{
lim inf
ξ→+∞

Fi(x, ξ)

ξp
+ ; 2 ≤ i ≤ n

}
> −∞,

for each

λ ∈


0,

m0

̺p
−
p+ limn→+∞

∫
Ω
sup|t|≤bn

F1(x,t)dx−
∫
Ω
F1(x,an)dx+Γ(∂Ω)(G(bn)−G(an))

m0p−b
p−
n −m1p+̺p−‖α‖L1(Ω)a

p+
n


 ,

for every arbitrary function h ∈ C(Ω×R,R) whose H(x, t) =
∫ t

0
h(x, ξ)dξ for every

(x, t) ∈ Ω × R, is a non-negative function satisfying the condition (3.1) and for
every µ ∈ [0, µh,λ,1) where

µh,λ,1 :=
1

hbn

(
1− λ̺p

−

p+

m0

× lim
n→+∞

∫
Ω sup|t|≤bn

F1(x, t)dx −
∫
Ω F1(x, an)dx + Γ(∂Ω)(G(bn)−G(an))

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

)
,

the problem
{
T (u) = λ

∑n
i=1 fi(x, u(x)) + µh(x, u(x)), in Ω,

|∇u|p(x)−2 ∂u
∂v

= λg(ϑu(x)), on ∂Ω
(3.15)

has an unbounded sequence of solutions in W1,p(x)(Ω).

Proof: Set F (x, ξ) =
∑n

i=1 Fi(x, ξ) for all ξ ∈ R. Assumption (A4) along with the
condition

min
{
lim inf
ξ→+∞

Fi(x, ξ)

ξp
− ; 2 ≤ i ≤ n

}
> −∞
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ensures

lim sup
ξ→+∞

∫
Ω
F (x, ξ)dx + Γ(∂Ω)G(ξ)

ξp
+

= lim sup
ξ→+∞

∑n
i=1

∫
Ω
Fi(x, ξ)dx + Γ(∂Ω)G(ξ)

ξp
+ = +∞.

Moreover, Assumption (A3) together with the condition

max

{
sup
ξ∈R

Fi(x, ξ); 2 ≤ i ≤ n

}
≤ 0,

implies

lim
n→+∞

∫
Ω
sup|t|≤bn

F (x, t)dx −
∫
Ω
F (x, an)dx+ Γ(∂Ω)(G(bn)−G(an))

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

≤ lim
n→+∞

∫
Ω
sup|t|≤bn

F1(x, t)dx −
∫
Ω
F1(x, an)dx + Γ(∂Ω)(G(bn)−G(an))

m0p−b
p−

n −m1p+̺p
−‖α‖L1(Ω)a

p+

n

< +∞.

Hence, the conclusion follows from Theorem 3.1. ✷

Corollary 3.10. Let f1 ∈ C(Ω×R,R) and let F1(x, t) =
∫ t

0 f1(x, ξ)dt for all t ∈ R.
Assume that

lim inf
ξ→+∞

∫
Ω sup|t|≤ξ F1(x, t)dx + Γ(∂Ω)G(ξ)

ξp
− < +∞

and

lim sup
ξ→+∞

∫
Ω F1(x, ξ)dx + Γ(∂Ω)G(ξ)

ξp
+ = +∞.

Then, for every function fi ∈ C(Ω×R,R), denoting Fi(k, t) =
∫ t

0
fi(k, ξ)dξ for all

t ∈ R for 2 ≤ i ≤ n, satisfying

max

{
sup
ξ∈R

(Fi(x, ξ) + Γ(∂Ω)F (ξ)) ; 2 ≤ i ≤ n

}
≤ 0

and

min
{
lim inf
ξ→+∞

Fi(x, ξ) + Γ(∂Ω)G(ξ)

ξp
− ; 2 ≤ i ≤ n

}
> −∞,

for each

λ ∈


0,

m0

̺p
−
p+ lim infξ→+∞

∫
Ω
sup|t|≤ξ F1(x,t)dx+Γ(∂Ω)G(ξ)

ξp
−


 ,
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for every arbitrary function h ∈ C(Ω×R,R) whose H(x, t) =
∫ t

0 h(x, ξ)dξ for every
(x, t) ∈ Ω × R, is a non-negative function satisfying the condition (3.1) and for
every µ ∈ [0, µ′

h,λ,1[ where

µ′
h,λ,1 :=

1

h∞

(
1− λ̺p

−

p+

m0
lim inf
ξ→+∞

∫
Ω
sup|t|≤ξ F1(x, t)dx + Γ(∂Ω)G(ξ)

ξp
−

)
,

the problem (3.15) has an unbounded sequence of solutions in W1,p(x)(Ω).

