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A Note on Super Integral Rings

Rajat Kanti Nath

abstract: Let R be a finite non-commutative ring with center Z(R). The com-
muting graph of R, denoted by ΓR, is a simple undirected graph whose vertex set is
R \ Z(R) and two distinct vertices x and y are adjacent if and only if xy = yx. Let
Spec(ΓR),  L − spec(ΓR) and Q-Spec(ΓR) denote the spectrum, Laplacian spectrum
and signless Laplacian spectrum of ΓR respectively. A finite non-commutative ring
R is called super integral if Spec(ΓR),  L − spec(ΓR) and Q-Spec(ΓR) contain only
integers. In this paper, we obtain several classes of super integral rings.
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1. Introduction

Throughout the paper R denotes a finite non-commutative ring with center
Z(R) and R

Z(R) denotes the additive quotient group. The commuting graph of R,

denoted by ΓR, is a simple undirected graph whose vertex set is R \Z(R) and two
vertices x, y are adjacent if and only if xy = yx. Many mathematicians have consid-
ered commuting graphs of several classes of finite non-commutative rings and stud-
ied various graph theoretic aspects (see [1,3,4,16,18,19,20]) in recent years. Some
generalizations of ΓR are also considered in [2,10]. Let A(ΓR) and D(ΓR) denote
the adjacency matrix and degree matrix of ΓR respectively. Then the Laplacian
matrix and signless Laplacian matrix of ΓR are given by L(ΓR) = D(ΓR)−A(ΓR)
and Q(ΓR) = D(ΓR) + A(ΓR) respectively. We write Spec(ΓR),  L − spec(ΓR) and
Q-Spec(ΓR) to denote the spectrum, Laplacian spectrum and Signless Laplacian
spectrum of ΓR respectively. Then Spec(ΓR) = {αa1

1 , αa2

2 , . . . , αal

l },  L−spec(ΓR) =

{βb1
1 , βb2

2 , . . . , βbm
m } and Q-Spec(ΓR) = {γc1

1 , γc2
2 , . . . , γcn

n } where α1, α2, . . . , αl are
the eigenvalues of A(ΓR) with multiplicities a1, a2, . . . , al; β1, β2, . . . , βm are the
eigenvalues of L(ΓR) with multiplicities b1, b2, . . . , bm and γ1, γ2, . . . , γn are the
eigenvalues of Q(ΓR) with multiplicities c1, c2, . . . , cn respectively. A finite non-
commutative ring R is said to be super integral if Spec(ΓR),  L − spec(ΓR) and
Q-Spec(ΓR) contain only integers. In this paper, we obtain several classes of super
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integral rings. It may be mentioned here that several classes of finite groups having
integral commuting graphs are determined in [12,13].

Let x be an element of R. Then centralizer of x in R denoted by CR(x) is the
set given by {y ∈ R : xy = yx}. Let Cent(R) = {CR(x) : x ∈ R}. A ring R is
called an n-centralizer ring if |Cent(R)| = n. The study of n-centralizer rings was
initiated by Dutta et al. in [7]. The readers may conf. [7,9,11] for various results
on n-centralizer rings. As an application of our results obtained in Section 2, we
determine some positive integers n such that R is super integral if |Cent(R)| = n.

The commuting probability of R denoted by Pr(R) is the probability that a
randomly chosen pair of elements of R commute. Clearly, Pr(R) = 1 if and only
if R is commutative. MacHale [17] initiated the study of Pr(R) in the year 1976.
Various results on Pr(R) and its generalizations can be found in [5,6,8,15,17]. Using
our results obtained in Section 2, we also determine some positive rationals r such
that R is super integral if Pr(R) = r. We conclude the paper by computing various
energies of a class of super integral rings.

2. Main results

It is well-known that the spectrum, Laplacian spectrum and signless Laplacian
spectrum of the complete graph Kn on n vertices are given by {(−1)n−1, (n −
1)1}, {01, nn−1} and {(2n − 2)1, (n − 2)n−1} respectively. Further, we have the
following theorem which will be used in the next results.

Theorem 2.1. Let G = l1Km1
⊔ l2Km2

⊔ · · · ⊔ lkKmk
, where liKmi

denotes the

disjoint union of li copies of Kmi
for 1 ≤ i ≤ k. Then

(a) the Laplacian spectrum of G is

{

0
∑

k

i=1
li ,m

l1(m1−1)
1 ,m

l2(m2−1)
2 , . . . ,m

lk(mk−1)
k

}

.

(b) the signless Laplacian spectrum of G is

{(2m1 − 2)l1 , (m1 − 2)l1(m1−1), (2m2 − 2)l2 ,(m2 − 2)l2(m2−1), . . . ,

(2mk − 2)lk , (mk − 2)lk(mk−1)}.

The following theorem shows that R is super integral if R
Z(R) is isomorphic to

Zp × Zp, where p is a prime.

