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Multiplicity Results for Kirchhoff Type Elliptic Problems with Hardy

Potential

M. Bagheri and G. A. Afrouzi

abstract: In this paper, we are concerned with the existence of solutions for
fourth-order Kirchhoff type elliptic problems with Hardy potential. In fact, employ-
ing a consequence of the local minimum theorem due to Bonanno and mountain
pass theorem we look into the existence results for the problem under algebraic con-
ditions with the classical Ambrosetti-Rabinowitz (AR) condition on the nonlinear
term. Furthermore, by combining two algebraic conditions on the nonlinear term
using two consequences of the local minimum theorem due to Bonanno we ensure
the existence of two solutions, applying the mountain pass theorem given by Pucci
and Serrin we establish the existence of third solution for our problem.
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1. Introduction

Consider the following p-biharmonic equation with Hardy potential of fourth-
order Kirchhoff-type elliptic problem





M
(∫

Ω

|∆u|pdx
)
∆2

pu− a

|x|2p |u|
p−2u = λf(x, u) in Ω,

u = ∆u = 0, on ∂Ω,
(1.1)

where Ω is a bounded domain in R
N (N ≥ 3) containing the origin and with smooth

boundary ∂Ω, 1 < p < N
2 , ∆

2
pu = ∆(|∆u|p−2∆u) is the p-biharmonic operator of

fourth order, λ is nonnegative parameter, M : [0,+∞) → R is continuous function
and f : Ω× R → R is an L2-Carathéodory function.

The problem (1.1) is related to the stationary problem

ρ
∂2u

∂t2
−
(ρ0
h

+
E

2L

∫ L

0

|∂u
∂x

|2dx
)∂2u

∂x2
= 0, (1.2)
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for 0 < x < L, t ≥ 0, where u = u(x, t) is the lateral displacement at the space
coordinate x and the time t, E the Young modulus, ρ the mass density, h the cross-
section area, L the length and ρ0 the initial axial tension, proposed by Kirchhoff
[21] as an extension of the classical D’Alembert’s wave equation for free vibrations
of elastic strings. Kirchhoff model can also be used for describing the dynamics of
an axially moving string. In recent years, axially moving string-like continua such
as wires, belts, chains, band-saws have been subjects of the study of researchers (see
[35]). Similar nonlocal problems also model several physical and biological systems
where u describes a process that depends on the average of itself, for example, the
population density. Problems of Kirchhoff-type have been widely investigated, we
refer the reader to papers [1,2,3,4,5,6,15,16,32,33] and the references therein.

Fourth-order equations can describe the static form change of beam or the
sport of rigid body. In [22], Lazer and McKenna have pointed out that this type
of nonlinearity furnishes a model to study travelling waves in suspension bridges.
Since then more nonlinear biharmonic equations and p-biharmonic equations have
been studied. Existence and multiplicity of solutions of nonlinear fourth order
differential equations have been deserved a great deal of interest, for instance see
[7,9,10,11,20,24,25,26,27].

Recently, combined problems of Kirchhoff-type with p-biharmonic operator have
been widely investigated such that many researchers have discussed the existence
of at least one solution, or multiple solutions, or even many solutions for such
problems with different method. we refer the reader to the papers [14,19,28,38]
and references therein. For example, in [28] employing variational methods and
critical point theory, Massar et al. ensured the existence of infinitely many solutions
the following perturbed p-biharmonic Kirchhoff-type problem





∆(|∆u|p−2∆u)−
[
M(

∫

Ω

|∇u|pdx)
]p−1

∆pu+ ρ|u|p−2u = λf(x, u) in Ω,

u = ∆u = 0, on ∂Ω,

where p > max{1, N2 } , λ > 0 is a real number, Ω ⊂ R
N (N ≥ 1) is a bounded

smooth domain, ρ > 0 and f : Ω × R → R is an continues function and M :
[0,+∞) → R is continuous function, while in [14] using variational methods and
critical point theory, multiplicity results of nontrivial and nonnegative solutions for
the same problem were established. Xiu et al. in [38] by employing variational
method studied multiplicity of solutions for the following p-biharmonic equation





(a+ b

∫

Ω

(|∆u|p + |u|p) dx)(∆2
pu+ |u|p−2u)

= h(x)|u|r−2u+H(x)|u|q−2u+ g(x), in Ω,
u = ∆u = 0, on ∂Ω,

where 1 < p < N
2 , ∆

2
pu = ∆(|∆u|p−2∆u) is the p-biharmonic operator of fourth

order, Ω ⊂ R
N is an unbounded domain, and h(x), H(x) and g(x) are nonnegative

functions with sufficient conditions.
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On the other hand, singular boundary value problems arise in the context of
chemical heterogeneous catalysts and chemical catalyst kinetics, in the theory of
heat conduction in eletirically conducting materials, singular minimal surfaces, as
well as in the study of non-Newtonian fluids and boundary layer phenomena for
viscous fluids. Furthermore, nonlinear singular elliptic equations are also encoun-
tered in glocial advance, in transport of coal slurries down conveyor belts and in
several other geophysical and industrial contents. For the use of singular problem
in the mathematical literature, see [20,23,29]. In recent years, some interesting
results for singular p-biharmonic equation of Kirchhoff-type were obtained. For
instance, Xu and Bai in [39] by using critical point theory, discussed the existence
of infinitely many weak solutions for similar problem to (1.1).