Now, we give an application of Corollary 3.10.

Example 3.11. Let N = 2, Ω = {(x1, x2) ∈ R
2; x2

1 + x2
2 < 1} ⊂ R

2, M(t) =

2+sin t for all t ∈ R, p(x1, x2) = e1+x2
1+x2

2 for all (x1, x2) ∈ Ω, α(x1, x2) =
1

1+x2
1+x2

2

for all (x1, x2) ∈ Ω, g(t) = e|t|e−2t for all t ∈ R, Let f1, f2, h : Ω × R → R are
defined by

f1(x1, x2, t) ={
k(x1, x2)t

9
(
10 + 20 sin2(ln t) + 2 sin(2 ln t)

)
if (x1, x2, t) ∈ Ω× (0,+∞),

0 if (x1, x2, t) ∈ Ω× (−∞, 0],

f2(x1, x2, t) = −l(x1, x2)
2t

(1 + t2)2

and
h(x1, x2, t) = (x2

1 + x2
2)(2t+ sin t)

respectively, where k, l : Ω → R are two non-negative continuous functions. Con-
sider the problem





{
2 + sin

[ ∫
Ω

1

e1+|x|2

(
|∇u(x1, x2)|e

1+|x|2

+ |u(x1,x2)|e
1+|x|2

1+|x|2
)
dx
]}

×
(
− div(|∇u(x1, x2)|e

1+|x|2−2∇u(x1, x2))

+ 1
1+|x|2 |u(x1, x2)|e

1+|x|2−2u(x1, x2)
)

= λ(f1 + f2)(u(x1, x2)) + µ(x2
1 + x2

2)(1 + sin(u(x1, x2))), in Ω,

|∇u(x1, x2)|e
1+|x|2−2 ∂u

∂v
= eλ|ϑu(x1, x2)|e−2ϑu(x1, x2) on ∂Ω

(3.16)
where |x| =

√
x2
1 + x2

2. Thus, m0 = 1, m1 = 3, p− = e, p+ = e2, meas(Ω) = π,
Γ(∂Ω) = 2π, D = 2,

‖α‖L1(Ω) =

∫ 2π

0

∫ 1

0

r

1 + r2
drdθ = π ln(2) and ‖α‖∞ = 1,

kp− = ke ≤
2
e
√
2
max

{
1

e
√
π ln 2

,
2(e− 1)π

π ln(2) e
√
2π(e − 2)

}
=

2
e
√
2π ln(2)
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and thus, ̺ ≤ 2(1+π)
e
√
2π ln 2

. Moreover,

F1(x1, x2, t) =

{
k(x1, x2)t

10
(
1 + 2 sin2(ln t)

)
if (x1, x2, t) ∈ Ω× (0,+∞),

0 if (x1, x2, t) ∈ Ω× (−∞, 0],

F2(x1, x2, t) = −l(x1, x2)
t2

1 + t2
for all (x1, x2, t) ∈ Ω× R

and

H(x1, x2, t) = (x2
1 + x2

2)(1 + t2 − cos t) for all (x1, x2, t) ∈ Ω× R.

Put

an =

{
n if n is even,

e−nπ if n is odd
and bn = enπ for everyn ∈ N.

Then

lim
n→+∞

∫∫
Ω sup|t|≤an

F1(x1, x2, t) + Γ(∂Ω)G(an)

aen
=

{
2π if n is odd,

+∞ if n is even

and

lim sup
n→+∞

∫∫
Ω
F1(x1, x2, bn) + Γ(∂Ω)G(bn)

be
2

n

= +∞.

So,

lim inf
ξ→+∞

∫∫
Ω
sup|t|≤ξ F1(x1, x2, t) + Γ(∂Ω)G(ξ)

|ξ|p− = 2π < +∞

lim sup
ξ→+∞

∫∫
Ω
F1(x1, x2, t) + Γ(∂Ω)G(ξ)

|ξ|p+ = +∞.

Moreover,
sup
ξ∈R

F2(x1, x2, ξ) = 0,

lim inf
ξ→+∞

F2(x1, x2, ξ)

ξp
− = lim inf

ξ→+∞

−l(x1, x2)ξ
2

ξe(1 + ξ2)
= 0 > −∞

and

h∞ :=
̺p

−

p+

m0
lim

ξ→+∞

∫
Ω
sup|t|≤ξ H(x1, x2, t) + Γ(∂Ω)G(ξ)

ξp
− = 2π

̺p
−

p+

m0

≤ 2ee2(1 + π)e

ln 2
< +∞.