Theorem 2.2. Let R be a finite ring and p be a prime. If R
Z(R)

∼= Zp × Zp then

Spec(ΓR) ={(−1)(p
2−1)|Z(R)|−p−1, ((p− 1)|Z(R)| − 1)p+1},

 L − spec(ΓG) ={0p+1, ((p− 1)|Z(G)|)(p
2−1)|Z(G)|−p−1} and

Q-Spec(ΓG) ={(2(p− 1)|Z(G)| − 2)p+1, ((p− 1)|Z(G)| − 2)(p
2−1)|Z(G)|−p−1}.
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Proof. By [14, Theorem 2.3], we have

Spec(ΓR) = {(−1)(p
2−1)|Z(R)|−p−1, ((p− 1)|Z(R)| − 1)p+1}.

Also, in the proof of [14, Theorem 2.3], it was shown that ΓR = (p+1)K(p−1)|Z(R)|.
Hence the result follows from Theorem 2.1. ✷

Note that if R
Z(R) is isomorphic to Zp×Zp then all the centralizers of non-central

elements of R are commutative. A non-commutative ring R is called a CC-ring if
all the centralizers of its non-central elements are commutative. In [16], Erfanian
et al. have initiated the study of CC-rings. In the following theorem we compute
various spectra of ΓR for a finite CC-ring R.

Theorem 2.3. If R is a finite CC-ring such that Cent(R) = {R,S1, S2, . . . , Sn}
then

Spec(ΓR) = {(−1)

n∑

i=1

|Si|−n(|Z(R)|+1)
, (|S1| − |Z(R)| − 1)1, . . . , (|Sn| − |Z(R)| − 1)1},

 L − spec(ΓR) = {0n, (|S1| − |Z(R)|)|S1|−|Z(R)|−1, . . . , (|Sn| − |Z(R)|)|Sn|−|Z(R)|−1}

and

Q-Spec(ΓR) ={(2(|S1| − |Z(R)|) − 2)1, (|X1| − |Z(R)| − 2)|S1|−|Z(R)|−1, . . . ,

(2(|Sn| − |Z(R)|) − 2)1, (|Sn| − |Z(R)| − 2)|Sn|−|Z(R)|−1}.

Proof. By [14, Theorem 2.1], we have

Spec(ΓR) = {(−1)

n∑

i=1

|Si|−n(|Z(R)|+1)
, (|S1| − |Z(R)| − 1)1, . . . , (|Sn| − |Z(R)| − 1)1}.

Also, in the proof of [14, Theorem 2.1], it was shown that

ΓR = K|S1|−|Z(R)| ⊔K|S2|−|Z(R)| ⊔ · · · ⊔K|Sn|−|Z(R)|.

Hence, the result follows from Theorem 2.1. ✷

Corollary 2.4. Let R be a finite CC-ring and Cent(R) = {R,S1, S2, . . . , Sn}. If

A is any finite commutative ring then

Spec(ΓR×A) = {(−1)
|A|(

n∑

i=1

|Si|−|Z(R)|)−n

, (|A|(|S1|−|Z(R)|) − 1))1, . . . ,

(|A|(|Sn| − |Z(R)|) − 1))1},

 L − spec(ΓR×A) ={0n, (|A|(|S1| − |Z(H)|))|A|(|S1|−|Z(R)|)−1, . . . ,

(|A|(|Sn| − |Z(R)|))|A|(|Sn|−|Z(R)|)−1} and

Q-Spec(ΓR×A) =

{(2|A|(|S1| − |Z(R)|) − 2)1, (|A|(|S1| − |Z(R)|) − 2)|A|(|S1|−|Z(R)|)−1, . . . ,

(2|A|(|Sn| − |Z(R)|) − 2)1, (|A|(|Sn| − |Z(R)|) − 2)|A|(|Sn|−|Z(R)|)−1}.
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Proof. Note that Z(R×A) = Z(R) ×A and Cent(R×A) = {R×A,S1 ×A,S2 ×
A, . . . , Sn ×A}. Therefore, if R is a CC-ring then R×A is also a CC-ring. Hence,
the result follows from Theorem 2.3. ✷

By Theorem 2.3, it follows that a finite CC-ring is super integral. Further, if
R is a finite CC-ring and A is any finite commutative ring then, by Corollary 2.4,
R×A is also super integral. It may be interesting to characterize all super integral
rings.

3. Some consequences

In this section, we obtain several consequences of the results obtained in Section
2. We begin with the following result.

Proposition 3.1. For any prime p, a non-commutative ring of order p2 is super

integral.

Proof. Let R be a non-commutative ring of order p2. Note that |Z(R)| = 1 and
R

Z(R)
∼= Zp × Zp. So, by Theorem 2.2, we have

Spec(ΓR) = {(−1)p
2−p−2, (p− 2)p+1},  L − spec(ΓR) = {0p+1, (p− 1)p

2−p−2}

and
Q-Spec(ΓR) = {(2p− 4)p+1, (p− 3)p

2−p−2}.