In the present article, we establish the existence of two solutions for the prob-
lem (1.1) using a consequence of the local minimum theorem due to Bonanno
and mountain pass theorem under some algebraic conditions with the classical
Ambrosetti-Rabinowitz (AR) condition on the nonlinear term. Moreover, by com-
bining two algebraic conditions on the nonlinear term employing two consequences
of the local minimum theorem due to Bonanno we guarantee the existence of two
solutions, applying the mountain pass theorem given by Pucci and Serrin ( [30]) we
establish the existence of third solution for the problem (1.1).

For a through on the subject, we also refer the reader to [12,18,17].

2. Preliminaries

For a given nonempty set X , and two functionals Φ,Ψ : X → R, we define the
following functions

β(r1, r2) = inf
v∈Φ−1(r1,r2)

supu∈Φ−1(r1,r2) Ψ(u)−Ψ(v)

r2 − Φ(v)
,

ρ1(r1, r2) = sup
v∈Φ−1(r1,r2)

Ψ(v)− supu∈Φ−1(−∞,r1] Ψ(u)

Φ(v)− r1

for all r1, r2 ∈ R, r1 < r2, and

ρ2(r) = sup
v∈Φ−1(r,+∞)

Ψ(v)− supu∈Φ−1(−∞,r]Ψ(u)

Φ(v)− r

for all r ∈ R.

Theorem 2.1. [8, Theorem 5.1] Let X be a real Banach space; Φ : X → R

be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux
differentiable function whose Gâteaux derivative admits a continuous inverse on
X∗, Ψ : X → R be a continuously Gâteaux differentiable function whose Gâteaux
derivative is compact. Assume that there are r1, r2 ∈ R, r1 < r2, such that

β(r1, r2) < ρ1(r1, r2).

Then, setting Iλ := Φ − λΨ, for each λ ∈ ( 1
ρ1(r1,r2)

, 1
β(r1,r2)

) there is u0,λ ∈
Φ−1(r1, r2) such that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(r1, r2) and I

′

λ(u0,λ) = 0.
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Theorem 2.2. [8, Theorem 5.3] Let X be a real Banach space; Φ : X → R be
a continuously Gâteaux differentiable function whose Gâteaux derivative admits a
continuous inverse on X∗, Ψ : X → R be a continuously Gâteaux differentiable
function whose Gâteaux derivative is compact. Fix infX Φ < r < supX Φ and
assume that

ρ2(r) > 0,

and for each λ > 1
ρ2(r)

, the functional Iλ := Φ − λΨ is coercive. Then for each

λ ∈] 1
ρ2(r)

,+∞[ there is u0,λ ∈ Φ−1(r,+∞) such that Iλ(u0,λ) ≤ Iλ(u) for all

u ∈ Φ−1(r,+∞) and I
′

λ(u0,λ) = 0.

Let X denote the space W 2,p(Ω) ∩W
1,p
0 (Ω) endowed with the norm

‖u‖ =

(∫

Ω

|∆u|pdx
) 1

p

.

We recall the following Rellich inequality [13], which says that, for each u ∈ X ,

∫

Ω

|u(x)|p
|x|2p dx ≤ 1

H

∫

Ω

|∆u|p (2.1)

where the best constant is

H =
( (p− 1)N(N − 2p)

p2

)p
. (2.2)

Now, let M : R+ → R
+ be a continuous function such that there exists two positive

constants m0 and m1 such that

m0 ≤ M(t) ≤ m1,

for all t ∈ R
+ and f : Ω × R → R be an L2-Carathéodory function, namely,

x 7→ f(x, t) is continuous for almost every x ∈ Ω, and for every s > 0 there exists
a function ls ∈ L2(Ω) such that

sup
|t|≤s

|f(x, t)| ≤ ls(x)

for almost every x ∈ Ω. Set p∗ = pN
N−p

. By the Sobolev embedding theorem there
exist a positive constant c such that

‖u‖Lp∗(Ω) ≤ c‖u‖, ∀u ∈ X,

where

c := π− 1
2N− 1

p

(
p− 1

N − p

)1− 1
p

[
Γ(1 + N

2 )Γ(N)

Γ(N
p
)Γ(N + 1− N

p
)

] 1
N

,



Multiplicity Results for Kirchhoff Problems 35

see, [36]. Fixing q ∈ [1, p∗), again from the Sobolev embedding theorem, there
exists a positive constant cq such that

‖u‖Lq(Ω) ≤ cq‖u‖, ∀u ∈ X. (2.3)

Thus the embedding X →֒ Lq(Ω) is compact. By Holder inequality, one has the
upper bound

cq ≤ π− 1
2N− 1

p

(
p− 1

N − p

)1− 1
p

[
Γ(1 + N

2 )Γ(N)

Γ(N
p
)Γ(N + 1− N

p
)

] 1
N

|Ω|
p∗−q
p∗q ,

where |Ω| denote the Lebesgue measure of the open set Ω.
Fixing the real parameter λ, a function u ∈ W 1,p(Ω) is said to be a weak

solution of (1.1) if for all v ∈ W 1,p(Ω),

M
(∫

Ω

|∆u|pdx
) ∫

Ω

|∆u|p−2∆u(x)∆v(x)dx − a

∫

Ω

|u(x)|p−2

|x|2p u(x)v(x)dx

= λ

∫

Ω

f(x, u(x))v(x)dx.