Hence, all assumptions of Corollary 3.10 are satisfied. So, for every

λ ∈ (0,
ln 2

2ee2(1 + π)e
)
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and

µ ∈ [0,
ln 2

2ee2(1 + π)e
(1− λ

2ee2(1 + π)e

ln 2
))

the problem (3.16) has an unbounded sequence of solutions in the space W1,e1+x2
1+x2

2 (Ω).

Now put

B
0 = lim sup

ξ→0+

∫
Ω F (x, ξ)dx + Γ(∂Ω)G(ξ)

ξp
+ .

Arguing as in the proof of Theorem 3.1, but using conclusion (c) of Theorem 2.1
instead of (b), one establishes the following result.

Theorem 3.12. Assume that there exist two real sequences {dn} and {en} with
dn > 1 for all n ∈ N and limn→+∞ en = 0, such that

(A5) dp
+

n <
m0p

−ep
−

n

m1p+̺p−‖α‖L1(Ω)

;

(A6) A0 := limn→+∞

∫
Ω
sup|t|≤en

F (x,t)dx−
∫
Ω
F (x,dn)dx+Γ(∂Ω)(G(en)−G(dn))

m0p−e
p−
n −m1p+̺p−‖α‖L1(Ω)d

p+
n

< m0p
−

m1‖α‖L1(Ω)̺
p−p+

B0.

Then, for each λ ∈ (λ3, λ4) with λ3 :=
m1‖α‖L1(Ω)

p−B0 and λ4 := m0

̺p−p+A0
, for every

continuous function h : Ω×R −→ R whose H(x, t) =
∫ t

0
g(x, ξ)dξ for every (x, t) ∈

Ω× R, is a nonnegative function satisfying the condition

hen :=
̺p

−

p+

m0
(3.17)

× lim
n→∞

∫
Ω
sup|t|≤en

H(x, t)dx −
∫
Ω
H(x, dn)dx+ Γ(∂Ω) (G(en)−G(dn))

m0p−e
p−

n −m1p+̺p
−‖α‖L1(Ω)d

p+

n

< +∞

and for every µ ∈
[
0, µ̃h,λ

)
with µ̃h,λ := m0−λp+̺p−

A0

m0hen
, the problem (P f,h

g ) has a

sequence of pairwise distinct solutions which strongly converges to 0 in W1,p(x)(Ω).

Proof: Fix λ ∈
(
λ3, λ4

)
and let h is the function satisfying the condition (3.17).

Since, λ < λ4, one has µ̄h,λ > 0. Fix µ ∈]0, µ̃h,λ[ and set ν3 := λ3 and ν4 :=
λ4

1+µ

λ
λ4hen

. If hen = 0, clearly, ν3 = λ3, ν4 = λ4 and λ ∈]ν3, ν4[. If hen 6= 0, since

µ < µ̃h,λ, one has

λ

λ4
+ µhen < 1,

and so
λ4

1 + µ

λ
λ4hen

> λ,
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namely, λ < ν4. Hence, recalling that λ > λ3 = ν3, one has λ ∈]ν3, ν4[.
Now, put Q(x, t) = F (x, t) + µ

λ
H(x, t) for all t ∈ R and x ∈ Ω. Since

∫
Ω
sup|t|≤en

Q(x, t)dx −
∫
Ω
Q(x, dn)dx

m0p−e
p−

n −m1p+̺p
−‖α‖L1(Ω)d

p+

n

≤
∫
Ω
sup|t|≤en

F (x, t)dx −
∫
Ω
F (x, dn)dx

m0p−e
p−

n −m1p+̺p
−‖α‖L1(Ω)d

p+

n

+
µ

λ

∑
Ω sup|t|≤en

H(x, t)dx+
∫
ΩH(x, dn)dx

m0p−e
p−

n −m1p+̺p
−‖α‖L1(Ω)d

p+

n

,

taking (3.1) into account, one has

̺p
−

p+

m0
lim

n→+∞

∫
Ω
sup|t|≤en

Q(x, t)dx−
∫
Ω
Q(x, dn)dx

m0p−e
p−

n −m1p+̺p
−‖α‖L1(Ω)d

p+

n

(3.18)

≤ ̺p
−

p+

m0
lim

n→+∞

∫
Ω
sup|t|≤en

F (x, t)dx −
∫
Ω
F (x, dn)dx

m0p−e
p−

n −m1p+̺p
−‖α‖L1(Ω)d

p+

n

+
µ

λ
hen .