Hence, R is super integral. ✷

Proposition 3.2. For any prime p, a non-commutative ring with unity having

order p3 is super integral.

Proof. Let R be a ring with unity having order p3. Then |Z(R)| = p and R
Z(R)

∼=

Zp × Zp. So, by Theorem 2.2, we have

Spec(ΓR) = {(−1)p
3−2p−1, (p2−p−1)p+1},  L−spec(ΓR) = {0p+1, (p2−p)(p

3−2p−1}

and
Q-Spec(ΓR) = {(2p2 − 2p− 2)p+1, (p2 − p− 2)p

3−2p−1}.

These show that R is super integral. ✷

Proposition 3.3. A finite 4-centralizer ring is super integral.

Proof. If R is a finite 4-centralizer ring then, by [7, Theorem 3.2], we have R
Z(R)

∼=

Z2 × Z2. Therefore, by Theorem 2.2, we have

Spec(ΓR) = {(−1)3|Z(R)|−3, (|Z(R)| − 1)3},  L − spec(ΓR) = {03, (|Z(R)|)3|Z(R)|−3}

and
Q-Spec(ΓR) = {(2|Z(R)| − 2)3, (|Z(R)| − 2)3|Z(R)|−3}.

Hence, R is super integral. ✷
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Proposition 3.4. A finite 5-centralizer ring is super integral.

Proof. If R is a finite 5-centralizer ring then, by [7, Theorem 4.3], we have R
Z(R)

∼=

Z3 × Z3. Therefore, by Theorem 2.2, we have

Spec(ΓR) = {(−1)9|Z(R)|−4, (2|Z(R)|−1)4},  L−spec(ΓR) = {04, (2|Z(R)|)8|Z(R)|−4}

and
Q-Spec(ΓR) = {(4|Z(R)| − 2)4, (2|Z(R)| − 2)8|Z(R)|−4}.

Hence, R is super integral. ✷

We also have the following result.

Proposition 3.5. For any prime p, a (p + 2)-centralizer p-ring is super integral.

Proof. If R is a finite (p+ 2)-centralizer p-ring then, by [7, Theorem 2.12], we have
R

Z(R)
∼= Zp × Zp. Hence, the result follows from Theorem 2.2. ✷

Proposition 3.6. Let R be a finite ring and p the smallest prime divisor of |R|.

Then R is super integral if Pr(R) = p2+p−1
p3 .

Proof. If Pr(R) = p2+p−1
p3 then, by [17, Theorem 2], we have R

Z(R)
∼= Zp × Zp.

Hence, the result follows from Theorem 2.2. ✷

As a corollary to Proposition 3.6 we have the following result.

Corollary 3.7. A finite ring R is super integral if Pr(R) = 5
8 .

We conclude this paper by computing various energies of the commuting graphs
of a class of super integral rings.

Theorem 3.8. Let p be a prime and R a finite ring. If R
Z(R)

∼= Zp × Zp then

the energy, Laplacian energy and signless Laplacian energy of ΓR are all equal to

2(p2 − 1)|Z(R)| − 2(p + 1).

Proof. The energy E(ΓR), Laplacian energy LE(ΓR) and signless Laplacian energy
LE+(ΓR) of ΓR are given by

E(ΓR) =
∑

λ∈Spec(ΓR)

|λ|, LE(ΓR) =
∑

µ∈ L−spec(ΓR)

∣

∣

∣

∣

µ−
2|e(ΓR)|

|v(ΓR)|

∣

∣

∣

∣

and

LE+(ΓR) =
∑

ν∈Q-Spec(ΓR)

∣

∣

∣

∣

ν −
2|e(ΓR)|

|v(ΓR)|

∣

∣

∣

∣

,

where v(ΓR) and e(ΓR) denotes the set of vertices and edges of ΓR respectively.
Hence, the result follows from Theorem 2.2 noting that |v(ΓR)| = (p2 − 1)|Z(R)|
and 2|e(ΓR)| = (p2 − 1)|Z(R)|((p− 1)|Z(R)| − 1). ✷



218 R. K. Nath

Acknowledgments

The author would like to thank the referee for his/her valuable suggestions.

References

1. Abdollahi, A., Commuting graphs of full matrix rings over finite fields, Linear Algebra Appl.
428, 2947–2954, (2008).

2. Afkhami, M., Barati, Z., Hoseini, N. and Khashyarmanesh, K., A generalization of commuting
graphs, Discrete Math. Algorithm. Appl. 7, 1450068 [11 pages], (2015).

3. Akbari, S., Ghandehari, M., Hadian, M. and Mohammadian, A., On commuting graphs of
semisimple rings, Linear Algebra Appl. 390, 345–355, (2004).

4. Akbari, S. and Raja, P., Commuting graphs of some subsets in simple rings, Linear Algebra
Appl. 416, 1038–1047, (2006).

5. Buckley, S. M. and Machale, D., Contrasting the commuting probabilities of groups and rings,
Preprint.
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