By assumption m0 > a
H
, we state the following proposition which we need in

the proofs of our main result.

Proposition 2.1. Let T : X → X be the operator defined by

T (u)h = M
(∫

Ω

|∆u|pdx
) ∫

Ω

|∆u|p−2∆u(x)∆h(x)dx − a

∫

Ω

|u(x)|p−2

|x|2p u(x)h(x)dx

for every u, v ∈ X. Then, T admits a continuous inverse on X∗.

Proof: Since

T (u)h = M
(∫

Ω

|∆u|pdx
) ∫

Ω

|∆u|p−2∆u(x)∆h(x)dx

−a

∫

Ω

|u(x)|p−2

|x|2p u(x)h(x)dx

≥ m0‖u‖p −
a

H
‖u‖p

=
(
m0 −

a

H

)
‖u‖p,

and since ,m0 > a
H
, this follows that T is coercive. Taking into account (2.2) of

[34] for p > 1 there exists a positive constant Cp such that if p ≥ 2, then
〈
|x|p−2x− |y|p−2y, x− y

〉
≥ Cp|x− y|p,

if 1 < p < 2, then

〈
|x|p−2x− |y|p−2y, x− y

〉
≥ Cp

|x− y|2
(|x| + |y|)2−p
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where 〈., .〉 denotes the usual inner product in R
N .Then, we observe that

〈T (u)− T (v), u− v〉 ≥ C‖u− v‖p > 0

for some C > 0 for every u, v ∈ X , which means that T is strictly monotone.
Furthermore, since X is reflexive, for un → u strongly in X as n → +∞, one has
T (un) → T (u) weakly in X∗ as n → +∞. Hence, T is demicontinuous, so by
[40, Theorem 26.A(d)], the inverse operator T−1 of T exists. T−1 is continuous.
Indeed, let (νn) be a sequence of X∗ such that νn → ν strongly in X∗ as n → +∞.
Let un and u in X such that T−1(νn) = un and T−1(ν) = u. Taking in to account
that T is coercive, one has that the sequence un is bounded in the reflexive space
X . For a suitable subsequence, we have un → û weakly in X as n → +∞, which
concludes

lim
n→+∞

〈T (un)− T (u), un − û〉 = 〈νn − ν, un − û〉 = 0.

Note that if un → û weakly in X as n → +∞ and T (un) → T (û) strongly in X∗ as
n → +∞, one has un → û strongly in X as n → +∞, and since T is continuous,
we have un → û weakly in X as n → +∞ and T (un) → T (û) = T (u) strongly in
X∗ as n → +∞. Hence, taking into account that T is an injective, we have u = û.

✷

3. Main results

In this section, we formulate our main results as follow.
Put

M̂(t) =

∫ t

0

M(s)ds, t ≥ 0

and

F (x, t) =

∫ t

0

f(x, ξ)dξ, (x, t) ∈ Ω× R.

Choose s > 0 such that B(0, s) ⊂ Ω, where B(0, s) denotes the open ball in R
N

of radius s with center at 0. Put

L =
2π

N
2

Γ(N2 )

∫ s

s
2

∣∣∣12r(N + 1)

s3
− 24N

s2
+

9(N − 1)

sr

∣∣∣
p

rN−1dr.

For a nonnegative constant η and a positive constant δ with

(m0H − a)ηp 6= m1HL(cqδ)
p

we set

aη(δ) := p

∫
Ω sup‖t‖Lq(Ω)≤η F (x, t)dx −

∫
B(0, s2 )

F (x, δ)dx

(m0H − a)ηp −m1HL(cqδ)p
.

We now present our main result as follows.
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Theorem 3.1. Suppose that 0 < a < m0H (with H is as in (2.2)). Moreover,
assume that there exist a nonnegative constant η1 and two positive constants η2
and δ with

1

cqL
1
p

η1 < δ <

(
m0H − a

m1LH

) 1
p η2
cq

(3.1)

such that

(A1) F (x, t) ≥ 0 for each (x, t) ∈ (B(0, s) \B(0, s
2 ))× R;

(A2) aη1
(δ) < aη2

(δ);

(A3) there exist two constants ξ > p and R > 0 such that

0 < ξF (x, t) ≤ tf(x, t), (3.2)

for all |t| ≥ R and for all x ∈ Ω.

Then for each λ ∈
(

1
Hc

p
q

1
aη1(δ)

, 1
Hc

p
q

1
aη2 (δ)

)
, the problem (1.1) admits at least two

nontrivial weak solutions u1 and u2 in x, such that

m0H − a

m1Hc
p
q
η
p
1 < ‖u1‖p < m0η

p
2

.