Moreover, since H is nonnegative, from Assumption (A5) we have

lim sup
ξ→0+

∫
Ω Q(x, ξ)dx+ Γ(∂Ω)G(ξ)

ξp
+ ≥ lim sup

ξ→0+

∫
Ω F (x, ξ)dx + Γ(∂Ω)G(ξ)

ξp
+ . (3.19)

Therefore, from (3.18) and (3.19), we obtain

λ ∈ (ν1, ν2) ⊆
(m1‖α‖L1(Ω)

p−B0
,

m0

̺p
−
p+A0

)
⊆ (λ3, λ4) .

We take X , Φ, Ψ and Iλ as in the proof of Theorem 3.1. We prove that δ < +∞.

For this, put rn = m0

̺p−p+
bp

−

n for all n ∈ N. Let us show that the functional Iλ has

not a local minimum at zero. For this, let {cn} be a sequence of positive numbers
and τ > 0 such that cn → 0+ as n → ∞ and

1

λ
< τ <

p−

m1‖α‖L1(Ω)

∫
Ω
F (x, cn)dx+ Γ(∂Ω)G(ξ)

c
p+

n

(3.20)

for each n ∈ N large enough. Let {yn} be a sequence in W1,p(x)(Ω) defined by
(3.8). So, owing to (3.9), (3.10) and (3.20) we obtain

Iλ(yn) = Φ(yn)− λΨ(yn) ≤
m1‖α‖L1(Ω)

p−
cp

+

n − λ

∫

Ω

F (x, cn)dx

<
m1‖α‖L1(Ω)(1− λτ)

p−
cp

+

n < 0,

for every n ∈ N large enough. Since Iλ(0) = 0, that means that 0 is not a local
minimum of the functional Iλ. Hence, the part (c) of Theorem 2.1 ensures that
there exists a sequence {un} in W1,p(x)(Ω) of pairwise distinct critical points of Iλ
such that ‖un‖ → 0 as n → ∞, and the proof is complete. ✷
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Theorem 3.13. Assume that

(A7) lim infξ→0+

∫
Ω
sup|t|≤ξ F (x,t)dx+Γ(∂Ω)G(ξ)

ξp
−

< m0p
−

m1‖α‖L1(Ω)̺
p−p+

lim supξ→0+

∫
Ω
F (x,ξ)dx+Γ(∂Ω)G(ξ)

ξp
+ .

Then, for each

λ ∈
(

m1‖α‖L1(Ω)

p− lim supξ→0+

∫
Ω
F (x,ξ)dx+Γ(∂Ω)G(ξ)

ξp
+

,

m0

̺p
−
p+ lim infξ→0+

∫
Ω
sup|t|≤ξ F (x,t)dx+Γ(∂Ω)G(ξ)

ξp
−

)
,

for every continuous function h : Ω×R → R whose H(x, t) =
∫ t

0
h(x, ξ)dξ for every

(x, t) ∈ Ω× R, is a nonnegative function satisfying the condition

h0 :=
̺p

−

p+

m0
lim

ξ→0+

∫
Ω
sup|t|≤ξ H(k, t) + Γ(∂Ω)G(ξ)

ξp
− < ∞

and for every µ ∈ [0, µ̃′
h,λ) where

µ̃′
h,λ :=

1

h0

(
1− λ̺p

−

p+

m0
lim inf
ξ→0+

∫
Ω sup|t|≤ξ F (x, t)dx+ Γ(∂Ω)G(ξ)

ξp
−

)
,

the problem (P f,h
g ) has a sequence of pairwise distinct solutions which strongly

converges to 0 in W1,p(x)(Ω).

Proof: We choose the sequence {en} of positive numbers such that goes to zero
and

lim
n→+∞

∫
Ω sup|t|≤en

F (x, t)dx + Γ(∂Ω)G(en)

e
p−

n

= lim inf
ξ→+∞

∫
Ω
sup|t|≤ξ F (x, t)dx + Γ(∂Ω)G(ξ)

ξp
− .

Now, since Φ(0) = Ψ(0) = 0 we can taking dn = 0, from Theorem 3.12 the
conclusion follows. ✷

Remark 3.14. Applying Theorem 3.12, results similar to Remark 3.2 and Corol-
laries 3.6, 3.7, 3.9 and 3.10 can be obtained.