Proof: Our aim is to apply Theorem 2.1 to the problem (1.1). Let Φ and Ψ be
the the functionals defined by

Φ(u) =
1

p
M̂(‖u‖p)− a

p

∫

Ω

|u(x)|p
|x|2p dx, (3.3)

and

Ψ(u) =

∫

Ω

F (x, u(x))dx. (3.4)

Put Iλ(u) = Φ(u) − λΨ(u) for all u ∈ X . It is easy to show that the functionals
Φ and Ψ are well define and continuously Gâteaux differentiable. Moreover, we
introduce the functional Iλ : W 1,p(Ω) → R associated with problem (1.1),

Iλ(u) :=
1

p
M̂(‖u‖p)− a

p

∫

Ω

|u(x)|p
|x|2p dx− λ

∫

Ω

F (x, u(x))dx.

Clearly Φ and Ψ are continuously Gâteaux differentiable and

Φ
′

(u)(v) = M
(∫

Ω

|∆u|pdx
) ∫

Ω

|∆u|p−2∆u(x)∆v(x)dx−a

∫

Ω

|u(x)|p−2

|x|2p u(x)v(x)dx,

and

Ψ
′

(u)(v) =

∫

Ω

f(x, u(x))v(x)dx
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for every v ∈ X. Proposition 2.1 follows that Φ′ admits a continuous inverse on X∗.
Moreover, Ψ′ is a compact operator. Note that the critical points of Iλ are exactly
the weak solutions of problem (1.1). Since m0 ≤ M(t) ≤ m1 for all t ∈ R

+, we see
that

m0H − a

pH
‖u‖p ≤ Φ(u) ≤ m1

p
‖u‖p. (3.5)

Put

r1 =
m0H − a

pHc
p
q

η
p
1 and r2 =

m0H − a

pHc
p
q

η
p
2, (3.6)

and define wδ ∈ X by

wδ(x) :=





0, x ∈ Ω \B(0, s),

δ(
4

s3
l3 − 12

s2
l2 +

9

s
l − 1), x ∈ B(0, s) \B(0, s

2 ),

δ, x ∈ B(0, s
2 ),

(3.7)

with l = dist(x, 0) =

√∑N
i=1 x

2
i . Then

∂wδ(x)

∂xi

:=

{
0, x ∈ Ω \B(0, s) ∩B(0, s

2 ),

δ(
12lxi

s3
− 24xi

s2
+

9xi

sl
), x ∈ B(0, s) \B(0, s

2 ),

and

∂2wδ(x)

∂x2
i

:=





0, x ∈ Ω \B(0, s) ∩B(0, s
2 ),

δ(
12(x2

i + l2)

s3l
− 24

s2
+

9(l2 − x2
i )

sl3
), x ∈ B(0, s) \B(0, s

2 ).

Therefore, we have

N∑

i=1

∂2wδ(x)

∂x2
i

:=





0, x ∈ Ω \B(0, s) ∩B(0, s
2 ),

δ(
12l(N + 1)

s3
− 24N

s2
+

9(N − 1)

sl
), x ∈ B(0, s) \B(0, s

2 ).

and
∫

Ω

|∆wδ(x)|pdx = δp
2π

N
2

Γ(N2 )

∫ s

s
2

∣∣∣(12r(N + 1)

s3
− 24N

s2
+
9(N − 1)

sr
)
∣∣∣
p

r(N−1)dr = Lδp.

(3.8)
So, from (3.5), we have

m0H − a

pH
Lδp ≤ Φ(wδ) ≤

m1

p
Lδp. (3.9)

From the condition (3.1), we obtain r1 < Φ(u) < r2. Then, for all u ∈ X , we see
that

Φ−1(−∞, r2) = {u ∈ X,Φ(u) ≤ r2}
⊆ {u ∈ X, ‖u‖Lq(Ω) ≤ η2}
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and it follows that

sup
u∈Φ−1(−∞,r2)

Ψ(u) ≤
∫

Ω

sup
‖t‖Lq(Ω)≤η2

F (x, t)dx.

Therefore, by (A1) one has

β(r1, r2) ≤
supu∈Φ−1(−∞,r2) Ψ(u)−Ψ(wδ)

r2 − Φ(wδ)

≤
∫
Ω
sup‖t‖Lq(Ω)≤η2

F (x, t)dx −
∫
Ω
F (x,wδ(x))dx

m0H−a
pc

p
qH

η
p
2 − m1

p
Lδp

≤ pHkp

∫
Ω
sup‖t‖Lq(Ω)≤η2

F (x, t)dx −
∫
B(0, s2 )

F (x, δ)dx

(m0H − a)ηp2 −m1HL(cqδ)p

= Hcpqaη2
(δ).

On the other hand, arguing as before, one has

ρ2(r1, r2) ≥
Ψ(wδ)− supu∈Φ−1(−∞,r1] Ψ(u)

Φ(wδ)− r1

≥
∫
Ω F (x,wδ(x))dx −

∫
Ω sup‖t‖Lq(Ω)≤η2

F (x, t)dx

m1

p
Lδp − m0H−a

pc
p
qH

η
p
1

≥ pHkp

∫
B(0, s2 )

F (x, δ)dx −
∫
Ω
sup‖t‖Lq(Ω)≤η2

F (x, t)dx

m1HL(cqδ)p − (m0H − a)ηp1
= Hcpqaη1

(δ).