We end this paper by giving the following example as an application of Theorem
3.13.
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Example 3.15. Let N = 3, Ω = {(x1, x2, x3) ∈ R
2; x2

1 + x2
2 + x2

3 < 1} ⊂ R
3,

M(t) = 2+tanh t for all t ∈ R, p(x1, x2, x3) = 4+x2
1+x2

2+x2
3 for all (x1, x2, x3) ∈ Ω,

α(x1, x2, x3) = x2
1+x2

2+x2
3 for all (x1, x2, x3) ∈ Ω, f1 : R\{0} −→ R be the function

defined by

f1(t) =2t5
(
3 ln(ln(

1

t2
))− ln−1(

1

t2
)

)
sin2(ln(ln(ln(

1

t2
))))

− 4t5 ln−1(
1

t2
) sin(ln(ln(ln(

1

t2
)))) cos(ln(ln(ln(

1

t2
))))

+ 2t3 ln−2(
1

t2
)(1 + 2 ln(

1

t2
)),

f(x1, x2, x3, t) =

{
ex

2
1+x2

2+x2
3f1(t) if (x, t) ∈ Ω× (R \ {0}),

0 if (x, t) ∈ Ω× {0},
h(x1, x2, x3, t) = 6t5 ln(x2

1+x2
2+x2

3+1) for all (x1, x2, x3, t) ∈ Ω×R and g(t) = 5t4

for every t ∈ R. Direct calculations give m0 = 1, m1 = 3, p− = 4, p+ = 5,
meas(Ω) = 4π

3 , D = 2,

‖α‖L1(Ω) =

∫ 2π

0

∫ π

0

∫ 1

0

r4 sinφdrdφdθ =
4π

5
and ‖α‖∞ = 1,

kp− = k4 ≤ 2
4
√
2
max

{
4

√
5

4π
,

5
4
√
4π

}
=

10
4
√
8π

and thus, ̺ ≤ 10
4√8π

(1 + 4π
3 ). Also Γ(∂Ω) = 4π,

F (x1, x2, x3, t) =





ex
2
1+x2

2+x2
3t6 ln(ln( 1

t2
)) sin2(ln(ln(ln( 1

t2
)))) + t4 ln−1( 1

t2
),

if (x1, x2, x3, t) ∈ Ω× (R \ {0}),
0 if (x1, x2, x3, t) ∈ Ω× {0},

H(x1, x2, x3, t) = t6 ln(x2
1 + x2

2 + x2
3 + 1) for all (x1, x2, x3, t) ∈ Ω× R

and
G(t) = t5 for all t ∈ R.

Thus

lim inf
ξ→0+

∫∫∫
Ω
sup|t|≤ξ F (x1, x2, x3, t)dx1dx2dx3 + Γ(∂Ω)G(ξ)

ξp
− (3.21)

= lim inf
ξ→0+

∫∫∫
Ω sup|t|≤ξ F (x1, x2, x3, t)dx1dx2dx3 + 4πξ5

ξ4
= 0

and

lim sup
ξ−→0+

∫∫∫
Ω F (x1, x2, x3, ξ)dx1dx2dx3 + Γ(∂Ω)G(ξ)

ξp
+ (3.22)

= lim sup
ξ→0+

∫∫∫
Ω
F (x1, x2, x3, ξ)dx1dx2dx3 + 4πξ5

ξ5
= +∞.
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Hence, using Theorem 3.13, since

h0 :=
̺p

−

p+

m0
lim

ξ→0+

∫
Ω
sup|t|≤ξ H(x1, x2, x3, t)dx1dx2dx3 + Γ(∂Ω)G(ξ)

ξp
+

=
25× 103

34
(3 + 4π)4,

the problem





{
2 + tanh

[ ∫
Ω

|∇u(x1,x2,x3)|4+|x|2+|x|2|u(x1,x2,x3)|4+|x|2

4+|x|2 dx
]}

×
(
− div(|∇u(x1, x2, x3)|2+|x|2∇u(x1, x2, x3))

+|x|2|u(x1, x2, x3)|2+|x|2u(x1, x2, x3)
)

= λf(x, u(x1, x2, x3)) + 6µu5(x1, x2, x3) ln(x
2
1 + x2

2 + x2
3), in Ω,

|∇u(x1, x2, x3)|2+|x|2 ∂u
∂v

= 5λ(ϑu(x1, x2, x3))
4 on ∂Ω

where |x| =
√
x2
1 + x2

2 + x2
3, for every (λ, µ) ∈ (0,+∞)×

[
34

25×103(3+4π)4 ,∞
)
has a

sequence of pairwise distinct solutions which strongly converges to 0 in the space

W
1,4+x2

1+x2
2+x2

3
0 (Ω).
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