Hence, from assumption (A2), one has β(r1, r2) < ρ2(r1, r2). Therefore, from

Theorem (2.1), for each λ ∈
(

1
c
p
qH

1
aη1(δ)

, 1
c
p
qH

1
aη2 (δ)

)
, the functional Iλ admits at

least one nontrivial critical point u1 such that

r1 < Φ(u1) < r2,

that is,
m0H − a

m1Hc
p
q

η
p
1 < ‖u1‖p < m0η

p
2.

Now, we prove the existence of the second local minimum distinct from the first one.
To this purpose, we verify the hypotheses of the mountain-pass theorem for the
functional Φ−λΨ. Clearly, the functional Φ−λΨ is of class C1 and (Φ−λΨ)(0) = 0.
The first part of proof guarantees that u1 ∈ X is a local nontrivial local minimum
for Φ−λΨ in X . Now, we can assume that u1 is a strict local minimum of Φ−λΨ
on X . Therefore, there is s > 0 such that

inf
‖u−u1‖=s

(Φ− λΨ)(u) > (Φ− λΨ)(u1).
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So the condition [31, (I1), Theorem (2.2)] is verified. From (A3) there is a positive
constant C1, C2 such that

F (x, t) ≥ C1|t|ξ + C2.

Fixed u ∈ X \ {0}, for each t > 1 one has

(Φ− λΨ)(tu) =
1

p
M̂

(∫

Ω

|∆tu|pdx
)
− a

p

∫

Ω

|tu|p
|x|2p dx− λ

∫

Ω

F (x, tu)dx

≤ m1

p
tp
(∫

Ω

|∆u|pdx
)
− λCtξ

∫

Ω

|u|ρdx+ λC2.

Since ξ > p, this condition guarantees that Iλ is unbounded from below. So the
condition [31, (I2), Theorem (2.2)] is fulfilled. Now we prove that Iλ := Φ − λΨ
satisfies (PS)-condition for every λ > 0. Namely, we will prove that any sequence
{un} ⊂ X satisfying

h := sup
n

Iλ(un) < +∞, lim
n→+∞

‖I ′λ(un)‖ = 0.

From above, we can actually assume that

|1
ξ
〈I ′λ(un), un〉| ≤ ‖un‖.

For n large enough, we have

h ≥ Iλ(un) =
1

p
M̂

(∫

Ω

|∆un(x)|pdx
)
− a

p

∫

Ω

|un(x)|p
|x|2p dx− λ

∫

Ω

F (x, un(x))dx,

then

Iλ(un)−
1

ξ
〈I ′λ(un), un〉 =

1

p
M̂(

∫

Ω

|∆un(x)|pdx)−
a

p

∫

Ω

|un(x)|p
|x|2p dx

−λ

∫

Ω

F (x, un(x))dx

−1

ξ
M(

∫

Ω

|∆un(x)|pdx)
∫

Ω

|∆un(x)|pdx

−a

ξ

∫

Ω

|∆un(x)|p
|x|2p dx+

λ

ξ

∫

Ω

f(x, un(x))un(x)dx

≥ m0

(
1

p
− 1

ξ

)∫

Ω

|∆un(x)|pdx

− a

H

(
1

p
− 1

ξ

)∫

Ω

|∆un(x)|pdx

=

(
1

p
− 1

ξ

)(
m0H − a

H

)
‖un‖p.
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Thus,

h+ ‖un‖ ≥ Iλ(un)−
1

ξ
〈I ′λ(un), un〉 ≥

(
1

p
− 1

ξ

)(
m0H − a

H

)
‖un‖p.

Consequently, {‖un‖} is bounded. By the Eberlian-Smulyan theorem, without loss
of generality, we assume that un ⇀ u. Then Ψ′(un) → Ψ′(u). Since I ′λ(un) =
Φ′(un) − λΨ′(un) → 0, then Φ′(un) → λΨ′(u). Since Φ′ has a continuous in-
verse, un → u and so Iλ satisfies (PS)-condition. Hence, the classical theorem
of Amberosetti and Rabinowitz gives a critical point u2 of Φ − λΨ such that
(Φ − λΨ)(u2) > (Φ − λΨ)(u1). So u1 and u2 are distinct weak solutions of the
problem (1.1). Hence, the proof is complete. ✷

Theorem 3.2. Suppose that f(x, 0) 6= 0 for all x ∈ Ω and there exist two positive
constants δ and η, with

δ <

(
m0H − a

m1LH

) 1
p η

cq

such that the assumptions (A1) and (A3) in Theorem 3.1 hold. Furthermore, as-
sume that ∫

Ω sup‖t‖Lq(Ω)≤η F (x, t)dx

(m0H − a)ηp
<

∫
B(0, s2 )

F (x, δ)dx

m1HLc
p
qδ

p . (3.10)

Then, for each

λ ∈
(
1

p

m1Lδ
p

∫
B(0, s2 )

F (x, δ)dx
,

1

pHc
p
q

(m0H − a)ηp∫
Ω
sup‖t‖Lq(Ω)≤η F (x, t)dx

)

the problem (1.1) admits at least two nontrivial weak solutions u1 and u2 in X such
that

‖u1‖p < m0η
p.

Proof: Our aim is to employ Theorem 3.1, by choosing η1 = 0 and η2 = η.
Therefore, owing to the inequality (3.5) and (A1), we see that

aη(δ) = p

∫
Ω sup‖t‖Lq(Ω)≤η F (x, t)dx −

∫
B(0, s2 )

F (x, δ)dx

(m0H − a)ηp −m1HLc
p
qδ

p

< p

(
1− m1HLkpδp

(m0H−a)ηp

) ∫
Ω
sup|t|≤η F (x, t)dx

(m0H − a)ηp −m1HLc
p
qδ

p

< p

∫
Ω sup‖t‖Lq(Ω)≤η F (x, t)dx

(m0H − a)ηp

< p

∫
B(0, s2 )

F (x, δ)dx

m1HLc
p
qδ

p

= a0(δ).
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In particular, one has

aη(δ) < p

∫
Ω sup‖t‖Lq(Ω)≤η F (x, t)dx

(m0H − a)ηp

which follows
1

pHc
p
q

(m0H − a)ηp∫
Ω
sup‖t‖Lq(Ω)≤η F (x, t)dx

<
1

Hc
p
q

1

aη(δ)
.

Hence, Theorem 3.1 yields the desired conclusion. ✷

Now, we present an application of Theorem 2.2 which will be used later to
obtain multiple solutions for the problem(1.1).

Theorem 3.3. Suppose that there exist two positive constants η and δ with

δ >

(
m0H − a

m1LH

) 1
p η

cq

such that assumption (A1) in Theorem 3.1 holds. Moreover, assume that
∫

Ω

sup
‖t‖Lq(Ω)≤η

F (x, t)dx <

∫

B(0, s2 )

F (x, δ)dx

and

lim sup
|ξ|→+∞

F (x, ξ)

|ξ|p ≤ 0 uniformly in R. (3.11)

Then, for each λ > λ̂, where

λ̂ :=
m1HLcpqδ

p − (m0H − a)ηp

pHc
p
q(
∫
B(0, s2 )

F (x, δ)dx−
∫
Ω sup‖t‖Lq(Ω)≤η F (x, t)dx)

the problem (1.1) admits at least one nontrivial weak solution u1 ∈ X such that

‖u1‖p >
m0H − a

m1Hc
p
q
ηp.

Proof: Our goal is apply Theorem 2.2 to the functional Iλ = Φ−λΨ where Φ and
Ψ are given as in (3.3) and (3.4), respectively. We observe that the all assumptions
of Theorem 2.2 on Φ and Ψ are satisfied. Moreover, for λ > 0, the functional Iλ is
coercive. Indeed, fix 0 < ǫ < m0H−a

pλHc
p
q
. From (3.11) there is a function ̺ε ∈ L1(Ω)

such that
F (x, t) ≤ εtp + ̺ε(x),

for every x ∈ Ω and t ∈ R. Therefore, for each u ∈ X with ‖u‖ ≥ 1, we see that

Φ(u)− λΨ(u) ≥ moH − a

pH
‖u‖p − λε

∫

Ω

up(x)dx − λ‖̺ε‖L1

≥
(
m0H − a

pH
− λcpqε

)
‖u‖p − λ‖̺ε‖L1
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and thus
lim

‖u‖→+∞
(Φ(u)− λΨ(u)) = +∞

which means the functional Iλ = Φ− λΨ is coercive. Put

r =
m0H − a

pHc
p
q

ηp,

and choose

w(x) :=





0, x ∈ Ω \B(0, s),

δ(
4

s3
l3 − 12

s2
l2 +

9

s
l − 1), x ∈ B(0, s) \B(0, s

2 ),

δ, x ∈ B(0, s
2 ).

Using the condition (A1) and arguing as in the proof of Theorem 3.1, we obtain
that

ρ2(r) ≥ pHcpq

∫
B(0, s2 )

F (x, δ)dx−
∫
Ω
sup‖t‖Lq(Ω)≤η F (x, t)dx

m1HLc
p
qδ

p − (m0H − a)ηp
.

Thus, it follows that ρ(r) > 0. Hence, from Theorem 2.2 for each λ > λ̂, the
functional Iλ admits at least one local minimum u1 such that

‖u1‖p >
m0H − a

m1Hc
p
q

ηp

the desired conclusion is achieved. ✷

Now, we point out a special situation of our main result when the function f has
separated variables. To be precise, let α : Ω → R be a nonnegative and nonzero
function such that α ∈ L1(Ω) and let g : R → R be a nonnegative continuous
function. Consider the following problem





M

(∫

Ω

|∆u|pdx
)
∆2

pu− a

|x|2p |u|
p−2u = λα(x)g(u) in Ω,

u = ∆u = 0, on ∂Ω.
(3.12)

Put G(t) =
∫ t

0
g(ξ)dξ for all t ∈ R and set f(x, t) = α(x)g(t) for every (x, t) ∈

Ω × R. The following existence results are consequences of Theorems (3.1)-(3.3),
respectively.

Theorem 3.4. Suppose that g(0) 6= 0 and there exist a nonnegative constant η1
and two positive constants η2 and δ, with

1

cqL
1
p

η1 < δ <

(
m0H − a

m1LH

) 1
p η2
cq

such that

‖α‖L1(Ω)G(η2)− ‖α‖L1(B(0, s2 ))
G(δ)

(m0H − a)ηp2 −m1HLc
p
qδ

p <
‖α‖L1(Ω)G(η1)− ‖α‖L1(B(0, s2 ))

G(δ)

(m0H − a)ηp1 −m1HLc
p
qδ

p .
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Moreover, assume that there exist constants v > p and R > 0 such that for all
|ξ| ≥ R and for all x ∈ Ω

0 < vG(ξ) ≤ ξg(ξ). (3.13)

Then, for each λ ∈]λ1, λ2[, where

λ1 :=
1

pHc
p
q

(m0H − a)ηp1 −m1HLcpqδ
p

‖α‖L1(Ω)G(η1)− ‖α‖L1(B(0, s2 ))
G(δ)

and

λ2 :=
1

pHc
p
q

(m0H − a)ηp2 −m1HLcpqδ
p

‖α‖L1(Ω)G(η2)− ‖α‖L1(B(0, s2 ))
G(δ)

the problem (3.12) admits at least two nontrivial weak solutions u1 and u2 such
that

‖u1‖p < m0η
p.

Theorem 3.5. Suppose that g(0) 6= 0 and there exist two positive constant δ and
η, with

δ <

(
m0H − a

m1LH

) 1
p η

cq

such that
‖α‖L1(Ω)G(η)

ηp
<

m0H − a

m1HLc
p
qδ

p ‖α‖L1(B(0, s2 ))
G(δ). (3.14)

Moreover, assume that the assumption (3.11) holds. Then, for every

λ ∈
(

m1Lδ
p

p‖α‖L1(B(0, s2 ))
G(δ)

,
(m0H − a)ηp

pHc
p
q‖α‖L1(Ω)G(η)

)

the problem (3.12) admits at least two nontrivial weak solutions u1 and u2 in X

such that

‖u1‖p < m0η
p.

Theorem 3.6. Suppose that there exist two positive constant η and δ with

δ >

(
m0H − a

m1LH

) 1
p η

cq

such that

G(η) <
‖α‖L1(B(0, s2 ))

‖α‖L1(Ω)
G(δ) (3.15)

and

lim sup
ξ→+∞

g(ξ)

|ξ|p−1
≤ 0.
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Then, for each λ > λ, where

λ :=
1

pHc
p
q

(m0H − a)ηp −m1HLcpqδ
p

‖α‖L1(Ω)G(η)− ‖α‖L1(B(0, s2 ))
G(δ)

the problem (3.12) admits at least one nontrivial weak solution u1 such that

‖u1‖p >
m0H − a

m1Hc
p
q
ηp.

A further consequence of Theorem 3.1 is the following existence result.

Theorem 3.7. Suppose that g(0) 6= 0 and

lim
ξ→0+

g(ξ)

ξp−1 = +∞. (3.16)

Moreover, assume that the assumption (3.13) holds. Then, for every λ ∈ (0, λ∗
η),

where

λ∗
η :=

m0H − a

pHc
p
q‖α‖L1(Ω)

sup
η>0

ηp

G(η)

the problem (3.12) admits at least two nontrivial weak solutions in X.

Proof: Fix λ ∈]0, λ∗
η[. then there is η > 0 such that λ < m0H−a

pHc
p
q‖α‖L1(Ω)

ηp

G(η) . From

(3.16) there exists a positive constant δ with

δ <

(
m0H − a

m1LH

) 1
p η

cq

such that

λ >
m1Lδ

p

p‖α‖L1(B(0, s2 ))
G(δ)

.

Therefore, the conclusion follows from Theorem 3.2. ✷

Now, we present the following example to illustrate Theorem 3.7.

Example 3.8. Let N = 3, p = 5
4 , Ω = {(x1, x2, x3) ∈ R

3;x2
1+x2

2+x2
3 < 1},M(t) =

3 + cosx for all t ∈ [0,+∞], α(x1, x2, x3) = 1√
x2
1+x2

2+x2
3

for all (x1, x2, x3) ∈ R
3

and g(t) = 1
6 + t2|t|. thus

‖α‖L1(Ω) =

∫ 2π

0

∫ π

0

∫ 1

0

r sinφdrdφdθ = 2π

and

lim
ξ→0+

g(ξ)

ξp−1 = lim
ξ→0+

(
1

6ξ
1
4

+ ξ
7
4 ) = +∞
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Now, by choosing ν = 3 and R = 2, we see that the assumption (3.13) is satisfied.
Hence, by applying theorem 3.7, for every λ ∈ (0, λ∗) where

λ∗ =
m0H − a

pHc
p
q‖α‖L1(Ω)

sup
η>0

ηp

G(η)

=

(
4 4
√
6−

√
5

5 4
√
6c

5
4
q π

)
sup
η>0

η
1
4

2 + 3η3

≥
(
4 4
√
6−

√
5

5 4
√
6c

5
4
q π

)
η

1
4

2 + 3η3
|η=1

=
48 4

√
6− 12

√
5

25 4
√
6c

5
4
q π

the problem










(

3 + cos(

∫

Ω

|∆u|pdx)
)

∆2
pu−

6

50|x|2p
|u|p−2u =

λ
√

x2
1
+ x2

2
+ x2

3

g(u(x1, x2, x3)) in Ω,

u = ∆u = 0, on ∂Ω,

has at least two nontrivial weak solutions.

Next, by applying Theorems 3.5 and 3.6, we obtain the following theorem of
existence of three solutions for the problem (3.12).

Theorem 3.9. Suppose that g(0) 6= 0 and

lim sup
|ξ|→+∞

G(ξ)

|ξ|p ≤ 0. (3.17)

Furthermore, assume that there exist four positive constants η, δ, η and δ with

δ <

(
m0H − a

m1LH

) 1
p η

cq
≤
(
m0H − a

m1LH

) 1
p η

cq
< δ

such that (3.14) and (3.15) hold, and

‖α‖L1(Ω)G(η)

(m0H − a)ηp
<

‖α‖L1(Ω)G(η)− ‖α‖L1(B(0, s2 ))
G(δ)

(m0H − a)ηp −m1HLc
p
qδ

p (3.18)

is satisfied. Then, for each

λ ∈ Λ =

(
max{λ, m1Lδ

p

p‖α‖L1(B(0, s2 ))
G(δ)

}, (m0H − a)ηp

pHc
p
q‖α‖L1(Ω)G(η)

)

the problem (3.12) admits at least three nontrivial weak solutions u1, u1 and u3

such that

‖u1‖p < m0η
p, ‖u1‖p >

m0H − a

m1Hc
p
q
ηp.
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Proof: It is easy to see that Λ 6= ∅ from (3.18). Fix λ ∈ Λ. Using Theorem 3.5,
there is a nontrivial weak solution u1 such that

‖u1‖p < m0η
p

which is a local minimum for the associated functional Iλ, and Theorem 3.6 guar-
antees the second a nontrivial weak solution u1 such that

‖u1‖p >
m0H − a

m1Hc
p
q

ηp

which is local minimum for Iλ. Now, by employing the proof of Theorem 3.3,
from the condition (3.17) we see that the functional Iλ satisfies the (PS) condition.
Hence, the conclusion follows from the mountain pass theorem as given by Pucci
and Serrin (see [30]). ✷

We now point out the following consequence of Theorem 3.9.

Theorem 3.10. Suppose that g(0) 6= 0,

lim sup
ξ→0+

G(ξ)

ξp
= +∞, (3.19)

and

lim sup
ξ→+∞

G(ξ)

ξp
= 0. (3.20)

Moreover, assume that there exist two positive constants η and δ with

(
m0H − a

m1LH

) 1
p η

cq
< δ (3.21)

such that
‖α‖L1(Ω)G(η)

(m0H − a)ηp
<

‖α‖L1(B(0, s2 ))
G(δ)

m1HLc
p
qδ

p (3.22)

Then, for each

λ ∈
(

m1Lδ
p

p‖α‖L1(B(0, s2 ))
G(δ)

,
(m0H − a)ηp

pHc
p
q‖α‖L1(Ω)G(η)

)

the problem (3.12) admits at least three nontrivial weak solutions.

Proof: We easily observe form (3.20) that the condition (3.17) is satisfied. More-
over, by choosing δ small enough and η = η, one can drive the condition (3.14)
from (3.19) as well as the conditions (3.15) and (3.18) from (3.22). Hence, the
conclusion follows from Theorem 3.9. ✷

Finally, we illustrate Theorem 3.10 by presenting the following example.
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Example 3.11. Consider the problem





(3 + sin(

∫

Ω

|∆u|pdx))∆2
pu− 1

4 5
√
4|x|2p

|u|p−2u = λu(x) in Ω,

u = ∆u = 0, on ∂Ω,
(3.23)

where N = 3, p = 6
5 ,Ω = {x = (x1, x2, x3) ∈ R

3; |x1|+ |x2|+ |x3| < 2},M(t) = 3 +
sin t for all t ∈ [0,+∞), α(x1, x2, x3) = x2

1+x2
2+x2

3 for all (x1, x2, x3) ∈ R
3, s = 2.

Thus

‖α‖L1(Ω) =
64

5
, ‖α‖L1(B(0,1)) =

4π

5
,

Let g(t) = 1+ e−t(1− t) for all t ∈ R. Thus g is nonnegative continuous, g(0) 6= 0
and

G(t) = t(1 + e−t).

Since

lim
t→0+

t(1 + e−t)

t
6
5

= +∞, lim
t→+∞

t(1 + e−t)

t
6
5

= 0,

we see that conditions (3.19) and (3.20) hold true.Moreover, by η = 4480cq and
δ = 1

cq
, we see that the conditions (3.21) and (3.22) hold true. Then, by applying

Theorem 3.10, for every

λ ∈
(

755

3c
1
5
q (1 + e−c

−1
q )

,
875

3c
1
5
q (1 + e−4480cq)

)

the problem (3.23) has at least three nontrivial weak solutions.
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